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Abstract—The problem of centralized scheduling of large consumers desire their pre-declared state-of-charge Y&©C
scale charging of electric vehicles (EVs) with demand respse  departure which may be conflicting with the demand response
options is considered. A stochastic dynamic programming natel profile. Finally, the energy management system that sckedul

is introduced in which the EV charging service provider face EV chargi ds t te i i th t b
stochastic demand, convex non-completion penalties, andmdom charging needs (o operate In real ume, (hus must be

demand response requirements. Formulated as a restless niul Scalable with respect to the size of the charging facilityiok
armed bandit problem, the EV charging problem is shown rules out the use of brute-force optimization techniques.
to be indexable, thus low complexity index policies exist. A

enhancement of the Whittle's index policy based on spatial A. Related work

interchange according to the less laxity and longer procesyy . . . . .
time (LLLP) principle is presented. Numerical results illustrate There is expanding literature on the EV charging with

the performance improvement and the capability of handling demand response. 10][3] and [4], authors showed that single
various operation uncertainties of the proposed index potiy. EV can be used to provide ancillary service and energy to the
__Index Terms—Multi-armed bandit problem; Deadline schedul-  grid. Different from the centralized scheduling of EV charg
'r’;g? O%Zgrg'”g of electric vehicles; Whittle's index; Demard  ng framework considered here, distributed pricing stpte

P ' and algorithm are studied inl[5] and]l[6] to encourage EVs
l. INTRODUCTION to participate in frequency regglation. Ial[7] and [8], two-

) ) ) settlement central control algorithms are proposed. Gharg

W ITH the substantially growth of Electric Vehicles (EVS)aiactories of EVs are optimized day ahead and adjustment

V and EV charging services |[1]L1[2], the potential ofs carried out in real-time. InC[9], authors investigatee th
participating in demand response programs by EV chargingy time adjustment balancing the tracking of predeteedi
service providers has attracted considerable interesa EY charging trajectories and regulation signal. However, a-re

charging service provider who has the capacity of servifgne aigorithm that is scalable and robust to various uncer-
a large number of EVs, the economic benefit of providinginties is lacking.
deman_d response can b.e substantial. . The centralized EV charging problem considered in this
In this paper, we consider the problem of providing a forganer faiis in the category oftochastic multi-processor
of ancillary service by a large scale EV charging serviGgaagiine scheduling problenin that context, EVs are jobs
provider with fast charging capabilities and the capacity @y chargers are processors. The work most relevant to the
serving hundreds of vehicles. An example of suc_h a SelVigrrent paper is [10] by Raghunathan, Bokar, and Kumar on
provider can be one that operates at large public or prival€jeagiine scheduling problem in wireless communications.
parking facilities. An essential characteristic of sucRfiNg Tha authors of [[10] are perhaps the first to formulate the
services is that it can shift substantial demand withouk set;-hastic deadline scheduling problem as a restless MAB
ously jeopardizing the quality of service because, amorg t5pjem and established indexability. Also related [is] [11]
large number of EVs in the facility, there is a substantiaitla. \yhere the problem of scheduling packets with deadlines in
in fulfiling the chargm_g demand_.__ ) _ ad hoc networks is considered. There are several nontrivial
However, EV charging at facilities with capacity of hunyiferences between the models NJ[10].[11] and that in the
dreds of EVs faces a different set of technical challenges fr ., rent paper. For instance, the arrival models used in41€]
those associated with individual home charging. Firsteh® qiiher simultaneous or periodic. The cost model<ir [10] and
significant uncertainty in charging demand and charging. COPLT] are also significantly different from ours.
EVs arrive at a charging facility randomly, each with stostia = 1o dynamic programming approach to EV charging was

demand and random deadlines, which makes it difficult for the | cijered in[22] where the Less Laxity and Longer Process-
scheduler to meet consumer demands. The real-time elgctri¢ - e (LLLP) principle was first established. LLLP is an

\ ) fn
price may be quctuatmg and_the local renewables such as S%ﬁghancement of any policy via a spatial interchange argtimen
generations may be intermittent, which makes the chargigg it is used in this paper on the Whittle's index policy.

cost r_andom. Second, the aggregator needs to _balance they g paper extends the results [n[13], where large scale EV
charging demand and the demand response requirement. (ﬁ’\\érging without demand response is considered.
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A5. The marginal charging cosf¢] is an exogenous finite
state Markov chain whose evolution is independent of
the state evolution and actions of charging.

