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Abstract—The problem of centralized scheduling of large
scale charging of electric vehicles (EVs) with demand response
options is considered. A stochastic dynamic programming model
is introduced in which the EV charging service provider faces
stochastic demand, convex non-completion penalties, and random
demand response requirements. Formulated as a restless multi-
armed bandit problem, the EV charging problem is shown
to be indexable, thus low complexity index policies exist. An
enhancement of the Whittle’s index policy based on spatial
interchange according to the less laxity and longer processing
time (LLLP) principle is presented. Numerical results illustrate
the performance improvement and the capability of handling
various operation uncertainties of the proposed index policy.

Index Terms—Multi-armed bandit problem; Deadline schedul-
ing; Charging of electric vehicles; Whittle’s index; Demand
response.

I. I NTRODUCTION

W ITH the substantially growth of Electric Vehicles (EVs)
and EV charging services [1], [2], the potential of

participating in demand response programs by EV charging
service providers has attracted considerable interest. Toa EV
charging service provider who has the capacity of serving
a large number of EVs, the economic benefit of providing
demand response can be substantial.

In this paper, we consider the problem of providing a form
of ancillary service by a large scale EV charging service
provider with fast charging capabilities and the capacity of
serving hundreds of vehicles. An example of such a service
provider can be one that operates at large public or private
parking facilities. An essential characteristic of such charging
services is that it can shift substantial demand without seri-
ously jeopardizing the quality of service because, among the
large number of EVs in the facility, there is a substantial laxity
in fulfilling the charging demand.

However, EV charging at facilities with capacity of hun-
dreds of EVs faces a different set of technical challenges from
those associated with individual home charging. First, there is
significant uncertainty in charging demand and charging cost.
EVs arrive at a charging facility randomly, each with stochastic
demand and random deadlines, which makes it difficult for the
scheduler to meet consumer demands. The real-time electricity
price may be fluctuating and the local renewables such as solar
generations may be intermittent, which makes the charging
cost random. Second, the aggregator needs to balance the
charging demand and the demand response requirement. EV
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consumers desire their pre-declared state-of-charge (SOC) at
departure which may be conflicting with the demand response
profile. Finally, the energy management system that schedules
EV charging needs to operate in real time, thus must be
scalable with respect to the size of the charging facility, which
rules out the use of brute-force optimization techniques.

A. Related work

There is expanding literature on the EV charging with
demand response. In [3] and [4], authors showed that single
EV can be used to provide ancillary service and energy to the
grid. Different from the centralized scheduling of EV charg-
ing framework considered here, distributed pricing strategy
and algorithm are studied in [5] and [6] to encourage EVs
to participate in frequency regulation. In [7] and [8], two-
settlement central control algorithms are proposed. Charging
trajectories of EVs are optimized day ahead and adjustment
is carried out in real-time. In [9], authors investigated the
real-time adjustment balancing the tracking of predetermined
charging trajectories and regulation signal. However, a real-
time algorithm that is scalable and robust to various uncer-
tainties is lacking.

The centralized EV charging problem considered in this
paper falls in the category ofstochastic multi-processor
deadline scheduling problem. In that context, EVs are jobs
and chargers are processors. The work most relevant to the
current paper is [10] by Raghunathan, Bokar, and Kumar on
a deadline scheduling problem in wireless communications.
The authors of [10] are perhaps the first to formulate the
stochastic deadline scheduling problem as a restless MAB
problem and established indexability. Also related is [11]
where the problem of scheduling packets with deadlines in
ad hoc networks is considered. There are several nontrivial
differences between the models in [10], [11] and that in the
current paper. For instance, the arrival models used in [10]are
either simultaneous or periodic. The cost models in [10] and
[11] are also significantly different from ours.

The dynamic programming approach to EV charging was
considered in [12] where the Less Laxity and Longer Process-
ing time (LLLP) principle was first established. LLLP is an
enhancement of any policy via a spatial interchange argument,
and it is used in this paper on the Whittle’s index policy.

This paper extends the results in [13], where large scale EV
charging without demand response is considered.

