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Abstract

In this paper a communication system operating over a Gilbert-Elliot channel is studied. The goal of the

transmitter is to maximize the number of successfully transmitted bits. This is achieved by choosing among three

possible actions: (i) betting aggressively by using a weak code that allows the transmission of a high number of bits

but provides no protection against a bad channel, ii) betting conservatively by using a strong code that perfectly

protects the transmitted bits against a bad channel but does not allow a high number of data bits, iii) betting

opportunistically by sensing the channel for a fixed duration and then deciding which code to use. The problem is

formulated and solved using the theory of Markov decision processes (MDPs). It is shown that the optimal strategy

has a simple threshold structure. Closed form expressions and simplified procedures for the computation of the

threshold policies in terms of the system parameters are provided. If a feedback channel is available, it is shown

that the total number of transmitted bits increases.

Index Terms

Gilbert-Elliot channel, Opportunistic channel access, Markov decision processes.

I. INTRODUCTION

COMMUNICATION over the wireless medium is subject to multiple impairments such as fading,

path loss, and interference. These effects degrade the quality of service and lead to transmission

failures. The quality of the radio channel is often random and evolves in time, ranging from good to bad

depending on propagation conditions. To cope with this changing behavior and maintain a good quality

of service, link adaptation may be performed. Link adaptation, also known as adaptive modulation and

coding, is a technique that leads to a better channel utilization by matching the systems parameters of the

transmitted signal (e.g., data/coding rate, constellation size and transmit power) to the changing channel

conditions [1].

It is well established that time-varying fading channels can be well modeled by a finite state Markov

chain [2] (and the references therein). A particularly convenient abstraction is the two-state Markovian

model known as the Gilbert-Elliot channel [3]. This model assumes that the channel can be in either a

good state or a bad state. For example, the channel is in a bad state whenever the SNR drops below a

certain threshold and in a good otherwise.
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In this paper we consider a communication system operating over a Gilbert-Elliot channel in a time-

slotted fashion. The transmitter has at its disposal a strong error correcting code and a weak one. The

strong code offers perfect protection against the channel errors even if the channel is in a bad state. It

however provides the extra protection at the expense of a reduced data rate. The weak code, on the other

hand, offers perfect protection against the channel errors when the channel is in the good state but fails

otherwise. At the beginning of each time slot, the transmitter can choose among three possible actions:

i) transmitting at a low data rate using the strong error correcting code, ii) transmitting at a high data

rate using the weak error correcting code, and iii) sensing the channel for a fraction of the slot and then

use the appropriate code. The extra knowledge provided by this last action comes at a price, which is the

time spent probing the channel. We take as objective the maximization of the total expected discounted

number of bits transmitted over an infinite time span.

A. Related Work

MDP tools have been applied to solve communication problems over time-varying channels, see, e.g.,

[4]- [7]. In [4], the authors considered rate and power control strategies for transmitting a fixed number

of bits over fading channels subject to both energy and delay constraints. In [5], the authors obtained

the optimal rate control policy in wireless networks with Rayleigh fading channels. Most related to this

paper are [6] and [7]. In [6], the authors employed results from optimal search theory and provided

threshold strategies that minimize the transmission energy and delay associated with transmitting a file

over a Gilbert-Elliot channel. Similarly in [7], taking as objective the maximization of the throughput

and the minimization of the energy consumption, the authors established the optimality of the threshold

policies. The effect of the sensing action on the throughput of a communication system was not considered

in these papers.

A closely related area to the problem studied here is the so-called opportunistic (or cognitive) spectrum

access (refer to [9] for an overview) where sensing is an integral part of the access scheme. A generic

setup is as follows: a cognitive (or secondary) user tries to opportunistically access a channel which,

depending on the state of the primary user, can be either busy or idle. Relying on the theory of Partially

Observable Markov Decision Processes (POMDP), several transmission and scheduling policies have been
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developed over the past years [8]- [14]. For instance, in [11], the authors derive optimal joint probing

and transmission policies in multichannel wireless systems. In that work, however, the channel state is

assumed to be independent from slot to slot. In [8], [10], [12]- [14], the authors target the problem of

optimal access to multiple Gilbert-Elliot channels. In their setup, a sensing action is always carried out by

the secondary user before attempting any transmission. The problem considered here is different in that

the transmitter is allowed to transmit without first probing the channel. In addition, we model explicitly

the cost of sensing. Thus, the sensing action must be judiciously used in order to maximize the total

number of transmitted bits.