A6. The charging of EVs is preemptive without cost.

1SO | _ | Scheduler | . A7. The penalty for incomplete charging is a convex function

‘ 7 : of the incomplete amount at the deadline.

A8. The regulation signal is stochastic and independem fro
Eléctricity price ‘Regulatioh Signal

Ancillary Service Bids

the actions of the charging facility.

We now present elements of the discrete-time stochastic dy-
namic programming in which time, indexed by=0,1,2, - - -,
is slotted. At the beginning of the slot, the system state is
revealed to the scheduler and a decision on which chargers to
activate or deactivate in the current slot is made and egdcut

Fig. 1: Architecture of a charging station

w T,[t) A. State space
Chargeri -t 2 i(——zim——— time The state of the charging system
ri b di S[t] = (M[t], c[t], Si[t], -, Sn[t]) € M X Sc x 81 X -+ x Sy
. . . , . is defined by the regulation sign&{ [¢], the charging cost[t],
Fig. 2: An |II?J.:,_trat|orf1 forg:/e (:thar:gerg Sctl?t,;"' Is the and states of individual chargef[t] where M is the state
gggl(;in:an}?)rocoar:pletic?ng- [gr?hir’ all”nOUGnt of space of the regulation signaf,. the state space of the cost,
charging to be completed by, 73[¢] the lead andsS, the state space of |nd|V|duaéchargers. Specifically, the

state of chargef is defined bysS;[t|=(T;[t], B;[t]) where, as
illustrated in Fig[2,T;[t] £ d; — t is the lead time and3;[]
the remaining charging demand measured in charging time. If

s, demand, deadlines, charging costs, and demand respdigEe is no EV attached to chargerthen S;[t] = (0,0). The

requirement. To handle scalable solution, we first establi§harging cost(t] is the cost of electricity from the wholesale
indexability of the problem and seek an index policies witarket, offset by possibly locally generated renewablége T

computable indices. Numerical simulations demonstrase ttfégulation signall/[¢] is assumed to be integers.

the proposed policy makes significant charging profit Whi|§ Action and State evolution
providing perfect ancillary service under various undettes.

time to deadline.

The action of the scheduler is defined by
Il. PROBLEM FORMULATION alt] = (a1[t], - ,an|t]) € {0,1}" whereq;[t] = 1 means
_ ) that the charger is activated (active) wheregg] = 0 means
Fig.[d shows a schematic of an energy management syst@mt the charger is deactivated (passive).
at an EV charging facility. The charging facility hasparking Given the scheduled actianft] = (a;[t]), the evolution of
spots, each with a charger that can be activated or deaadivagtates at individual chargers are assumed statisticaligpan-

i i nt. When the charger is active and the vehicle has positive
by the scheduler. EVs arrive at chargers independently. srdgmaining demand. both the charging demand and the lead

the grrival of charg_erz‘, if the charger is not occupied, th,eti e are reduced by. If the charging demand of an EV is
EV is attached to it, and the scheduler records the arrl\@%”e(j (B;[t] = 0), only the lead time is decreased by one.
time r;. As shown in Fig[R, the EV owner communicates thEVs leave at their deadlines and new EVs arrive following a
charging demand;, measured in charging time, and deadlingeometric distribution and the state probability mass fionc
for completiond; to the scheduler. (PMF) Q(-,-). Specifically, the state of chargérwith state

To participate in the demand response market, the schedtﬁé[ﬁ under actioru;[¢] = 1 is transitioned to
submits the regulation mid point and regulation capabiiity Sift+1] | aift] = 1
the Independent System Operator (ISO) day ahead. In the _ _ - _
operation day, the ISO sends out the real-time electriaitep (;ﬂ : i gﬂ)_ 2 :; gz E i 8: %E i 1:

and a regulatiqn signal for the-sche-duler to track. E()’ 0) wp.(1—p), if Tt <1,
We summarize the assumptions in the paper as follow. = (1,1) wp. pQ(1,1), if T[] <1,

Al. Each charger can be connected to only one EV, and it is .
removed from the EV at the deadlink. (Tomax; Bmax) W.P. pQ(Tmax, Bmax), if Tit] <1,

A2. An EV is charged at a fixed rate normalizedltand can 1)
not be discharged[14]. wherep is the probability of EV arrivals.

