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Abstract—The problem of large-scale charging of electric
vehicles (EVs) with consumer-imposed charging deadlines is
considered. An architecture for the intelligent energy manage-
ment system (iEMS) is introduced. The iEMS consists of an
admission control and pricing module, a scheduling module
that determines the charging sequence, and a power dispatch
module that draws power from a mix of storage, local renewable
energy sources, and purchased power from the grid. A threshold
admission and greedy scheduling (TAGS) policy is proposed to
maximize operation profit. The performance of TAGS is analyzed
and evaluated based on average and worst-case performance
measures and the optimality of TAGS is established for some in-
stances. Numerical simulations demonstrate that TAGS achieves
noticeable performance gains over benchmark techniques.

Index Terms—Charging of electric vehicles; competitive ratio
analysis; deadline scheduling; energy management systems.

I. I NTRODUCTION

L ARGE scale adoption of electric vehicles (EVs) depends
critically on the availability of convenient and economic

charging facilities in both public and private settings. We
consider the problem of EV charging at parking facilities
where the charging of a large number of EVs can be managed
centrally and efficiently. Typical settings include EV charging
at parking garages, parking lots, and possibly street parking
spaces.

For a charging service provider who operates charging of
hundreds and up to thousands of EVs, an intelligent energy
management system (iEMS) is essential to serve consumers
in the most effective way. To this end, the design of an iEMS
faces several challenges.

First, EV customers have diverse charging needs in terms of
the amount of charging and the time by which charging needs
to be completed. Second, the cost of charging may also be
time varying and stochastic, especially if the charging facility
has locally renewable energy sources or the cost of purchased
electricity fluctuates with time. An efficient iEMS must have
the ability to optimize its charging profile by taking advantage
of the charging cost dynamics while satisfying consumer re-
quirements. Third, since there are consumer-imposed charging
deadlines and capacity constraints from the charging facility,
it is necessary to have an optimized pricing and admission
control strategy that yields economic return for the service
provider.
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Finally, for large-scale charging, the underlying scheduling
algorithm must be scalable with respect to the number of
EVs, which rules out the algorithms that are based on direct
applications of dynamic optimization principles. It is, there-
fore, necessary to consider structured algorithms that, although
suboptimal in general, are optimal in some nontrivial special
cases.

A. Summary of Results

We present a centrally managed iEMS architecture based on
the concept of network switched charging. A network switch
centrally controls chargers to charge selected EVs using the
most economic mix of available local renewable sources and
presumably more expensive power purchased from the grid.
See a detailed description in Section II.

The algorithmic contribution is the development and anal-
ysis of threshold admission and greedy scheduling (TAGS)
policies, which are online algorithms aimed at maximizing the
overall operation profit. By online algorithms we mean that
the admission and scheduling decisions at timet are made
based on information received up to timet. To this end, we
consider two types of performance measures: one is based
on the average profit in a stochastic dynamic optimization
framework; the other is based on the worst-case profit in a
deterministic robust optimization setting.

In analyzing the performance, we show that TAGS policies
are optimal when, at any time interval, only one EV is actively
charged by the local renewables. Although the condition under
which TAGS policies are optimal is somewhat limited, the
fact that optimality can be achieved lends analytical support
for TAGS in general cases when multiple EVs can be charged
simultaneously. Indeed, it is well known that deadline schedul-
ing problems involving multiple processors (EV chargers) are
very challenging; the optimal scheduling algorithm is unknown
even in absence of requiring admission control.

B. Related Work

Different from the centralized scheduling of EV charging
framework considered here, there is a significant body of
literature on decentralized EV charging problems. The work
in [1] and [2] aims to minimize the load variance. It is shown
that minimizing the load variance leads to the valley filling
property that shapes the load to a more uniform profile. In fact,
it is established in [1], [2] that the objective valley filling can
be achieved in a decentralized fashion by iteratively adjusting
the price of charging and the charging profile of the consumers.
This approach pioneered in [1], [2] and followed through in
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[3], [4] is particularly suitable for the day ahead planningof
charging services since it requires that the aggregated charging
demand and information of consumers within the planning
horizon are known by the service provider ahead of time.
In contrast, the real-time charging techniques consideredin
this work focus on real-time charging services and they are
designed to exploit real-time demand and cost information.