The technique used in this paper has its origin in [15], where Ross considered the problem of quality

control of a production process modeled by a special two-state Markov chain. Specialized for wireless

transmissions, our model is different in that the good and bad states of the channel are independent from

the action of the user. However, in Ross’s paper, the bad state of the production process can only change

back to the good state under the revise action. This fact, renders the immediate application of Ross’s

results nontrivial. The problem at hand therefore deserves a proper theoretical treatment.

B. Main results and organization

In Section II we formulate the problem as a Markov decision process. In Section III, we use methods

developed in the context of quality control and reliability theory [15]- [17] to establish the optimality of

threshold policies. In Section IV, we provide closed form expressions and simplified procedures for the

computation of the thresholds in terms of the system parameters. In Section V, we also provide closed

form expressions of the optimal total expected discounted number of bits transmitted. In Section VI, we

consider also the problem where the sensing is not perfect, this situation deserves to be studied since

for practical systems the sensors are generally prone to errors. We show in this case that the threshold

structure is not necessarily guaranteed. In Section VII, we study the scenario in which the transmitter

receives always the channel quality at the end of the slot, which corresponds to the situation when the

receiver feeds back1 the channel state information after each transmission. We will show that this feedback
1Note that this feedback channel provides extra information only in the case where the transmitter decides to use the strong code, since

in the two other cases (sensing or using a weak code) the transmitter will know the channel conditions either from the sensing outcome or
from the ACK/NAK received from the sink at the end of the slot.
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situation will provide an easy upper bound to our original problem. In Section VIII, we provide numerical

examples to illustrate the various theoretical results that will be presented in the paper. Finally, Section

IX concludes the paper.

II. PROBLEM FORMULATION

A. Channel model and assumptions

We consider a communication system operating over a slotted Gilbert-Elliot channel which is a one

dimensional Markov chain Gn with two states: a good state denoted by 1 and a bad state denoted by 0. The

channel transition probabilities are given by Pr[Gn = 1|Gn−1 = 1] = λ1 and Pr[Gn = 1|Gn−1 = 0] = λ0.

We assume that the channel transitions occur at the beginning of the time frame. We assume also that

λ0 ≤ λ1, the so-called positive correlation assumption, which can be restrictive in practice though it

simplifies the analysis considerably (similar assumption have also been used in [6], [7]). From now on

we assume without loss of generality that the slot duration is a unity, so that we will interchangeably use

data rate and number of bits.

B. Communication protocol

At the beginning of each slot, the transmitter can choose among three possible actions: betting conser-

vatively, betting aggressively, and betting opportunistically.

Betting conservatively: For this action (denoted by Tl), the transmitter decides to “play safe” and

transmits a low number R1 of data bits. This corresponds to the situation when the transmitter believes

that the channel is in a bad state. Hence the transmitter uses a strong error correcting code with a high

redundancy thereby leading to the transmission of a smaller number of data bits. If this action is chosen,

we assume that the transmission is successful regardless of the channel quality. It is of course natural to

assume that the transmission is successful if the channel is in the good state. However, the assumption

means also that the transmitter will not acquire any knowledge about the channel state during the elapsed

slot. Note finally that in this situation the receiver is not required to reply back with an ACK, since the

transmitter is assured that the transmission was successful.
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Betting aggressively: For this action (denoted by Th), the transmitter decides to “gamble” and

transmits a high number R2 (> R1) of data bits. This corresponds to the situation when the transmitter

believes that the channel is in a good state. If this action is taken we assume that the transmission is

successful only if the channel is in the good state. At the end of the slot, the transmitter will receive an

ACK if the channel was in the good state, and will receive a NAK otherwise. Hence, if this action is

chosen, the transmitter will learn the channel state during the elapsed slot.

