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An Intelligent Energy Management System for
Large-scale Charging of Electric Vehicles

Zhe Yu, Shiyao Chen, and Lang Toriggllow, IEEE,

Abstract—The problem of large-scale charging of electric  Finally, for large-scale charging, the underlying scheuyl
vehicles (EVs) with consumer-imposed charging deadlinessi algorithm must be scalable with respect to the number of
considered. An architecture for the intelligent energy marage- EVs, which rules out the algorithms that are based on direct

ment system (IEMS) is introduced. The iIEMS consists of an L . P . .
admission control and pricing module, a scheduling module applications of dynamic optimization principles. It isgete-

that determines the charging sequence, and a power dispatch fore, necessary to consider structured algorithms thisipagh
module that draws power from a mix of storage, local renewal# suboptimal in general, are optimal in some nontrivial saleci
energy sources, and purchased power from the grid. A thresHd  cases.

admission and greedy scheduling (TAGS) policy is proposedt

maximize operation profit. The performance of TAGS is analyed

and evaluated based on average and worst-case performanceA. Summary of Results

measures and the optimality of TAGS is established for soment We present a centrally managed iEMS architecture based on
stances. Numerical simulations demonstrate that TAGS ackies . - .
noticeable performance gains over benchmark techniques. the concept of network switched charging. A network S,W'tCh
centrally controls chargers to charge selected EVs usiag th
most economic mix of available local renewable sources and
presumably more expensive power purchased from the grid.
See a detailed description in Sect[gh II.
. INTRODUCTION The algorithmic contribution is the development and anal-
ARGE scale adoption of electric vehicles (EVs) depenggis of threshold admission and greedy scheduling (TAGS)
critically on the availability of convenient and economigolicies, which are online algorithms aimed at maximizing t
charging facilities in both public and private settings. Weverall operation profit. By online algorithms we mean that
consider the problem of EV charging at parking facilitieghe admission and scheduling decisions at timare made
where the charging of a large number of EVs can be managssked on information received up to timeTo this end, we
centrally and efficiently. Typical settings include EV chiag consider two types of performance measures: one is based
at parking garages, parking lots, and possibly street parkion the average profit in a stochastic dynamic optimization
spaces. framework; the other is based on the worst-case profit in a
For a charging service provider who operates charging @éterministic robust optimization setting.
hundreds and up to thousands of EVs, an intelligent energyin analyzing the performance, we show that TAGS policies
management system (iEMS) is essential to serve consumaris optimal when, at any time interval, only one EV is actjivel
in the most effective way. To this end, the design of an iEMé&harged by the local renewables. Although the conditioreand
faces several challenges. which TAGS policies are optimal is somewhat limited, the
First, EV customers have diverse charging needs in termsfaét that optimality can be achieved lends analytical suppo
the amount of charging and the time by which charging neefts TAGS in general cases when multiple EVs can be charged
to be completed. Second, the cost of charging may also $igultaneously. Indeed, it is well known that deadline sithe
time varying and stochastic, especially if the chargingdlitgc ing problems involving multiple processors (EV chargers) a
has locally renewable energy sources or the cost of purdhasery challenging; the optimal scheduling algorithm is uokm
electricity fluctuates with time. An efficient iEMS must havesven in absence of requiring admission control.
the ability to optimize its charging profile by taking advage
of the charging cost dynamics while satisfying consumer rg- pajated Work
quirements. Third, since there are consumer-imposed titarg
deadlines and capacity constraints from the chargingitigcil
it is necessary to have an optimized pricing and admiss
control strategy that yields economic return for the servi
provider.