If we ignore the admission policy and focus on the schedul-
ing of charging for admitted EVs, the underlying scheduling
problem is closely related to the classical deadline scheduling
problem first considered by Liu and Layland [5]. In its most
generic setting, jobs arrive with different sizes and deadlines,
and they are processed byM identical processors. Each
processor can process one job at a time, and its work can
be preempted without cost. For the single processor case
(M = 1), the results are quite complete. Simple online algo-
rithms (with linear complexity) such as the earliest deadline
first (EDF) [5], [6] and the least laxity first (LLF) [7] achieve
the same performance as the optimal offline algorithm in the
deterministic setting. In the stochastic setting, authorsof [8]
and [9] showed that EDF minimizes the unfinished work.
A diffusion model and performance approximation of EDF
are developed in [10], [11], and [12] under the assumption
of heavy traffic. Lehoczky first introduced the approximation
approach in [10], which included customer timing requirement
into queueing models under the M/M/1 assumption. In the
most recent work, Kruk and Lehoczky showed that EDF
minimizes the fraction of the lost work and customers and gave
an approximation of the fraction in a general open queueing
setting [12].

For the multi-processor case (M > 1), optimal online al-
gorithm is lacking. Derouzos and Mok [13] showed that
even for the dual processor case, no on-line algorithm can
guarantee100% success. In [14], we developed a scalable
index scheduling policy based on the Whittle’s index and the
performance was shown to be close to the upper bound.

One of the first works related to admission control is in
the context of video on demand applications in [15] and is
further developed in [16], [17], [18], and [19]. With admission
control, online deadline scheduling becomes more challenging
and existing results are limited.

C. Organization

This paper is organized as follows. The architecture of the
iEMS is presented in Section II. In Section III, the charging
problem is formulated as an admission and scheduling problem
with hard deadlines under both average case and worst case.
In Section IV, the threshold admission and greedy scheduling
policies are proposed and the optimality of TAGS is shown
in Section V. Simulations are presented in Section VI. Sec-
tion VII concludes the paper.

II. T HE IEMS ARCHITECTURE

The iEMS architecture is illustrated in Fig. 1. The hardware
system of the proposed iEMS includes a dispatcher that deliv-
ers power from a mix of energy sources—local energy (e.g.,
renewable energy and local storage) and purchased electricity
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Fig. 1. Architecture for network switched charging and iEMS.

from the grid—to tens or hundreds of chargers. Through the
network switch, the scheduler activates and deactivates the
chargers connected to EVs admitted to the facility to serve
more urgent or more profitable requests.

The iEMS is run by the software system that makes engi-
neering and economic decisions. At the core of the software
system for the iEMS is the charging scheduling algorithm,
which is the focus of this paper. The scheduler 1) controls the
power dispatcher to procure energy from available sources,2)
sets the connections of the switch so that a subset of EVs
are charged by the available chargers, and 3) determines the
admission of new EVs based on its charging demand and
the system operating condition. The software system also has
to handle billing, other ancillary services and possibly the
forecast of available renewables in the future, which are not
discussed in this paper.

III. PROBLEM FORMULATION

A. EV Charging Job Description

The iEMS treats each EV as a job. Without loss of gener-
ality, the EVs are assumed to arrive at the system one by one.
The charging request from theith EV Ji is specified by the
tupleJi = (ri, di, ji, v̄i), as shown in Fig. 2, whereri ∈ R

+ is
the arrival time,di ∈ R

+ the deadline,ji ∈ R
+ the charging

demand, and̄vi ∈ R
+ the value of the EV (charging revenue

collected from the EV). Assuming all chargers have the same
fixed charging rate, the charging demandji is measured by the
charging time. The deadline of EVJi satisfiesdi ≥ ri + ji at
its arrival. The leading timeTi(t) and laxityli(t) at timet are
defined in (1), whereji(t) is the remaining charging demand
to be completed at timet, anda+ = max{0, a}.

Ti(t) = (di − t)+, li(t) = Ti(t)− ji(t). (1)

The input EV instanceI = {J1, . . . , JN} is defined as an
arrival sequence ofN EVs. The number of EVN can vary
across different instances.
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Fig. 2. EV attributes: arrivalri, deadlinedi, charging demandji(t), lead
time Ti(t), laxity li(t).

B. Admission and EV Charging Policies

Assume that the charging facility has hundreds of chargers
and the low cost energy from the local storage or renewable
sources can supportM of them. WhileM may be time varying
in general, we assume that it is fixed during the scheduling
horizon for simplicity. We also assume that all EVs admitted
to the facility need to be finished by the deadlines. When
local energy may not be sufficient to meet all the demand,
the scheduler will need to purchase power from the grid with
possibly high cost. The action of using expensive sources is
referred to as outsourcing.