Betting opportunistically: For this action (denoted by S), the transmitter decides to sense the channel

at the beginning of the slot. We assume that sensing is perfect, i.e., sensing reveals the true state of the

channel. We assume also that sensing lasts a fraction τ(< 1) of the slot. Sensing can be carried out by

making the transmitter send a control/probing packet. Then, the receiver responds with a packet indicating

the channel state.

Depending on the sensing outcome, the transmitter will transmit (1 − τ)R1 data bits if the channel

was found to be in the bad state or (1 − τ)R2 data bits if otherwise. This extra knowledge comes at a

price, which is the time spent probing the channel. However, the sensing action offers the advantage of

updating the belief (the posterior estimate) about the channel state. This updated belief can be exploited

in the future slots in order to increase the throughput. This fact captures a fundamental tradeoff known

as the exploration-exploitation dilemma. Note finally that in this situation the receiver is not required to

reply back with an ACK, since the transmitter is assured that the transmission was successful.

C. MDP formulation

At the beginning of a time slot, the transmitter is confronted with a choice between three actions. It

must judiciously select actions so as to maximize a ceratin reward to be defined shortly. Because the state

of the channel is not directly observable, the problem in hand is a Partially Observable Markov Decision

Process (POMDP). In [18], it is shown that a sufficient statistic for determining the optimal policy is the

conditional probability that the channel is in the good state at the beginning of the current slot given the

past history (henceforth called belief) denoted by Xt = Pr[Gt = 1|Ht], where Ht is all the history of

actions and observations at the current slot t). Hence by using this belief as the decision variable, the

POMDP problem is converted into an MDP with uncountable state space in [0, 1].
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Define a policy π as a rule that dictates the action to choose, i.e., a map from the belief at a particular

time to an action in the action space. Let V π
β (p) be the expected discounted reward with initial belief

X0 = Pr[G0 = 1|H0] = p, where the superscript π denotes the policy being followed and the subscript β

(∈ [0, 1)) the discount factor. The expected discounted cost has the following expression

V π
β (p) = Eπ

[ ∞∑
t=0

βtR(Xt, At)|X0 = p

]
, (1)

where t is the time slot index, At is the action chosen at time t, At ∈ {Tl, S, Th}. The term R(Xt, At)

denotes the reward acquired when the belief is Xt and the action At is chosen:

R(Xt, At) =





R1 if At = Tl

(1− τ)[(1−Xt)R1 + XtR2] if At = S

XtR2 if At = Th

.

These equations can be explained as follows: when betting conservatively, R1 bits are transmitted regardless

of the channel conditions and the transmission is always successful. When betting aggressively, R2 bits are

transmitted if the channel happens to be in the good state whereas 0 bits are transmitted if the channel was

in the bad state. Hence, since the belief that the channel is in the good state is Xt, the expected return when

the risky action is taken is XtR2. Now, when the sensing action is taken (1−τ)R1 bits will be transmitted

if the sensing revealed that the channel was in a bad state whereas (1 − τ)R2 bits will be transmitted

otherwise. Hence the expected return when the sensing action is taken is (1− τ)[(1−Xt)R1 + XtR2].

At first sight, it may seem that the expected discounted reward is inappropriate for our problem, since

why would the transmitter have a preference for bits transmitted now over bits transmitted in the future.

This formulation provides however a tractable solution, and one can gain insights into the optimal policy

when β is close to 1. One can also view β as the probability that a particular user is allowed to use the

channel (see [5] for further details). Finally, from Th.6.17 and Th.6.18 in [19], it can be seen also that

the discounted reward criterion is of primary importance when it comes to the derivation for the optimal

policy of the average reward criterion (throughput).
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Define now the value function Vβ(p) as

Vβ(p) = max
π

V π
β (p) for all p ∈ [0, 1]. (2)

A policy is said to be stationary if it is a function mapping the state space [0, 1] into the action space

{Tl, S, Th}. It is well known [19, Th.6.3] that there exists a stationary policy π∗ such that Vβ(p) = V π∗
β (p).