Index Terms—Charging of electric vehicles; competitive ratio
analysis; deadline scheduling; energy management systems

Different from the centralized scheduling of EV charging
ii{[e?\mework considered here, there is a significant body of
iterature on decentralized EV charging problems. The work
in [I] and [2] aims to minimize the load variance. It is shown
that minimizing the load variance leads to the valley filling
Manuscript received August 13, 2015; revised January 4528dcepted February 2, property that Shapes the load to a more uniform profile. Ity fac
i s Eonssamts oo i<ty 1 is established i [112] that he objective valley fiijrzan
and CNS-1135844. be achieved in a decentralized fashion by iteratively duljgs
Z. Yu, S. Chen, and L. Tong (corresponding author) are with $ithool of Elec- the price of charging and the Charging profile of the conssmer

trical and Computer Engineering, Cornell University, thaNY 14853, USA. (Email: . g i X
zy73@cornell.edu; sc933@cornell.edu; [t35@cornel)edu This approach ploneered Im[ll:l [2] and followed through In



2 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. , NO. , FEBRUAR016

[3], [@] is particularly suitable for the day ahead plannioiy IEMS local renewable
charging services since it requires that the aggregatadiciga =
demand and information of consumers within the planning giosv[\)lg{ch

horizon are known by the service provider ahead of time. | | |
In contrast, the real-time charging techniques considémed
this work focus on real-time charging services and they are

; : : ; ; ) charging )
designed to exploit real-time demand and cost information. Network Switch < schedulin
If we ignore the admission policy and focus on the schedul- i

ing of charging for admitted EVs, the underlying scheduling [T 1] [

problem is closely related to the classical deadline sciveglu  Z5| <o * ° * oo |

problem first considered by Liu and Laylarid [5]. In its most Birlllti:r%g’&
l. l’ o000 l’ )

A
A

generic setting, jobs arrive with different sizes and diead|,
and they are processed hy/ identical processors. Each

processor can process one job at a time, and its work can
be preempted without cost. For the single processor case
(.]V[ =1), .the .reSUItS are qullte complete. Slmple. online alg?—'ig. 1. Architecture for network switched charging and iEMS
rithms (with linear complexity) such as the earliest daaalli
first (EDF) [B], [6] and the least laxity first (LLF)[7] achiev
the same performance as the optimal offline algorithm in t
deterministic setting. In the stochastic setting, authafr{g]

admissio
control

[ﬂ%m the grid—to tens or hundreds of chargers. Through the
network switch, the scheduler activates and deactivates th

2”3.]5] .showeg }hatdEDFfmlnlmlzes the u.nf|nt|.shedf Vécg hargers connected to EVs admitted to the facility to serve
usion model and performance approximation o more urgent or more profitable requests.

are develope_d m[ﬂO],I:[Jl]_, ar?ﬂlzl under the assgmpjuon The iIEMS is run by the software system that makes engi-

of heavy traffic. Lehoczky first introduced the approximatio . ; -

approach in[100], which included customer timing requiremeneerlng and eco.nom|c.deC|5|ons. A.t the core (.)f the sof_tware
' sglstem for the iIEMS is the charging scheduling algorithm,

'r?]?stql:sg:r']?gwr:ﬁ(de:fmlf(niirdthLeeh'\g/Cl\gll(l ziizvrggt'?ﬁétmlzg]which is the focus of this paper. The scheduler 1) contras th
o : y power dispatcher to procure energy from available soues,
minimizes the fraction of the lost work and customers anckga . .
S o .Sets the connections of the switch so that a subset of EVs
an approximation of the fraction in a general open queueing : :
setting [12] are charged by the available chargers, and 3) determines the

For the multi-processor casé/(> 1), optimal online al- admission of new EVs based on its charging demand and

gorithm is lacking. Derouzos and MoK J13] showed thattlge system operating condition. The software system also ha

even for the dual processor case, no on-line algorithm cgn handle billing, other ancillary services and possiblg th
' %recast of available renewables in the future, which are no

guaranteel00% success. In[[14], we developed a scalable : :

index scheduling policy based on the Whittle’s index and theIscussed in this paper.