A policy π for the iEMS has two components: 1) admission
policy, 2) charging policy. Upon the arrival of a new EV, the
admission policy decides whether to accept it. Once admitted,
the newly arrived EV enters a queue. The charging policy
decides which EV(s) in the queue to be charged at any time
interval.

Formally, policyπ can be defined as follows. LetR(t) be
the set of EVs arrived up to timet. Let Ht be the collection
of past decisions at timet. An admissible online policyπ is
a mapping,

π : R(t)×Ht → {0, 1}|R(t)| × {−1, 0, 1}|R(t)| (2)

that outputs two decision vectorsA(t) andC(t). In particular,
the admission decisionA(t) is a binary vector where EVJi is
admitted ifAi(t) = 1 or declined ifAi(t) = 0. The charging
decision is specified as: ifCi(t) = 0, EV Ji is not charged
and remains in the queue; ifCi(t) = 1, Ji is charged by the
local renewable energy; and ifCi(t) = −1, Ji is outsourced,
i.e., charged by expensive energy purchased from the grid.

For a policyπ to be admissible, we impose the following
constraints:

1) For an admission policy, once the admission decision is
made at the arrival timeri, it cannot be changed, i.e.,
Ai(t) = Ai(ri) for all t ≥ ri.

2) For a charging policy, the number of EVs charged by
local energy is bounded byM at any time.

C. Performance Measure

Without loss of generality, the value of an EV (charging rev-
enue collected from EV consumers) is assumed proportional
to the charging time, i.e.,̄vi = p × ji. The marginal cost of
a local energy source is denoted bycl and the marginal cost
of the outsourcing energy isco. These values are normalized
such thatcl = 0, p = 1, co = c.

Given an admissible policyπ, the profit of the service
provider by completing an admitted EV is the charging rev-
enue collected from the EV minus the cost of the expensive

energy paid to grid. The value function of the policy for a
given instanceI is then

Vπ(I) =
∑

{i:i∈I,Ai(∞)=1}

(ji − c× oi) (3)

whereoi is the amount of time that EVJi ∈ I is charged
using the expensive outsourced energy.

We treat two types of performance measures, the expected
total profit for the stochastic setting and the competitive ratio
for the deterministic setting.

1) Expected Total Profit:Under the stochastic setting, we
are interested in the total expected profit. DenoteIN the set
of all possible instances consists ofN EVs. The optimal value
function is the supreme of the total expected profit:

V ∗ = sup
π

EI∈IN
Vπ(I). (4)

If the optimal value can be achieved, the policyπ∗ that
achieves the optimality is considered as optimal:

π∗ = argmax
π

EI∈IN
Vπ(I). (5)

2) Competitive Ratio:Under the worst setting, the perfor-
mance of an online policyπ is measured by the competitive
ratio against the optimal offline (clairvoyant) scheduler that has
information of future arrivals. Denote the profit obtained by
the online (optimal offline) scheduler byVπ(I) (V ∗

offline(I)) for
some instanceI. The competitive ratio is defined as follows.

Definition 1: An online policy π is α-competitive if
infI

Vπ(I)
V ∗

offline(I)
≥ α for all instanceI ∈ I where I is the

collection of all instances with finite number EVs.
For any instance, anα-competitive online algorithm is guaran-
teed to achieve at leastα fraction of the profit of the optimal
offline algorithm.

IV. TAGS: THRESHOLDADMISSION AND GREEDY

SCHEDULING

After the problem formulation, we propose threshold ad-
mission and greedy scheduling policies for both stochastic
and deterministic settings. The TAGS algorithm has two parts.
For the charging policy, a greedy scheduling and outsourcing
policy is proposed following the EDF principle. Based on the
charging policy, threshold admission policies are presented
under stochastic and deterministic settings.

A. Greedy Scheduling Policy: EDF-LMO

As shown in Fig. 1, each accepted EV is attached to a charg-
er and the online scheduler determines when to activate the
charger and whether to require outsourcing energy. The greedy
scheduling and outsourcing policy is simply two conditionsto
activate chargers. Whether EVJi 1) is among theM EVs
with the earliest deadlines, or 2) whether it has a non-positive
laxity as defined in (1). If either of these two conditions is
satisfied, the scheduler activates the charger attached to EV Ji
and purchases energy from grid if necessary.