B. Summary of results

We introduce a stochastic dynamic programming model for
large scale EV charging which captures randomness in arrival-
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Fig. 2: An illustration for the charger’s state.ri is the
arrival time of an EV at chargeri, di the
deadline for completion,Bi[t] the amount of
charging to be completed bydi, Ti[t] the lead
time to deadline.

s, demand, deadlines, charging costs, and demand response
requirement. To handle scalable solution, we first establish
indexability of the problem and seek an index policies with
computable indices. Numerical simulations demonstrate that
the proposed policy makes significant charging profit while
providing perfect ancillary service under various uncertainties.

II. PROBLEM FORMULATION

Fig. 1 shows a schematic of an energy management system
at an EV charging facility. The charging facility hasN parking
spots, each with a charger that can be activated or deactivated
by the scheduler. EVs arrive at chargers independently. At
the arrival of chargeri, if the charger is not occupied, the
EV is attached to it, and the scheduler records the arrival
time ri. As shown in Fig. 2, the EV owner communicates the
charging demandBi, measured in charging time, and deadline
for completiondi to the scheduler.

To participate in the demand response market, the scheduler
submits the regulation mid point and regulation capabilityto
the Independent System Operator (ISO) day ahead. In the
operation day, the ISO sends out the real-time electricity price
and a regulation signal for the scheduler to track.

We summarize the assumptions in the paper as follow.

A1. Each charger can be connected to only one EV, and it is
removed from the EV at the deadlinedi.

A2. An EV is charged at a fixed rate normalized to1 and can
not be discharged [14].

A3. The EV arrivals to theN chargers are independent and
identically distributed (i.i.d.).

A4. The price of charging collected from consumers is propor-
tion to the charging demand, normalized to1 dollar/hour.

A5. The marginal charging costc[t] is an exogenous finite
state Markov chain whose evolution is independent of
the state evolution and actions of charging.

A6. The charging of EVs is preemptive without cost.
A7. The penalty for incomplete charging is a convex function

of the incomplete amount at the deadline.
A8. The regulation signal is stochastic and independent from

the actions of the charging facility.

We now present elements of the discrete-time stochastic dy-
namic programming in which time, indexed byt = 0, 1, 2, · · · ,
is slotted. At the beginning of the slot, the system state is
revealed to the scheduler and a decision on which chargers to
activate or deactivate in the current slot is made and executed.

A. State space

The state of the charging system

S[t] = (M [t], c[t], S1[t], · · · , SN [t]) ∈ M× Sc × S1 × · · · × SN

is defined by the regulation signalM [t], the charging costc[t],
and states of individual chargersSi[t] whereM is the state
space of the regulation signal,Sc the state space of the cost,
andSi the state space of individual chargers. Specifically, the
state of chargeri is defined bySi[t]

∆
=(Ti[t], Bi[t]) where, as

illustrated in Fig. 2,Ti[t] , di − t is the lead time andBi[t]
the remaining charging demand measured in charging time. If
there is no EV attached to chargeri, thenSi[t] = (0, 0). The
charging costc[t] is the cost of electricity from the wholesale
market, offset by possibly locally generated renewables. The
regulation signalM [t] is assumed to be integers.

B. Action and State evolution

The action of the scheduler is defined by
a[t] = (a1[t], · · · , aN [t]) ∈ {0, 1}N where ai[t] = 1 means
that the charger is activated (active) whereasai[t] = 0 means
that the charger is deactivated (passive).

Given the scheduled actiona[t] = (ai[t]), the evolution of
states at individual chargers are assumed statistically indepen-
dent. When the charger is active and the vehicle has positive
remaining demand, both the charging demand and the lead
time are reduced by1. If the charging demand of an EV is
fulfilled (Bi[t] = 0), only the lead time is decreased by one.
EVs leave at their deadlines and new EVs arrive following a
geometric distribution and the state probability mass function
(PMF) Q(·, ·). Specifically, the state of chargeri with state
Si[t] under actionai[t] = 1 is transitioned to

(

Si[t + 1] | ai[t] = 1
)