performance was shown to be close to the upper bound.
One of the first works related to admission control is in

the context of video on demand applications [in][15] and is

further developed ir [16][[17]([18], and [19]. With admiss o gy Charging Job Description

control, online deadline scheduling becomes more chalieng
and existing results are limited. The IEMS treats each EV as a job. Without loss of gener-
ality, the EVs are assumed to arrive at the system one by one.
ot The charging request from thdh Ev Ji is specified by the
C. Organization e o .
} ) ) ] tuple J; = (14, d;, ji, v;), as shown in Fid.J2, wherg € RT is

This paper is organized as follows. The architecture of thgs 4rival time,d; € R* the deadlinej; € R* the charging

IEMS is presented in Sectidnl Il. In Sectibnl lll, the chargingemand and. € R+ the value of the EV (charging revenue

problem is formulated as an admission and scheduling probl@jected from the EV). Assuming all chargers have the same

with hard deadlines under both average case and worst casgy charging rate, the charging demaids measured by the
In Section 1V, the threshold admission and greedy schegulieharging time. The deadline of EY; satisfiesd; > 7, + j; at

policies are proposed and the optimality of TAGS is ShOWR grrival. The leading timé&;(¢) and laxityl;(¢) at timet are
in Section[¥. Simulations are presented in Seclioh VI. Segfined in [1), where;, (¢) is the remaining charging demand
tion [VIllconcludes the paper. to be completed at timg, anda™ = max{0, a}.

IIl. PROBLEM FORMULATION

1. THE IEMS ARCHITECTURE Ti(t) = (d; — t)*,15(t) = Ti(t) — j:(1). 1)
The iEMS architecture is illustrated in Flg. 1. The hardware
system of the proposed iIEMS includes a dispatcher that-deliv The input EV instancd = {Ji,...,Jy} is defined as an
ers power from a mix of energy sources—local energy (e.@rrival sequence ofV EVs. The number of EVIV can vary
renewable energy and local storage) and purchased eigctriacross different instances.
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energy paid to grid. The value function of the policy for a

110 e E— | given instancd is then

EV J;

‘ Ti(t) i time Va(l) = Z (i = x0i) ®)

r t d; {iziel,A;(c0)=1}

where o; is the amount of time that EVJ; € I is charged
using the expensive outsourced energy.

We treat two types of performance measures, the expected
total profit for the stochastic setting and the competitator

B. Admission and EV Charging Policies for the deterministic setting.

Assume that the charging facility has hundreds of chargersl) Expected Total ProfitUnder the stochastic setting, we

e interested in the total expected profit. Derbtethe set

and the low cost energy from the local storage or renewalﬂ% I ble inst St BTEVS. Th imal val
sources can suppait’ of them. WhileA may be time varying ot all possibie INstances consists s 'he optima vajue
I);Lénctlon is the supreme of the total expected profit:

in general, we assume that it is fixed during the scheduli
horizon for simplicity. We also assume that all EVs admitted V* =supErer, Vi (I). (4)
to the facility need to be finished by the deadlines. When ™
local energy may not be sufficient to meet all the demanid, the optimal value can be achieved, the poliey that
the scheduler will need to purchase power from the grid witichieves the optimality is considered as optimal:
possibly high cost. The action of using expensive sources is
referred to as outsourcing.

A policy = for the IEMS has two components: 1) admission
policy, 2) charging policy. Upon the arrival of a new EV, them

dmissi oy decid hether t tit O dehitt ance of an online policyr is measured by the competitive
admission policy decides whether to accept it. Once admitte, ;. against the optimal offline (clairvoyant) scheduletthas
the newly arrived EV enters a queue. The charging p0|l(];

. . . '$formation of future arrivals. Denote the profit obtaineg b
idnetglr(\j/:lls which EV(s) in the queue to be charged at any B online (optimal offline) scheduler B (1) (Vgiine(£)) for

Formally, policyr can be defined as follows. L& (t) be some instancé. The competitive ratio is defined as follows.
\ T . L. . . . . ) . .
the set of EVs arrived up to time Let #, be the collection Definition 1: An online policy = is a-competitive if

- SIS . :
of past decisions at time An admissible online policyr is infs Vottine) = a for all instancel € T where is the
a mapping, :

Fig. 2. EV attributes: arrivat;, deadlined;, charging demand;(¢), lead
time T;(t), laxity 1;(t).