To analyze the priority of EVs and amount of outsourcing
energy, we can intuitively to view the system as there are in
total M local chargers (powered by local renewable energy)
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and infinitely many outsourcing chargers (powered by expen-
sive outsourcing energy). The scheduler assignsM EVs to
local chargers following the EDF principle and other EVs to
outsourcing chargers when their laxity is non-positive. The
outsourcing policy is referred to as last minute outsourcing
(LMO).

1) EDF Scheduling:At time t, the pending setPt is defined
as the collection of EVs that satisfies 1) it has arrived and been
admitted (ri ≤ t, Ai(ri) = 1), 2) the deadline has not yet
passed (di > t), and 3) there is positive remaining charging
demand (ji(t) > 0). Upon the admission of an arriving EV,
the newly arrived EV joins the pending setPt.

When there is only one local charger (M = 1), at any
time t, according to the EDF rule, the EV with the earliest
deadline in the pending setPt gets assigned to it. WhenM >
1, the scheduler first sorts the admitted EVs in the ascending
order of deadlines. Then the scheduler finds the local charger
which will firstly finish charging the EVs scheduled to it and
assigns the EV in the head of the queue to that charger. The
amount of charging time planned for the newly scheduled EV
is defined in the following subsection of LMO. The scheduler
keeps doing so till all admitted EV is assigned to some local
charger. In this way, the pending setPt is divided into disjoint
sets:Pt = P1

t ∪. . .∪PM
t , wherePk

t is the set of EVs assigned
to local chargerk = 1, . . . ,M .

2) Last Minute Outsourcing:To compute the amount of
outsourcing energy planned for each EV, we first define the
notion of real-laxity as follows.

Definition 2: At time t, assume 1) EVsJ1, . . . , Jn ∈ Pk
t ,

2) d1 ≤ · · · ≤ dn, and 3) the scheduler plans charg-
ing time ĵ1(t), . . . , ĵn(t) by the local chargerk for each
EV. The real-laxityLi of EV Ji at time t is defined by
Li = di − t−

∑i
m=1 ĵm(t).

Assume at timet, chargerk has pending EVsJ1, . . . , Jn
with remaining planned local charging timêj1, . . . , ĵn, and
the real-laxity vector(L1, . . . , Ln) ≥ 0. Suppose that a
newly arrived EVJ with charging demandj is accepted and
assigned to this charger, which leads to a new real-laxity vector
(L′

1, . . . , L
′
n+1) with some negative components. Last Minute

Outsourcing will plan for the newly arrived EVJ (and only
for it) an outsourcing charging time

o = − min
1≤i≤n+1

L′
i,

and a local charging timej−o, i.e., reducing the local charging
time of EV J by the amounto.

Take Table I as a single local charger example. Upon the
arrival of EV 3, the online scheduler assigns2, 2, 1 local
charging time to EV0, 1, 2 respectively. After accepting EV
3, the real-laxity isL′

3 = −1. The scheduler will assign an
outsourcing charging time aso3 = 1 and a local charging
time asj3 − o3 = 1.

Under LMO policy, when outsourcing energy is needed, it
is always assigned to the newly arriving EV, and the amount
of the local charging time of other EVs remains unchanged.

Proposition 1 shows that EDF-LMO scheduling policy
maintains the feasibility of the local energy sources charging
plan.

TABLE I
EXAMPLE OF AN INPUT EV SEQUENCE

EV Index ri ji di
0 0 2 3
1 1 3 4
2 2 1 6
3 3 2 6
4 4 1 5
5 7 1 10

Proposition 1: Under EDF-LMO,
1) local chargers always finish planned local charging

workload for all accepted EVs;
2) the amount of outsourcing energy is the minimum for all

charger activation policies with EDF rule to guarantee
finishing all accepted EVs.

Proof: See [20].

B. Threshold Admission Policy: Average Case

We now present the threshold admission policy for the
average case, which is denoted by TAGS-A. Under the stochas-
tic setting, the initial charging demand, laxity, and the inter-
arrival time of EVs are independent and identically distributed
(I.I.D.). Upon the arrival of EVJi with charging demand
ji, suppose it is accepted and assigned to local chargerk
(both hypothetically) according to EDF-LMO. Denote the
outsourcing charging time assigned toJi by oi.