=































(Ti[t]− 1, Bi[t]− 1) if Bi[t] > 0, Ti[t] > 1,

(Ti[t]− 1, Bi[t]) if Bi[t] = 0, Ti[t] > 1,

(0, 0) w.p. (1− ρ), if Ti[t] ≤ 1,

(1, 1) w.p. ρQ(1, 1), if Ti[t] ≤ 1,

· · ·

(Tmax, Bmax) w.p. ρQ(Tmax, Bmax), if Ti[t] ≤ 1,
(1)

whereρ is the probability of EV arrivals.
The state transition under the passive action is similar,

except that only the lead time is decreasing.
(

Si(t+1) | ai[t] = 0
)

= (Ti[t]− 1, Bi[t]) if Ti[t] > 1 (2)
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The charging costc[t] ∼ (Sc, P ) is assumed as an exoge-
nous finite state Markov chain, independent of the actions
of the scheduler and individual charger state evolutions, with
transition probability matrixP = [Pi,j ].

C. Charging Profit

At time t, the reward received from chargeri with actiona
is given by

Ra(Si[t], c[t]) =











(1− c[t])a, if Bi[t] > 0, Ti[t] > 1,

(1− c[t])a
− F (Bi[t]− a), if Bi[t] > 0, Ti[t] = 1,

0 otherwise,
(3)

whereF (B) is an increasing and convex penalty function with
F (0) = 0. Note that the above reward function means that the
EV owner with charging demandB is chargedB dollars if the
charging request is fulfilled at the deadline andB−B′−F (B′)
if there is B′ unfulfilled charging. HereF (B′) is the extra
compensation for unfulfilled charging.

The charging profit collected from the EVs is stated as

RCh(S[t],~a[t]) ,
N
∑

i=1

Rai[t](Si[t], c[t]).

D. Demand Response Credit

Based on the new rule of demand response market [15],
the credit includes the capacity payment and performance
payment. The former one is simply the regulation amount
times the regulation price per unit. The performance payment
is measured by the tracking accuracy of the regulation signal.
The accuracy as defined in PJM ancillary service market is
stated as(1− |

∑N

i=1 ai[t]−M [t]|/M [t]) [16], whereM [t] is
the regulation signal and

∑N

i=1 ai[t] the extra power usage.
The demand response credit collected from the ISO at time

t is stated as follows.

RAS(S[t],~a[t]) , A[t](1 − |
N
∑

i=1

ai[t]−M [t]|/M [t]) +B[t],

whereA[t] and B[t] take account of the stochastic demand
response price and capacity credit.

E. Objective and optimal policy

Given the initial system stateS[0] = s and a policyπ
that determines a sequence of actionsa[t], t = 0, 1, · · · , the
expected discounted system reward is defined by

Vπ(s)
∆
=Eπ

{

∞
∑

t=0

β
t[RCh(S[t],~a[t]) +RAS(S[t],~a[t])]

∣

∣

∣

∣

∣

S[0] = s

}

(4)
whereEπ is the conditional expectation for given scheduling
policy π and0 < β < 1 the discount factor.

The optimal policy now can be formulated as follows.

V (s) = sup
π

Vπ(s), (5)

A policy π∗ is said optimal ifVπ∗(s) = V (s).

III. I NDEX POLICY AND WHITTLE ’ S INDEX

The stochastic dynamic programming formulation does not
result in a scalable scheduling policy. The problem complexity
is exponential in the number of chargers and the randomness
in regulation signal and price introduces extra difficulties.

Since charging at individual chargers is independent con-
ditioned on charging cost, we seek to obtain anindex policy
that provides a scalable solution. By index policy we mean
that the scheduling is based on the ranked order of indices
associated with chargers. Specifically, the index of charger i
is a mapping from its extended statẽSi[t] , (Si[t], c[t]) to an
index value.

A. Deadline scheduling as a restless MAB problem

We now formulate Problem (5) as a restless Multi-Armed
Bandit (MAB) problem. The restlessness is due to the fact that
the lead time of each charger evolves even if the charger is
not activated.

1) Arms: We let each charger be an arm. Define the ex-
tended state of each charger asS̃i[t] , (Si[t], c[t]) and denote
the extended state space asS̃i , Si × Sc. The actions and the
reward functions remain unchanged.

Since the cost dynamic is independent of the state and
actions of chargers, the state transition of armi can be written
according to charger transition (1), (2) and cost transition P .