7 =argmaxE;ez, Vi (1). (5)

2) Competitive Ratio:Under the worst setting, the perfor-

O . . . .
collection of all instances with finite number EVs.
For any instance, an-competitive online algorithm is guaran-
T R(t) x Hy — {0, 1RO {—1,0, 13RO (2)  teed to achieve at least fraction of the profit of the optimal

that outputs two decision vecto(t) andC(t). In particular, offline algorithm.

the admission decisior(t) is a binary vector where EV; is

admitted if A;(t) = 1 or declined if4;(t) = 0. The charging IV. TAGS: THRESHOLDADMISSION AND GREEDY
decision is specified as: &;(t) = 0, EV J; is not charged SCHEDULING

and remains in the queue; @ (t) = 1, J; is charged by the  After the problem formulation, we propose threshold ad-
local renewable energy; and @%(¢t) = —1, J; is outsourced, mission and greedy scheduling policies for both stochastic

i.e., charged by expensive energy purchased from the gridand deterministic settings. The TAGS algorithm has twosart
For a policyr to be admissible, we impose the followingFor the charging policy, a greedy scheduling and outsogrcin
constraints: policy is proposed following the EDF principle. Based on the
1) For an admission policy, once the admission decisionggarging policy, threshold admission policies are presnt
made at the arrival time;, it cannot be changed, i.e.,under stochastic and deterministic settings.
A;(t) = Ai(r;) for all £ > 7.
2) For a charging policy, the number of EVs charged bxX. Greedy Scheduling Policy: EDF-LMO

local energy is bounded by/ at any time. As shown in Fig[dL, each accepted EV is attached to a charg-
er and the online scheduler determines when to activate the
C. Performance Measure charger and whether to require outsourcing energy. Thelgree
Without loss of generality, the value of an EV (charging rewscheduling and outsourcing policy is simply two conditiéms
enue collected from EV consumers) is assumed proportioa&tivate chargers. Whether EY; 1) is among theM EVs
to the charging time, i.ey; = p x j;. The marginal cost of with the earliest deadlines, or 2) whether it has a non-pesit
a local energy source is denoted fyand the marginal cost laxity as defined in[{1). If either of these two conditions is
of the outsourcing energy is. These values are normalizedsatisfied, the scheduler activates the charger attached t4 E
such that,, =0,p=1,¢, = c. and purchases energy from grid if necessary.
Given an admissible policyr, the profit of the service To analyze the priority of EVs and amount of outsourcing
provider by completing an admitted EV is the charging revenergy, we can intuitively to view the system as there are in
enue collected from the EV minus the cost of the expensit@al M local chargers (powered by local renewable energy)
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o . TABLE |
and infinitely many outsourcing chargers (powered by expen- EXAMPLE OF AN INPUTEV SEQUENCE
sive outsourcing energy). The scheduler assighsEVs to
local chargers following the EDF principle and other EVs to EVindex = Jj; d;
outsourcing chargers when their laxity is non-positiveeTh 0 o 2 3
outsourcing policy is referred to as last minute outsouycin ; ; f g
(LMO). 3 3 2 6

1) EDF SchedulingAt time ¢, the pending seP; is defined g ‘7‘ i 150

as the collection of EVs that satisfies 1) it has arrived arehbe
admitted ¢; < ¢, A;(r;) = 1), 2) the deadline has not yet
passed ; > t), and 3) there is positive remaining charging . )
demand {;(¢) > 0). Upon the admission of an arriving EV, Proposition 1: Under EDF-LMO,

the newly arrived EV joins the pending sBt. 1) local chargers always finish planned local charging
When there is only one local chargeb/( = 1), at any workload for all accepted EVs; .

time ¢, according to the EDF rule, the EV with the earliest 2) the amount of outsourcing energy is the minimum for all

deadline in the pending s&; gets assigned to it. Whell > c_h_arg_er activation policies with EDF rule to guarantee