The maximum profit the scheduler can collect from EVJi
is stated asvi , ji − c× oi. The admission policy is proposed
as a threshold structure on the maximum profitvi: if and
only if vi ≥ νi, Ji is accepted, whereνi is the threshold we
need to optimize according to the randomness in EVs and the
electricity prices.

C. Threshold Admission Policy: Worst Case

In this subsection, we present the threshold admission
algorithm for the worst case, which is named as TAGS-W.
We divide the pending EVs into two types in Definition 3
according to the tightness of the deadlines.

1) Pressing vs non-pressing EVs:Upon the release of
EV J at time r, suppose EVJ is accepted and conducted
following EDF-LMO scheduling policy (both hypothetically).
The pressing and non-pressing EVs are defined as follows.

Definition 3: At arrival of EV J , assume 1)
J ∈ Pt = {J1, · · · , Jn} with d1 ≤ · · · ≤ dn, and 2) the
real-laxity vector satisfiesLi = 0 and Li+1, · · · , Ln > 0.
Then EVsJ1, . . . , Ji are classified aspressing EVs, and EVs
Ji+1, . . . , Jn are classified asnon-pressing EVs.

The distinction between the two types of EVs lies in the
tightness of the deadline: the pressing EVs have relatively
tight deadlines and little slack time (since theith EV Ji
has laxity vector component 0, there is no slack time before
its deadlinedi, and any EV inJ1, . . . , Ji cannot afford any
delay in charging), while the non-pressing EVs have slack
time before deadline. Since TAGS-W follows the EDF rule, at
any instant, if the set of pressing EVs is not empty, the local
chargers will not work on any non-pressing EVs.
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As shown in Table I, at the arrival of EV3, after hypothet-
ical admission of EV 3, the first three EVs (EV 0, 1, and 2)
are pressing, and EV 3 is non-pressing.

Remark 1:Once an EV is classified as pressing, it always
remains so afterwards under TAGS-W, even if the EV is
classified as pressing due to a newly released EVJ that is
immediately declined and disappears from the queue (recall
EV J is only hypothetically admitted).

2) Pressing vs non-pressing busy intervals:After the clas-
sification of pressing and non-pressing EVs, we define below
pressing and non-pressing busy intervals.

Definition 4: A pressing busy interval (denoted byBp) is a
continuous time period in which some local charger is planed
to charge pressing EVs. A non-pressing busy interval (B

n) is
a continuous time period in which no local charger is planned
for pressing EVs and some local chargers are planned for some
non-pressing EVs.

3) Threshold admission policy:After hypothetically admit-
ting the newly arrived EVJ and computing the real-laxity
vector, two scenarios may occur:

1) J is classified as non-pressing, then it is accepted;
2) J is classified as pressing, then TAGS-W computes two

tentative profit values for the “accepting” and “declin-
ing” options and then makes the admission decision
by comparing the profit ratio (profit associated with
accepting divided by profit associated with declining)
against a threshold1 + β: if the profit ratio is no
greater than threshold1 + β, the EV is declined.β is
the parameter that we will optimize according to EV
instance and prices.

At the arrival of a pressing EVJ , the tentative profit of
“accepting” and “declining” options is calculated in a pressing
busy intervalBp:

1) The tentative profit for acceptingJ is computed as the
total value of the accepted pressing EVs (includingJ)
in B

p after hypothetically admitting EVJ , less the
outsourcing energy cost accumulated and planned so far
for these EVs (includingJ);

2) The tentative profit for decliningJ is computed as the
total value of the accepted pressing EVs (excludingJ)
in B

p after hypothetically admitting EVJ , less the
outsourcing energy cost accumulated and planned so far
for these EVs (excludingJ);

The difference of the tentative profit for accepting and
declining options is the value of the newly arrived EVJ less
the planned outsourcing energy cost for it. As in Table I, upon
the arrival of EV 3, all four EVs (EV 0, 1, 2, and 3) are all
pressing. The outsourcing charging time for EV 0, 1, 2, and
3 is 0, 1, 0, and 1, respectively.

1) The tentative profit associated with accepting EV 3 is
(1 + 3 + 1 + 2)− c× (0 + 1 + 0 + 1).

2) The tentative profit associated with declining EV 3 is
(1 + 3 + 1)− c× (0 + 1 + 0).

Then the ratio of the two tentative profits is compared against
the threshold1 + β to finally render the admission decision
for EV 3.