Also the value function Vβ(p) satisfies the Bellman equation

Vβ(p) = max
A∈{Tl,S,Th}

{Vβ,A(p)}, (3)

where Vβ,A(p) is the value acquired by taking action A when the initial belief is p and is given by

Vβ,A(p) = R(p,A) + βEY [Vβ(Y )|X0 = p,A0 = A], (4)

where Y denotes the next belief when the action A is chosen and the initial belief is p. The term Vβ,A(p)

will be explained next for the three possible actions.

a) Betting conservatively: If this action is taken, R1 bits will be successfully transmitted regardless

of the channel quality. The transmitter will not learn what was the channel quality. Hence, if the transmitter

had a belief p during the elapsed time slot, its belief at the beginning of the next time slot is given by

T (p) = λ0(1− p) + λ1p = αp + λ0, (5)

with α = λ1 − λ0. Consequently if the safe action is taken, the value function evolves as

Vβ,Tl
(p) = R1 + βVβ(T (p)). (6)

b) Betting opportunistically: If this action is taken and the current belief is p, the channel quality

during the current slot is then revealed to the transmitter. With probability p the channel will be in the

good state and hence the belief at the beginning of the next slot will be λ1. Likewise, with probability

1− p the channel will turn out to be in the bad state and hence the updated belief for the next slot is λ0.
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Consequently if the sensing action is taken, the value function evolves as

Vβ,S(p)=(1− τ)[pR2 + (1− p)R1]+β[pVβ(λ1)+(1− p)Vβ(λ0)]. (7)

c) Betting aggressively: If this action is taken and the current belief is p, then with probability p,

the transmission will be successful and the transmitter will receive an ACK from the receiver. The belief

at the beginning of the next slot will be then λ1. Similarly, with probability 1− p, the channel will turn

out to be in the bad state and the transmission will result in a failure accompanied by a NAK from the

receiver. Hence the transmitter will update his belief for the next slot to λ0. Consequently if the risky

action is taken, the value function evolves as

Vβ,Th
(p) = pR2 + β[pVβ(λ1) + (1− p)Vβ(λ0)]. (8)

Finally the Bellman equation for our communication problem reads as follows

Vβ(p) = max{Vβ,Tl
(p), Vβ,S(p), Vβ,Th

(p)}. (9)

III. STRUCTURE OF THE OPTIMAL POLICY

In the following, we will prove the optimality of the threshold policies. But before we need to prove

some results about the value function.

Theorem 1. Vβ(p) is convex and nondecreasing.

Proof: We first start by proving the convexity of the value function. Define Vβ(p, n) as the optimal

value when the decision horizon spans only n stages. Then we have the following recursion

Vβ(p, n) = max{R1 + βVβ(T (p), n− 1), (1− τ)[R1 + p(R2 −R1)] +

β[(1− p)Vβ(λ0, n− 1) + pVβ(λ1, n− 1)],

pR2 + β[(1− p)Vβ(λ0, n− 1) + pVβ(λ1, n− 1)]}, (10)
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where Vβ(p, 1) = max{R1, (1− τ)[R1 + p(R2 − R1)], pR2}. Vβ(p, 1) is a convex function since it is the

maximum of three convex functions. Assume that Vβ(p, n− 1) is convex, then for a ∈ [0, 1] we have

R1 + βVβ(T (ap1 + (1− a)p2), n− 1) = R1 + βVβ(aT (p1) + (1− a)T (p2), n− 1)

≤ R1 + aβVβ(T (p1), n− 1) + (1− a)βVβ(T (p2), n− 1)

= a[R1 + βVβ(T (p1), n− 1)] + (1− a)[R1 + βVβ(T (p2), n− 1)]

≤ aVβ(p1, n) + (1− a)Vβ(p2, n). (11)

Also since the second and third terms in (10) are linear we can easily see that

Vβ(ap1 + (1− a)p2, n) ≤ aVβ(p1, n) + (1− a)Vβ(p2, n). (12)

Hence Vβ(p, n) is convex. And by induction we have convexity for all n. However, from the theory of

MDPs we know that Vβ(p, n) → Vβ(p) as n →∞. Hence Vβ(p) is convex.