1, the scheduler first sorts the admitted EVs in the ascending finishing all accepted EVs.

order of deadlines. Then the scheduler finds the local charge Proof: See [20]. u

which will firstly finish charging the EVs scheduled to it and
assigns the EV in the head of the queue to that charger. T®e Threshold Admission Policy: Average Case
amount of charging time planned for the newly scheduled EVWe now present the threshold admission policy for the

is defined in the following subsection of LMO. The scheduley erage case, which is denoted by TAGS-A. Under the stochas-
keeps doing so till all admitted EV is assigned to some |OC§X setting, the initial charging demand, laxity, and théein

charger. In this way, the pending S8 is divided into disjoint arrival time of EVs are independent and identically disttéal
sets:Py = P, U...UP, wherePf is the set of EVs aSSigned(l.I.D.). Upon the arrival of EV.J; with charging demand
to local char_gelk: 1""’M.' ji, suppose it is accepted and assigned to local chatger

2) Las_t Minute Outsourcing:To compute the_amour_1t of (both hypothetically) according to EDF-LMO. Denote the
0ut§ourC|ng energy planned for each EV, we first define t%‘ﬁtsourcing charging time assigned.oby o;.
notion of real-laxity as follows. i The maximum profit the scheduler can collect from By

Definition 2: At time 7, assume 1) EVS/y,.... Ju € P\ is stated as; 2 j; — ¢ x o;. The admission policy is proposed
2) d = .- < dy and 3) the scheduler plans chargyg 5 threshold structure on the maximum profit if and
ing time jy(7),...,7.(t) by the local charger for each o it . >, J; is accepted, where; is the threshold we
EV. The real-laxity L; of EV J; at time ¢ is defined by peeq to optimize according to the randomness in EVs and the
Li=di =t =51 Jm(l). , electricity prices.

Assume at time/, chargerk has pending EVs/y, ..., J,
with remaining planned local charging timg, ..., 7., and .. .
the real-laxity vector(Li....,L,) > 0. Suppose that a C. Threshold Admission Policy: Worst Case
newly arrived EV.J with charging demand is accepted and In this subsection, we present the threshold admission
assigned to this charger, which leads to a new real-laxityore algorithm for the worst case, which is named as TAGS-W.
(L},..., L) with some negative components. Last Minut¥Ve divide the pending EVs into two types in Definitigh 3
Outsourcing will plan for the newly arrived EV (and only according to the tightness of the deadlines.

for it) an outsourcing charging time 1) Pressing vs non-pressing EV4Jpon the release of
EV J at time r, suppose EV.J is accepted and conducted
0=~ 1<Igl<i£1+lL§7 following EDF-LMO scheduling policy (both hypothetica)ly

The pressing and non-pressing EVs are defined as follows.

and a local charging timg—o, i.e., reducing the local charging  pefinition 3: At arrival of EV .J, assume 1)
time of EV J by the amounb. JeP,={Ji, - ,J,} with d; <---<d,, and 2) the

Take Tabldll as a single local charger example. Upon thgal-laxity vector satisfiesL; =0 and Liz1,-++, Ly > 0.
arrival of EV 3, the online scheduler assig8s2,1 local Then EVs.J;,...,J; are classified apressing EVsand EVs
charging time to EVO, 1, 2 respectively. After accepting EV Jit1,...,J, are classified ason-pressing EVis
3, the real-laxity isLz = —1. The scheduler will assign an  The distinction between the two types of EVs lies in the
outsourcing charging time as; = 1 and a local charging tightness of the deadline: the pressing EVs have relatively
time asjs — o3 = 1. _ _ tight deadlines and little slack time (since i EV J;

Under LMO policy, when outsourcing energy is needed, {as |axity vector component 0, there is no slack time before
is always assigned to the newly arriving EV, and the amouig deadlined;, and any EV inJi,...,.J; cannot afford any
of the local charging time of other EVs remains unchangedjelay in charging), while the non-pressing EVs have slack