V. OPTIMALITY OF TAGS:M = 1

In this section, EDF-LMO is shown as an optimal schedul-
ing policy under any admission policy. Then TAGS is proved
optimal in average and worst case respectively.

A. Optimality of EDF-LMO

In [12], the authors studied the performance of EDF policy
without admission control. The fraction of work that can notbe
finished by the only processor on time is denoted as reneging
load, which in our setting is finished by outsourcing energy.
Theorem 5.1 of [12] shows that EDF minimizes the reneging
load for single local charger queue which gives the optimality
of EDF-LMO.

Theorem 1:(Theorem 5.1 [12]) Letπ be a scheduling and
outsourcing policy andoπ(t) be the amount of outsourcing
energy up to timet. Let oEDF-LMO(t) be the amount of out-
sourcing energy of policy EDF-LMO . Then for anyt ≥ 0,
oEDF-LMO(t) ≤ oπ(t).

Theorem 1 holds for any instanceI. So EDF-LMO is
optimal under any admission policy in both average case and
worst case whenM = 1.

B. Average Case

1) Low outsourcing cost (c ≤ 1): When the outsourcing
charging cost is less than the charging price, any EV is prof-
itable even if it is fully charged by the outsourcing energy.The
optimal admission policy is all-accept policy. The threshold νi
can be set to−∞ and TAGS-A policy is optimal.

2) High outsourcing cost (c > 1): When c > 1, the
outsourcing energy is costly. The scheduler needs to determine
whether to accept a particular EV at its arrival. TAGS-A
is proved to be optimal for the identical charging demand
scenario, i.e.,ji = j.

Theorem 2:The threshold admission policy is optimal for
the identical charging demand case (ji = j).

Proof: The proof consists of two steps. We first show that
Ji should be accepted ifvi ≥ j, and declined ifvi < 0. Then
we show the profit difference of acceptance and decline is a
monotone and continuous function ofvi in [0, j] so there is
a zero pointνi when acceptance and decline are equivalent.
The detailed proof can be found in [20].

C. Worst Case

Denote the optimal competitive ratio byC∗(M, c) where
M is the number of local chargers andc the marginal
outsourcing energy cost. In Theorem 3 we establish an explicit
characterization of the optimal competitive ratio and showthat
TAGS-W achieves optimality.

Theorem 3:The optimal competitive ratio is given by

C∗(1, c) =

{

1 if c ≤ 1;
(
√
c−

√
c− 1)2 if c > 1.

(6)

Proof: When c ≤ 1, all EVs should be accepted. In
Section V-A, it is shown that the scheduling policy EDF-LMO
minimizes the outsourcing energy cost among all online and
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offline scheduling policies under any admission policy. Thus
TAGS-W achieves the maximum profit andC∗(1, c) = 1.

The case whenc > 1 is more complicated. The proof is
composed of two parts. First we show that(

√
c−

√
c− 1)2

is an upper bound of the optimal competitive ratio using an
adversary game argument. Then we analyze TAGS-W and
show it achieves the upper bound. The detailed proof can be
found in [20].

VI. SIMULATION

In the simulation, we assume that the outsourcing energy
is costly (c > 1) and the average performance measure is
employed.

A. Single Local Charger: M=1

In this subsection, the EDF conservative (EDFC) algorithm
is employed as a baseline. EDFC applies conservative admis-
sion policy: only when the EV can be finished purely using
local renewable energy following EDF principle, it will be
admitted. For TAGS-W, a set of training data is used to find
the parameterβ that gives the maximum profit. Then the
simulation is carried out using the obtained threshold1 + β.
For TAGS-A, the optimal thresholdνi is different for each EV,
which is determined by the distribution of the traffic and the
order of EVs. In the simulation, a lower bound approximation
of TAGS-A is carried out. Instead of different thresholdνi for
each EV, an optimal uniform thresholdν∗ is obtained using
training data such that any EV withvi ≥ ν∗ will be accepted.
Then the simulation is carried out with the obtained threshold
ν∗.

The performance upper bound is obtained based on the
result from [12]. In [12], the performance of EDF policy
without admission control is approximated under the heavy
traffic assumption. In particular, we have the approximation
as follows.