A3. The EV arrivals to theV chargers are independent and The state transition under the passive action is similar,
identically distributed (i.i.d.). except that only the lead time is decreasing.

A4. The price of charging collected from consumers is prepor _
tion to the charging demand, normalizeditdollar/hour. (Si(tJr 1) |ailt] = 0) = (Tift] -1, Bs[t]) if Tift] > 1 (2)



The charging cost[t] ~ (S., P) is assumed as an exoge- I1l. I NDEX POLICY AND WHITTLE'S INDEX
nous finite state Markov chain, independent of the actions
of the scheduler and individual charger state evolutiont) w
transition probability matrixP = [P, ;].

The stochastic dynamic programming formulation does not
result in a scalable scheduling policy. The problem comiplex
is exponential in the number of chargers and the randomness
C. Charging Profit in rggulation si-gnal apd price introduces gxt-ra difficudtie
. ) o _ Since charging at individual chargers is independent con-
At time ¢, the reward received from chargewith actiona  itioned on charging cost, we seek to obtainiadex policy

is given by that provides a scalable solution. By index policy we mean
(1 —c[t])a, if B;i[t] >0, T;[t] > 1, that the scheduling is based on the ranked order of indices
Ra (S, clt]) = (1—c[t])a associated with chargers. Specifically, the index of chaige
i — F(Bi[t] —a), if Bi[t] >0, T3[t] =1, is a mapping from its extended stafgft] £ (S;[t], c[t]) to an
0 otherwise @) index value.

whereF'(B) is an increasing and convex penalty function With
F(0) = 0. Note that the above reward function means that the
EV owner with charging deman# is chargedB dollars if the We now formulate Probleni]5) as a restless Multi-Armed

charging request is fulfilled at the deadline a@d B’— F(B’) Bandit (MAB) problem. The restlessness is due to the fadt tha
if there is B’ unfulfilled charging. HereF’(B’) is the extra the lead time of each charger evolves even if the charger is
compensation for unfulfilled charging. not activated.

The charging profit collected from the EVs is stated as 1) Arms: We let each charger be an arm. Define the ex-
tended state of each charger&$] = (S;[t], c[t]) and denote

Deadline scheduling as a restless MAB problem

N A :
the extended state space&s= S; x S.. The actions and the
- A
Ren(Slt), alt]) = ZRai[t](Si [1], ¢[t])- reward functions remain unchanged.
=1 Since the cost dynamic is independent of the state and
D. Demand Response Credit actions of chargers, the state transition of @rocan be written

cording to charger transition] (1)] (2) and cost transifit
Based on the new rule of demand response mafkst [1%&2) MAB formulation: In the traditional MAB problem, the

the credit includes the capacity payment and performance . C S
L . arms are independent and the objective is to maximize the

payment. The former one is simply the regulation amoun
sum of the rewards collected from each arm. However, the

times the regulation price per unit. The performance paWﬁneorbjective of [%) includes the demand response credit which

is measured by the tracking accuracy of the regulation iSIgn('fflouples arms. The random regulation signal and regulation

The accuracy as defined in PJM ancillary service market is.

N . price introduce extra complexity. One intuitive way is toaebd
stated agl — |3, aft] — M[¢]|/M[t]) [18], whereM[t] is the tracking of the signal as a constraint on number of active

. : N
the regulation signal an_;_, a;[t] the extra power usage. arms and to maximize the charging rewards. The stochastic
The demand response credit collected from the ISO at t”H?namic programming in[{5) can be viewed as a restless

t is stated as follows. MAB problem that, at each time, exactly M|t] out of N
N chargers (arms) are active. The optimization problem it sta
Rag(SItalt]) 2 Al)(1— > ailt] — M[t)}/M[1)) + Bl),  as following:
=1
s Er {300 iy B Ray iy (Silt]) | S0
where AJt] and BJt] take account of the stochastic demand 7P {Zt*O iz A Raa (Sili) | 5] ]} (6)

response price and capacity credit. subject to vazl a;[t] = Mt], Vt.