Proposition[ll shows that EDF-LMO scheduling policfime before deadline. Since TAGS-W follows the EDF rule, at
maintains the feasibility of the local energy sources cimarg any instant, if the set of pressing EVs is not empty, the local
plan. chargers will not work on any non-pressing EVs.
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As shown in Tabléll, at the arrival of EY, after hypothet- V. OPTIMALITY OF TAGS: M =1
ical admission of EV 3, the first three EVs (EV 0, 1, and 2) |, yig section, EDF-LMO is shown as an optimal schedul-

are pressing, and EV 3 is non-pressing. o ing policy under any admission policy. Then TAGS is proved
Remark 1:0nce an EV is classified as pressing, it alwaYéptimal in average and worst case respectively.

remains so afterwards under TAGS-W, even if the EV is

classified as pressing due to a newly released.Ethat is

immediately declined and disappears from the queue (recAll Optimality of EDF-LMO

EV J is only hypothetically admitted). In [A2], the authors studied the performance of EDF policy
2) Pressing vs non-pressing busy intervaldter the clas- without admission control. The fraction of work that can het

sification of pressing and non-pressing EVs, we define beldinished by the only processor on time is denoted as reneging

pressing and non-pressing busy intervals load, which in our setting is finished by outsourcing energy.
Definition 4: A pressing busy interval (denoted B7) isa Theorem 5.1 of [[12] shows that EDF minimizes the reneging

continuous time period in which some local charger is plandaiad for single local charger queue which gives the optityali

to charge pressing EVs. A non-pressing busy interidl)(is of EDF-LMO.

a continuous time period in which no local charger is planned Theorem 1:(Theorem 5.1[[12]) Letr be a scheduling and

for pressing EVs and some local chargers are planned for sooutsourcing policy and,(¢) be the amount of outsourcing

non-pressing EVs. energy up to timet. Let ogrivo(t) be the amount of out-
3) Threshold admission policyAfter hypothetically admit- sourcing energy of policy EDF-LMO . Then for arty> 0,

ting the newly arrived EV.JJ and computing the real-laxity ocorivo(t) < 0x(t).

vector, two scenarios may occur: Theorem[1L holds for any instance So EDF-LMO is

optimal under any admission policy in both average case and

1) J is classified as non-pressing, then it is accepted;
torst case whed/ = 1.

2) J is classified as pressing, then TAGS-W computes
tentative profit values for the “accepting” and “declin-
ing” options and then makes the admission decisi@. Average Case
by comparing the profit ratio (profit associated with
accepting divided by profit associated with declininggh
against a threshold + g: if the profit ratio is no

1) Low outsourcing coste(< 1): When the outsourcing
arging cost is less than the charging price, any EV is prof-

greater than thresholil + 4, the EV is declined is itable even if it is fully charged by the outsourcing eneffye

. - . ptimal admission policy is all-accept policy. The threlshg
_the parameter t_hat we will optimize according to E\Z:)an be set to-oo and TAGS-A policy is optimal.
instance and prices.

2) High outsourcing coste( > 1): Whenc¢ > 1, the
At the arrival of a pressing EVJ/, the tentative profit of gutsourcing energy is costly. The scheduler needs to diterm
“accepting” and “declining” options is calculated in a B®§ whether to accept a particular EV at its arrival. TAGS-A
busy intervalB”: is proved to be optimal for the identical charging demand
1) The tentative profit for accepting is computed as the scenario, i.e.j; = j.
total value of the accepted pressing EVs (includilg ~ Theorem 2:The threshold admission policy is optimal for
in BP after hypothetically admitting EV.J, less the the identical charging demand cage € ;).
outsourcing energy cost accumulated and planned so far Proof: The proof consists of two steps. We first show that
for these EVs (including/); J; should be accepted if; > j, and declined ify; < 0. Then
2) The tentative profit for declining is computed as the we show the profit difference of acceptance and decline is a
total value of the accepted pressing EVs (excludig monotone and continuous function of in [0, j] so there is
in B? after hypothetically admitting EV.J, less the a zero pointy; when acceptance and decline are equivalent.
outsourcing energy cost accumulated and planned so Tdre detailed proof can be found inJ20]. ]
for these EVs (excluding);