Theorem 4:(Theorem 1.1 in [12]) The fraction of demand
charged by outsourcing chargers can be approximated as
R∗

W ≈ e−δD̄[(1−ρ)/(ρ−ρe−δD̄)], where the inter-arrival time
distribution has mean1/λ, varianceα2; the charging demand
has mean1/µ, varianceγ2; the traffic intensity is defined as
ρ = λ/µ; δ = 2(1− ρ)/(λ(α2 + γ2)), andD̄ is the mean of
the initial leading timeTi.
According to Theorem 4, under the all-accept policy, the
fraction of the demand charged by the local charger is approxi-
mately1−R∗

W and this will generate1 profit per unit charging
time; while the fraction of demand charged by outsourcing
energy isR∗

W and this will generate1 − c profit per unit
charging time. The total unit time profit is approximated by
(1−R∗

W + (1 − c)R∗
W )J /T = (1− cR∗

W )λ/µ whereJ is
the total charging demand of all EVs,T the total simulation
time andJ /T indeed the traffic intensityλ/µ.

When the outsourcing energy cost is high(c > 1), the
admission policy is active and not all the EVs are accepted.
Theorem 4 shows that(1−R∗

W )J is the demand charged by
the local charger if all EVs are accepted. This is an upper
bound of the total charging time of the local charger for
any admission policy because of possible idleness caused by

declining. Thus(1 − R∗
W )λ/µ serves as an upper bound of

the unit time reward collected by the local charger. This is an
upper bound of the unit time profit of the online scheduler
since we neglect the cost of the outsourcing charger part.
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Fig. 3. M = 1. Parameter of inter-arrival:1/λ = 2; initial charging demand:
tail index k = 1/64; initial laxity: tail index k = 1/64, scaleσ = 0.0015,
location θ = 0.0984; prices:p = 1, c = 1.25.

In Fig. 3, the Pareto distributed charging demand, Pareto
distributed laxity, and the exponential distributed inter-arrival
time EV sequence is simulated and the expected unit time
profit versus traffic intensity is shown. When the traffic is
light, TAGS admits almost every EV and the performance
is close to all-accept policy. When the system gets busy, the
TAGS performance is similar to EDFC. One explanation is
that TAGS balances the outsourcing cost of charging EVs with
tight deadlines and the risk of local charger idleness. Whenthe
incoming EVs are dense, we can always reject urgent EVs and
some less urgent ones will come in soon enough and keep the
local charger busy. The performance upper bound is shown in
Fig. 3. The gap between the upper bound and the TAGS is less
than5%. TAGS-W is developed for the worst case while the
performance is reasonably well under the average measure.

B. Multiple Local Charger:M > 1

In this subsection, we extend TAGS to multiple local
charger case, in which no optimal scheduling policy is known
in either average or deterministic cases so far. We modify
TAGS based on least laxity first (LLF) principle. EVs with
least laxity are given high priorities and assigned to local
chargers preferentially. Thus when computing the real-laxity in
Definition 2 and looking for pressing and non-pressing EVs in
Definition 3, the admitted EVs are sorted by the laxityli rather
than the deadlinesdi. Last minute outsourcing and threshold
admission policies remain unchanged.

In Fig. 4, the simulation of Pareto distributed charging de-
mand, Pareto distributed laxity, and the exponential distributed
inter-arrival time with multiple local chargers is presented.
When the traffic is heavy (λ/µ = 1.2M ), all-accept policy is
too aggressive and LLF conservative is too backwards. TAGS-
A rejects EVs appropriately and maintains a high utility rate
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Fig. 4. M > 1. Parameter of inter-arrival:1/λ = 1/(3
√

M); charging
demand:1/µ = 0.4

√

M , tail index k = 1/64; initial laxity: tail index
k = 1/64, scaleσ = 0.0015, locationθ = 0.0984; prices:p = 1, c = 1.25

of local chargers. This simulation shows the ability of TAGS-
A to be extended to multiple local charger cases. The average
computation time of TAGS-A for each EV is0.1 ms per local
charger on a PC platform with Intel2.67 GHz quad core and
8 GB memory.

VII. C ONCLUSION

The admission and scheduling problem for EVs with dead-
lines and choice of energy is considered. When the local
renewable energy can support only one EV (M = 1), in the
average case, the problem is formulated as a stochastic dynam-
ic programming and the optimality of TAGS is obtained for
identical charging demand cases. In the worst case, the upper
bound of the competitive ratio is developed by construction
and TAGS is proposed to achieve the upper bound. When the
local renewable energy can support charging of multiple EVs
(M > 1), TAGS is extended and simulation suggests notable
performance improvement over benchmark techniques.
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