E. Objective and optimal policy B. Whittle's index
Given the initial system stat&[0] = s and a policy 7 We now examine the Whittle’s index policy for the restless
that determines a sequence of actiang,z = 0,1,---, the MAB problem defined in[{6). To this end, we first introduce

expected discounted system reward is defined by Whittle’s index and establish in SEcTII-C the indexabilif
- the restless MAB problem in Theordm 1.
Vw(s)éEﬂ { BURen(S[H, dlt]) + Ras(S[H, d[t)]|S[0] = 5} Consider the following single arm reward maximizing prob-
; ch AS @ lem without constraint: given the initial statg[0],
whereE; is the conditional expectation for given scheduling o > . . y
policy 7 and0 < 3 < 1 the discount factor. Vi(3) £ supEr ¢ Y B' Ry, (Silt]) | Sil0] =3¢, (7)
g t=0

The optimal policy now can be formulated as follows.

whereV; is the value function. Lef,, be the Markov transition

V(s) = Sup Vi (s), ) gperator on an arbitrary functiofi(S;) defined as

A policy 7* is said optimal ifV.« (s) = V(s). (Lof)(3) 2 B{f(S:[t +1)) | Si[t] = 5, a:[t] = a}.



The maximum discounted reward of Probléth (7) is determined Tt time
by the Bellman equation N sl ‘ 7 p | ‘
i ﬁ ,,,,,,,,,, ‘ I -
Vi(8) = max{Ro(5) + B(LoVi)(5), R1(8) + B(L1V;)(8)}. | _ active aTtN%
The Whittle’s index is defined by introducing a subsidy - %\ passive passive

v paid to the scheduler to take the passive action [17]. The
Bellman equation for the-subsidy problem is given by

aJ:tive ac[:tive
VY (8) = max{Ro(8)+v+L(LoV}")(5), R1(8)+L(L1VY)(5)}, péssive passive

whereV” is the value function for the-subsidy problem.

Intuitively, the larger the subsidy is, the more likely the i )
passive action would be optimal. L&t(v) denote the set of Fig. 3: The LLLP interchange
arm states in which it is optimal to take the passive action on
armi in the v-subsidy problem. The indexability of an MAB
problem is defined as follows.

Definition 1 (Indexability):Charger (arm) is indexable if
the setS;(v) increases monotonically froni to S; as v
increases from-oc to +o00. The MAB problem is indexable
if all the chargers (arms) are indexable.

Given the definition of indexability, the Whittle’s index is
defined as follows.

Definition 2 (Whittle’s Index):If charger (arm); is index-
able, its Whittle’s indexv;(5) of the extended statg is the
infimum subsidyr such that the passive action is optimal a?
states, i.e,

1

Definition 3 (LLLP Priority): Consider chargers (arms)
andj at timet. We sayj dominatesi (j > @), if j has Less
Laxity and Longer Processing timee., B;[t] > B;[t] and
L;[t] < L;]t], with at least one of the inequalities being strict.

LLLP defines a partial order over the EVS' states. In
[12], the authors applied interchange argument to show that
LLLP could improve the performance of any given policy
along every sample path, and further, there exists an optima
stationary policy that follows the LLLP principle under whil
onditions.

The LLLP interchange can be easily implemented to im-
prove any given policyr. As illustrated in Fig[B, suppose that
vi(8) 2 inf{v : Ro(3)+v+B(LoV)(8) > Ry (3)+B(L,1VY)(5)}at timet, EV j has less laxity and longer remaining charging

v demand than EV (5 > ), and that the policyr charges but
C. Indexability and index closed-form not j. An LLLP interchange improved policy chargesj but

In the following theorem, the indexability of the MABNOt¢ at timet. Let 7 € [t + 1, min{d;, d;}] denote the time
problem in [®) is established and the closed-form exprassiio Period at whichr charges but not: for the first time; at time
Whittle’s index is derived for the case with constant chaggi 7. @ chargesi but not . If such a periodr does not exist,
cost. For dynamic cost case, the Whittle's index can BBen the interchanging policy will take the same action as
obtained by solving a parametric programming] [18]. the original policyr after timet.