The difference of the tentative profit for accepting ang. Worst Case
declining options is the value of the newly arrived EMess

the planned outsourcing energy cost for it. As in Table I,rup is the number of local chargers and the marginal

the arrival of EV 3, all four EVs (EV 0, 1, 2, and 3) are all . . .
. . . . outsourcing energy cost. In TheorEin 3 we establish an éxplic
pressing. The outsourcing charging time for EV 0, 1, 2, anquJ o . - :
3is0 1.0 and 1. respectivel characterization of the optimal competitive ratio and stiloat
IS L5 7 p v y.- . _ TAGS-W achieves optimality.
1) The tentative profit associated with accepting EV 3 is Theorem 3:The optimal competitive ratio is given by
(I14+34+14+2)—ex(0+14+0+1). )
2) The tentative profit associated with declining EV 3 is C*(1,¢) = { 1 ) !f cs (6)
(14+3+1)—cx (0+1+0). (Ve—+ve—1)% if e>1.
Then the ratio of the two tentative profits is compared agains Proof: When ¢ < 1, all EVs should be accepted. In
the thresholdl + $ to finally render the admission decisionSectior V-4, it is shown that the scheduling policy EDF-LMO
for EV 3. minimizes the outsourcing energy cost among all online and

Denote the optimal competitive ratio by*(M, ¢) where
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offline scheduling policies under any admission policy. Fhudeclining. Thus(l — R}, )A/p serves as an upper bound of

TAGS-W achieves the maximum profit addf (1, ¢) = 1. the unit time reward collected by the local charger. Thisris a
The case where > 1 is more complicated. The proof isupper bound of the unit time profit of the online scheduler

composed of two parts. First we show thatc — /c —1)? since we neglect the cost of the outsourcing charger part.

is an upper bound of the optimal competitive ratio using an

adversary game argument. Then we analyze TAGS-W a

show it achieves the upper bound. The detailed proof can !

found in [20]. [ |
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VI. SIMULATION

In the simulation, we assume that the outsourcing ener
is costly ¢ > 1) and the average performance measure
employed.

—o&— TAGS-average case
—— EDF conservative
—— TAGS-worst case 4
—a— All-accept

—#— Performance upper bound

<}
N 2
g o
T

o
3
T

o

o

al
T

A. Single Local Charger: M=1

In this subsection, the EDF conservative (EDFC) algorithi 055
is employed as a baseline. EDFC applies conservative adn 05 ‘ ‘ ‘ ‘
sion policy: only when the EV_ can be f|n|_sh§d pu.rely_ usin 0.9 ! R |né'§snyp: 1/3# 14
local renewable energy following EDF principle, it will be
admitted. For TAGS-W, a set of training data is used to ﬁrﬂg. 3. M = 1. Parameter of inter-arrival:l /A = 2; initial charging demand:
the parameter that gives the maximum profit. Then thetail index k = 1/64; initial laxity: tail index k = 1/64, scalec = 0.0015,
simulation is carried out using the obtained threshbld 5. location = 0.0984; prices:p = 1, ¢ = 1.25.

For TAGS-A, the optimal threshold, is different for each EV,

which is determined by the distribution of the traffic and the In Fig.[3, the Pareto distributed charging demand, Pareto
order of EVs. In the simulation, a lower bound approximatioflistributed laxity, and the exponential distributed irgerival

of TAGS-A is carried out. Instead of different threshejdfor time EV sequence is simulated and the expected unit time
each EV, an optimal uniform threshold is obtained using Profit versus traffic intensity is shown. When the traffic is
training data such that any EV with > v* will be accepted. light, TAGS admits almost every EV and the performance
Then the simulation is carried out with the obtained thréshois close to all-accept policy. When the system gets busy, the
vr, TAGS performance is similar to EDFC. One explanation is