2) MAB formulation: In the traditional MAB problem, the
arms are independent and the objective is to maximize the
sum of the rewards collected from each arm. However, the
objective of (5) includes the demand response credit which
couples arms. The random regulation signal and regulation
price introduce extra complexity. One intuitive way is to model
the tracking of the signal as a constraint on number of active
arms and to maximize the charging rewards. The stochastic
dynamic programming in (5) can be viewed as a restless
MAB problem that, at each timet, exactlyM [t] out of N
chargers (arms) are active. The optimization problem is state
as following:

supπ Eπ

{

∑∞
t=0

∑N

i=1 β
tRai[t](S̃i[t]) | S̃i[0]

}

subject to
∑N

i=1 ai[t] = M [t], ∀t.
(6)

B. Whittle’s index

We now examine the Whittle’s index policy for the restless
MAB problem defined in (6). To this end, we first introduce
Whittle’s index and establish in Sec III-C the indexabilityof
the restless MAB problem in Theorem 1.

Consider the following single arm reward maximizing prob-
lem without constraint: given the initial statẽSi[0],

Vi(s̃) , sup
π

Eπ

{

∞
∑

t=0

βtRai[t](S̃i[t]) | S̃i[0] = s̃

}

, (7)

whereVi is the value function. LetLa be the Markov transition
operator on an arbitrary functionf(S̃i) defined as

(Laf)(s̃) , E{f(S̃i[t+ 1]) | S̃i[t] = s̃, ai[t] = a}.
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The maximum discounted reward of Problem (7) is determined
by the Bellman equation

Vi(s̃) = max{R0(s̃) + β(L0Vi)(s̃), R1(s̃) + β(L1Vi)(s̃)}.

The Whittle’s index is defined by introducing a subsidy
ν paid to the scheduler to take the passive action [17]. The
Bellman equation for theν-subsidy problem is given by

V ν
i (s̃) = max{R0(s̃)+ν+β(L0V

ν
i )(s̃), R1(s̃)+β(L1V

ν
i )(s̃)},

whereV ν
i is the value function for theν-subsidy problem.

Intuitively, the larger the subsidyν is, the more likely the
passive action would be optimal. Let̃Si(ν) denote the set of
arm states in which it is optimal to take the passive action on
arm i in the ν-subsidy problem. The indexability of an MAB
problem is defined as follows.

Definition 1 (Indexability):Charger (arm)i is indexable if
the set S̃i(ν) increases monotonically from∅ to S̃i as ν
increases from−∞ to +∞. The MAB problem is indexable
if all the chargers (arms) are indexable.

Given the definition of indexability, the Whittle’s index is
defined as follows.

Definition 2 (Whittle’s Index):If charger (arm)i is index-
able, its Whittle’s indexνi(s̃) of the extended statẽs is the
infimum subsidyν such that the passive action is optimal at
states̃, i.e.,

νi(s̃) , inf
ν
{ν : R0(s̃)+ν+β(L0V

ν
i )(s̃) ≥ R1(s̃)+β(L1V

ν
i )(s̃)}.

C. Indexability and index closed-form

In the following theorem, the indexability of the MAB
problem in (6) is established and the closed-form expression of
Whittle’s index is derived for the case with constant charging
cost. For dynamic cost case, the Whittle’s index can be
obtained by solving a parametric programming [18].

Theorem 1 (Indexability and index closed-form):
1) Each charger as an arm is indexable.
2) If c[t] = c0 for all t, Whittle’s index is given by

νi(T,B, c0) =















0 if B = 0,

1− c0 if 1 ≤ B ≤ T − 1,

1− c0 + βT−1[F (B − T + 1)− F (B − T )]
if T ≤ B.

(8)
The proof of Theorem 1 is omitted due to the space limit.

In (8), when it is feasible to fulfill the EV’s charging request,
its Whittle’s index is simply the charging profit1− c0. When
the penalty is inevitable, the index takes into account both
the charging profit and the non-completion penalty. We note
that the Whittle’s index gives high priority to urgent EVs with
non-positive laxity. Here, the laxity of chargeri is defined as
Li[t] , Ti[t] − Bi[t] (cf. Fig. 2). We note, however, that the
Whittle’s index does not distinguish EVs with positive laxity.