The proof that Vβ(p) is nondecreasing is also done by induction, indeed since R2 > R1 we have that

Vβ(p, 1) is the maximum of three nondecreasing functions and is hence nondecreasing. Assume that

Vβ(p, n − 1) is nondecreasing, then since λ1 ≥ λ0 we have Vβ(λ0, n − 1) ≤ Vβ(λ1, n − 1). Hence the

second and the third term in (10) are nondecreasing functions. Also since T (p) is nondecreasing, we have

Vβ(T (p), n− 1) is nondecreasing. Thus Vβ(p, n) is the maximum of three nondecreasing functions and is

hence nondecreasing. Consequently, by letting n →∞ we obtain the desired result.

Using the convexity of Vβ(p), we are now ready to characterize the structure of the optimal policy.

Theorem 2. Let p ∈ [0, 1], there are numbers 0 ≤ ρ1 ≤ ρ2 ≤ ρ3 ≤ 1 such that

π∗(p) =





Tl if 0 ≤ p < ρ1 or ρ2 < p < ρ3

S if ρ1 ≤ p ≤ ρ2

Th if ρ3 ≤ p ≤ 1

.

Proof: We introduce the following sets

ΦK = {p ∈ [0, 1], Vβ(p) = Vβ,K(p)}, K ∈ {Tl, Th, S}. (13)
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In other words, ΦK is the set of beliefs for which it is optimal to take the action K. We will prove that

ΦTh
and ΦS are convex, which implies the structure of the optimal policy. This proof parallels that of

Ross [15].

Let p1, p2 ∈ ΦTh
and let a ∈ [0, 1] then we have

Vβ(ap1 + (1− a)p2) ≤ aVβ(p1) + (1− a)Vβ(p2)

= a(p1R2+βp1Vβ(λ1)+β(1−p1)Vβ(λ0))+(1−a)(p2R2+βp2Vβ(λ1)+β(1−p2)Vβ(λ0))

= (ap1 + (1− a)p2)R2 + β(ap1 + (1− a)p2)Vβ(λ1) + β(1− (ap1 + (1− a)p2))Vβ(λ0)

≤ Vβ(ap1 + (1− a)p2), (14)

where the first inequality comes from the convexity of Vβ(p); the first equality follows from the fact that

p1, p2 ∈ ΦTh
, and the last inequality from the definition of Vβ(·). Consequently Vβ(ap1 + (1 − a)p2) =

Vβ,Th
(ap1 + (1− a)p2), and hence ap1 + (1− a)p2 ∈ ΦTh

, this proves the convexity of ΦTh
. Since convex

subsets of the real line are intervals and 1 ∈ ΦTh
, then there exists ρ3 ∈ (0, 1] such that ΦTh

= [ρ3, 1].

Using the same technique we can prove that ΦS is convex and hence there exits ρ1, ρ2 ∈ [0, 1] such that

ΦS = [ρ1, ρ2]. Consequently we have also that ΦTl
= [0, ρ1) ∪ (ρ2, ρ3).

The established structure is appealing since the belief space is partitioned into at most 4 regions.

Intuitively, one would think that there should exist only three regions, i.e., if the belief is small, one

should paly safe; if the belief is high, one should gamble, and somewhere in between sensing is optimal.

Therefore it may seem possible that (ρ2, ρ3) = ∅. However, we show in Section VIII that this is not true

in general, for some cases, a three-threshold policy is optimal.

In the rest of this section we examine the effect of the sensing time τ on the value function Vβ(p). For

this purpose, we make explicit this relation by denoting Vβ(p) as Vβ(p, τ). The behavior of Vβ(p, τ) is

summarized in the following theorem.

Theorem 3. Vβ(p, τ) is a non-decreasing and convex function of τ .
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Proof: Let τ1 ≤ τ2, and assume that πi is the optimal policy when the the sensing time is τi, i ∈ {1, 2}.