The performance upper bound is obtained based on fi@t TAGS balances the outsourcing cost of charging EVs with
result from [12]. In [12], the performance of EDF policytight deadlines and the risk of local charger idleness. When
without admission control is approximated under the heaijcoming EVs are dense, we can always reject urgent EVs and
traffic assumption. In particular, we have the approxinmticsome less urgent ones will come in soon enough and keep the
as follows. local charger busy. The performance upper bound is shown in

Theorem 4:(Theorem 1.1 in[[12]) The fraction of demandFig-[3. The gap between the upper bound and the TAGS is less
charged by outsourcing chargers can be approximated than5%. TAGS-W is developed for the worst case while the
Ry = e P [(1—p)/(p—pe—?P)], where the inter-arrival time performance is reasonably well under the average measure.
distribution has meai /), variancea?; the charging demand
has mearl /u, variancey?; the traffic intensity is defined as . )
p= N 6/: 2(1— p)/(A\(a? ++2)), and D is the mean of B. Multiple Local Charger:M > 1
the initial leading timeT;. In this subsection, we extend TAGS to multiple local
According to Theoreni]4, under the all-accept policy, theharger case, in which no optimal scheduling policy is known
fraction of the demand charged by the local charger is approin either average or deterministic cases so far. We modify
mately1— R}, and this will generaté profit per unit charging TAGS based on least laxity first (LLF) principle. EVs with
time; while the fraction of demand charged by outsourcingast laxity are given high priorities and assigned to local
energy isRj;, and this will generatel — ¢ profit per unit chargers preferentially. Thus when computing the reatylax
charging time. The total unit time profit is approximated b¥efinition[2 and looking for pressing and non-pressing EVs in
(1—=Riy + (1 —c)Ry)T/T = (1 — cRyy)M/pu where J is  Definition[3, the admitted EVs are sorted by the laxjtyather
the total charging demand of all EV%, the total simulation than the deadlineg;. Last minute outsourcing and threshold
time and7 /7 indeed the traffic intensity/pu. admission policies remain unchanged.

When the outsourcing energy cost is high > 1), the In Fig.[4, the simulation of Pareto distributed charging de-
admission policy is active and not all the EVs are acceptetiand, Pareto distributed laxity, and the exponential ithisted
Theorenl# shows thdtl — Rj;,).J is the demand charged byinter-arrival time with multiple local chargers is preseht
the local charger if all EVs are accepted. This is an upp&hen the traffic is heavy\/u = 1.2M), all-accept policy is
bound of the total charging time of the local charger failoo aggressive and LLF conservative is too backwards. TAGS-
any admission policy because of possible idleness caused/yejects EVs appropriately and maintains a high utilityerat

Unit Time Profit per Local Charger
o
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Number of Local Chargerd/
Fig. 4. M > 1. Parameter of inter-arrivall/X\ = 1/(3v/M); charging

demand:1/p = 0.4V M, tail index & = 1/64; initial laxity: tail index
k = 1/64, scalec = 0.0015, location® = 0.0984; prices:p = 1, ¢ = 1.25

[15]
[16]
[17]

of local chargers. This simulation shows the ability of TAGS

A to be extended to multiple local charger cases. The averdig
computation time of TAGS-A for each EV &1 ms per local
charger on a PC platform with Intel67 GHz quad core and [1g]
8 GB memory.

VII. CONCLUSION [20]

The admission and scheduling problem for EVs with dead-
lines and choice of energy is considered. When the local
renewable energy can support only one EM & 1), in the
average case, the problem is formulated as a stochasticrdyna
ic programming and the optimality of TAGS is obtained for
identical charging demand cases. In the worst case, ther uppe
bound of the competitive ratio is developed by constructio

local renewable energy can support charging of multiple EV
(M > 1), TAGS is extended and simulation suggests notable
performance improvement over benchmark techniques.
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