Theorem 1 (Indexability and index closed-form): B. Index Policy with LLLP interchange
1) Each charger as an arm is indexable.

2) If cft] = ¢ for all ¢, Whittle's index is given by In this subsection, we propose a heuristic policy: the Whit-

tle’s index policy with LLLP interchange. The heuristic pyl
_ can be obtained by implementing Algorittirh 1.
0 if B=0, The proposed policy tries the best to follow the regulation
1—c¢ if 1 <B<T-1, signal and takes the advantage of time varying charging
1—co+ BT '[F(B-T+1)—- F(B-T)] cost while balancing the risk of non-completion penalties.

if 7 < B. principle, it gives higher priority to EVs with tight deadés

(8) and large remaining demand to avoid potential penalties.
The proof of Theorerfi]1 is omitted due to the space limit.
In (8), when it is feasible to fulfill the EV’s charging reques Algorithm 1 Whhittle Index with LLLP interchange

its Whittle’s index is simply the charging profit— ¢o. When 1. Calculate the Whittle’s index of all EVs and sort them
the penalty is inevitable, the index takes into account bothin a descend order.
the charging profit and the non-completion penalty. We note2. Apply LLLP inter-change to the sorted EVs.
that the Whittle's index gives high priority to urgent EVstivi 3. Activate the M [¢t] EVs with highest priority.
non-positive laxity. Here, the laxity of chargeis defined as
L;[t] £ T;[t] — Bi[t] (cf. Fig.[2). We note, however, that the
Whittle's index does not distinguish EVs with positive Igxi

Vi(T7 Bv CO) =

Note that the proposed algorithm does not guarantee the
feasibility. If there is not enough EVs with positive chargi

IV. WHITTLE’S INDEX POLICY WITH LLLP INTERCHANGE demand in the system, we simply charge as many as possible.
A. Less Laxity and Longer Processing time principle V. NUMERICAL RESULTS

The LLLP principle is a priority rule for the scheduling of In this section, numerical experiments are conducted to
charging multiple EVs, which is defined as follows. compare the performance of different scheduling policigh w



demand response options. One intuitive trajectory tragkin VI. CONCLUSION

algorithm is proposed in[[9], which minimizes a trade off | {his paper, we considered the demand response in the
between the tracking errors of a predetermined charging t&neduling of the charging of a large number EVs in public
jectory for each vehicle and the deviation from the regalati facilities, which will significantly benefit both the grid drihe
signal. In the simulation, we first apply Algorithril (1) withgy customers as EV penetration deepens. Due to the curse of

M{t] = M to generate a charging trajectory for each charggge dimension, it is essential to develop a highly efficiend a
After that, the regulation signal is generated by a unifor@yaiaple online algorithm. Index policies considered iis th

distribution with mean)M. Since the result of the convexyork show the implementation simplicity and capability to
programming in[[9] is continuous, the binary charging attiongngle various operation uncertainties.

is generated by Bernoulli random variables with the resafits
the convex programming as the probability coefficients.

Fig.[4 shows an example of regulation signal tracking per;
formance of different policies. When the constraint is flelas
the Whittle’s index policy with LLLP interchange always 2]
perfectly matches the regulation signal. While, the triajgc
tracking policy deviates from the regulation signal slight
due to the difference between the predetermined chargi

trajectory and the regulation signal.
[4

[l

—#— Regulation signal
—&4— Trajectory tracking
|| —©— Whittle index w. LLLP

(5]

(6]

Power usage

(7]

25
Time

(8]

Fig. 4: Regulation signal tracking/ = 50, 10% [9]
regulation capacity.

The impact of the regulation capacity on tracking accurai}/o
and charging rewards is illustrated in Fig. 5. As the capaci ]
increases, the tracking error of trajectory tracking polic
increases while Whittle Index policy with and without LLLP,
improvement matches the regulation signal perfectly. LLLBl]
improves the Whittle’s index policy in the charging reward

collected from EV consumers and thus makes more profit. (2]

[13]

—©— Trajectory tracking il
=——&— Whittle index w/o LLLP
—e&— Whittle Index w. LLLP

1 [14]
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Fig. 5: Regulation signal tracking accuracy and
charging reward Vs. regulation capacity.
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