IV. W HITTLE ’ S INDEX POLICY WITH LLLP INTERCHANGE

A. Less Laxity and Longer Processing time principle

The LLLP principle is a priority rule for the scheduling of
charging multiple EVs, which is defined as follows.

...

i

i

i

ii
Bi[t]

Bj [t]

Ti[t]

Tj [t]

j

j

j

j

j

π

π̃

active

active

active

active

passive

passive

passive

passive

t τ

time

Fig. 3: The LLLP interchange

Definition 3 (LLLP Priority): Consider chargers (arms)i
and j at time t. We sayj dominatesi (j � i), if j has Less
Laxity and Longer Processing time,i.e., Bj [t] ≥ Bi[t] and
Lj[t] ≤ Lj [t], with at least one of the inequalities being strict.

LLLP defines a partial order over the EVs’ states. In
[12], the authors applied interchange argument to show that
LLLP could improve the performance of any given policy
along every sample path, and further, there exists an optimal
stationary policy that follows the LLLP principle under mild
conditions.

The LLLP interchange can be easily implemented to im-
prove any given policyπ. As illustrated in Fig. 3, suppose that
at timet, EV j has less laxity and longer remaining charging
demand than EVi (j � i), and that the policyπ chargesi but
not j. An LLLP interchange improved policỹπ chargesj but
not i at time t. Let τ ∈ [t + 1,min{di, dj}] denote the time
period at whichπ chargesj but noti for the first time; at time
τ , π̃ chargesi but not j. If such a periodτ does not exist,
then the interchanging policỹπ will take the same action as
the original policyπ after timet.

B. Index Policy with LLLP interchange

In this subsection, we propose a heuristic policy: the Whit-
tle’s index policy with LLLP interchange. The heuristic policy
can be obtained by implementing Algorithm 1.

The proposed policy tries the best to follow the regulation
signal and takes the advantage of time varying charging
cost while balancing the risk of non-completion penalties.In
principle, it gives higher priority to EVs with tight deadlines
and large remaining demand to avoid potential penalties.

Algorithm 1 Whhittle Index with LLLP interchange
1. Calculate the Whittle’s index of all EVs and sort them
in a descend order.
2. Apply LLLP inter-change to the sorted EVs.
3. Activate theM [t] EVs with highest priority.

Note that the proposed algorithm does not guarantee the
feasibility. If there is not enough EVs with positive charging
demand in the system, we simply charge as many as possible.

V. NUMERICAL RESULTS

In this section, numerical experiments are conducted to
compare the performance of different scheduling policies with
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demand response options. One intuitive trajectory tracking
algorithm is proposed in [9], which minimizes a trade off
between the tracking errors of a predetermined charging tra-
jectory for each vehicle and the deviation from the regulation
signal. In the simulation, we first apply Algorithm (1) with
M [t] = M to generate a charging trajectory for each charger.
After that, the regulation signal is generated by a uniform
distribution with meanM . Since the result of the convex
programming in [9] is continuous, the binary charging action
is generated by Bernoulli random variables with the resultsof
the convex programming as the probability coefficients.

Fig. 4 shows an example of regulation signal tracking per-
formance of different policies. When the constraint is feasible,
the Whittle’s index policy with LLLP interchange always
perfectly matches the regulation signal. While, the trajectory
tracking policy deviates from the regulation signal slightly
due to the difference between the predetermined charging
trajectory and the regulation signal.
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Fig. 4: Regulation signal tracking:M = 50, 10%
regulation capacity.

The impact of the regulation capacity on tracking accuracy
and charging rewards is illustrated in Fig. 5. As the capacity
increases, the tracking error of trajectory tracking policy
increases while Whittle Index policy with and without LLLP
improvement matches the regulation signal perfectly. LLLP
improves the Whittle’s index policy in the charging reward
collected from EV consumers and thus makes more profit.
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Fig. 5: Regulation signal tracking accuracy and
charging reward Vs. regulation capacity.

VI. CONCLUSION

In this paper, we considered the demand response in the
scheduling of the charging of a large number EVs in public
facilities, which will significantly benefit both the grid and the
EV customers as EV penetration deepens. Due to the curse of
the dimension, it is essential to develop a highly efficient and
scalable online algorithm. Index policies considered in this
work show the implementation simplicity and capability to
handle various operation uncertainties.
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