Consequently from (2), we obtain that

Vβ(p, τ1) = V π1
β (p, τ1) ≥ V π2

β (p, τ1). (15)

Since τ1 ≤ τ2, we clearly have that V π2
β (p, τ1) ≥ V π2

β (p, τ2). Indeed, being a non-randomized mapping

from the state space to the action space, and starting from the state p the policy π2 will select the same

action whether the sensing cost is τ1 or τ2. Consequently the same reward will be collected excluding

when the sensing action is chosen. However, from the optimality of π2 when the sensing time is τ2, we

have V π2
β (p, τ2) = Vβ(p, τ2). Hence, we conclude Vβ(p, τ1) ≥ Vβ(p, τ2).

We now prove the convexity of Vβ(p, τ). Let τ1, τ2 and aτ1 + (1 − a)τ2, a ∈ [0, 1], be three sensing

durations. Assume that π is the optimal policy when the the sensing time is aτ1 +(1−a)τ2, then we have

Vβ(p, aτ1 + (1− a)τ2) = V π
β (p, aτ1 + (1− a)τ2)

= aV π
β (p, τ1) + (1− a)V π

β (p, τ2)

≤ aVβ(p, τ1) + (1− a)Vβ(p, τ2). (16)

The first equality follows from the fact that the policy π is optimal when the sensing time is aτ1+(1−a)τ2.

The second equality results from the fact that the immediate reward is a linear function of τ and the last

inequality follows from (2).

IV. CLOSED FORM CHARACTERIZATION OF THE POLICIES

Theorem 2. proves that there exists three types of threshold policies; a one-threshold policy (when

ρ1 = ρ2 = ρ3), a two-thresholds policy (when ρ1 < ρ2 = ρ3), and a three-thresholds policy (when

ρ1 < ρ2 < ρ3). Since we do not have sufficient and necessary conditions to tell which policy will be

optimal, one will need to compute the three possible policies and select the one that achieves the highest

value. Fortunately, this computation is inexpensive because we will provide closed form expressions and

simplified procedures to compute the policies. Also, depending on the system parameters, some policies

may be infeasible. For example, in a 2-thresholds policy, we would find ρ1 > ρ2. In such situations, the

task is even more simplified since we can further restrict our search for the optimal policy.
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In the following we will analyze each policy individually, but before delving into the computation of

the thresholds, we need to introduce the following operators:

T n(p) = T (T n−1(p)) = λF (1− αn) + αnp. (17)

T−n(p) = T−1(T−(n−1)(p)) =
p

αn
− 1− αn

1− α

λ0

αn
. (18)

Finally, we will denote by λF = λ0

1−α
the fixed point of T (·), i.e., T (λF ) = λF c.f. (5).

A. One threshold policy

Assume that the optimal policy has one threshold 0 < ρ < 1. The procedure to calculate ρ starts by

computing Vβ(λ0) and Vβ(λ1) as shown in section A in the Appendix. The threshold ρ is computed as in

the following lemma.

Lemma 1. If the one threshold policy is optimal then the threshold ρ is calculated as follows:

If R1

1−β
≥ Vβ,Th

(λF ), then

ρ =
R1

R2 + βVβ(λ1)− β R1

1−β

. (19)

Otherwise, we have

ρ =
(1− βλ1)R1 + βλ0R2 + β(β − 1)(1− βα)Vβ(λ0)

(1− βα)(R2 + β(β − 1)Vβ(λ0))
. (20)

Proof: The threshold ρ is the solution of the equation R1+βVβ(T (ρ)) = Vβ,Th
(ρ). We can distinguish

two possible scenarios:

If2 R1

1−β
≥ Vβ,Th

(λF ), then we have λF ≤ ρ and T (ρ) < ρ, consequently Vβ(T (ρ)) = R1

1−β
(see lemma 5

in the appendix), hence solving for ρ we obtain (19).

Otherwise, we have λF > ρ then T (ρ) > ρ and consequently Vβ(T (ρ)) = Vβ,Th
(T (ρ)), hence solving for

ρ we obtain (20).

2Note that Vβ,Th(λF ) is directly computable since we have calculated Vβ(λ0) and Vβ(λ1) in the previous step.
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B. Two thresholds policy

Assume that the optimal policy has two thresholds 0 < ρ1 < ρ2 < 1. Note that since ρ2 is the solution

of Vβ,S(ρ2) = Vβ,Th
(ρ2), it is easy to establish that ρ2 = (1−τ)R1

(1−τ)R1+τR2
. The procedure to compute ρ1 starts

by computing Vβ(λ0) and Vβ(λ1) as in section B in the Appendix. The threshold ρ1 is computed as in

the following lemma.

Lemma 2. If the two-thresholds policy is optimal then we have three possibilities

1) If λF > ρ2 then two cases can be distinguished:

If3 Vβ,Tl
(T−1(ρ2)) < Vβ,S(T−1(ρ2)), ρ1 will be given by

ρ1 =
τR1 + β(1− τ)[R1 + λ0(R2 −R1)] + β2[Vβ(λ0) + λ0(Vβ(λ1)− Vβ(λ0))]− βVβ(λ0)

(1− βα)[(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]
. (21)

Else ρ1 will be given by

ρ1 =
βλ0R2 + (1− βλ1)τR1 + β(β − 1)(1− βα)Vβ(λ0)

R2(1− λ1(β(α− τ)− τ)) + β(β − 1)(1− βα)Vβ(λ0)− (1− τ)(1− βλ1)R1

. (22)

2) If R1

1−β
< Vβ,S(λF ) and λF ≤ ρ2, ρ1 is given by (21).

3) Finally if R1

1−β
≥ Vβ,S(λF ) and λF ≤ ρ2, then

ρ1 =
τ(1− β)R1

(1− τ)(1− β)(R2 −R1) + β((1− β)Vβ(λ1)−R1)
. (23)

Proof: The threshold ρ1 is the solution to the equation R1 + βVβ(T (ρ1)) = Vβ,S(ρ1). We can

distinguish three possible scenarios:

1) If λF > ρ2 then two cases can be distinguished: If Vβ,Tl
(T−1(ρ2)) < Vβ,S(T−1(ρ2)) we will have

ρ1 < T (ρ1) ≤ ρ2 and hence Vβ(T (ρ1)) = Vβ,S(T (ρ1)), consequently solving for ρ1 we obtain (21). Else,

T (ρ1) > ρ2 and consequently Vβ(T (ρ1)) = Vβ,Th
(T (ρ1)) and hence solving for ρ1 we obtain (22).

2) If R1

1−β
< Vβ,S(λF ) and λF ≤ ρ2, then it follows that ρ1 < λF ≤ ρ2 consequently ρ1 < T (ρ1) < λF ,

i.e., Vβ(T (ρ1)) = Vβ,S(T (ρ1)), and hence ρ1 will be given by (21).

3) Finally if R1

1−β
≥ Vβ,S(λF ) and λF ≤ ρ2 then we must have λF ≤ ρ1, i.e., T (ρ1) < ρ1 and

Vβ(T (ρ1)) = R1

1−β
. Hence solving for ρ1, we obtain (23).

3Note that Vβ,Tl(T
−1(ρ2)) = R1 +β([R2 +β(Vβ(λ1)−Vβ(λ0))]ρ2 +βVβ(λ0)) is readily computable since we have already calculated

Vβ(λ0) and Vβ(λ1). The same remark holds for Vβ,S(T−1(ρ2)).
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C. Three thresholds policy

Assume that the optimal policy has three thresholds 0 < ρ1 < ρ2 < ρ3 < 1. Before detailing the

structure of the optimal policy, we introduce the following useful lemma.

Lemma 3. If the three-thresholds policy is optimal, then λF ∈ [ρ3, 1].

Proof: We first prove that λF 6∈ [ρ1, ρ2], note that both ρ1 and ρ2 satisfy the following equation

R1 + βVβ(T (ρ)) = (1− τ)[R1 + ρ(R2 −R1)] + β(Vβ(λ0) + ρ(Vβ(λ1)− Vβ(λ0))), (24)

so if λF ∈ [ρ1, ρ2], then T (ρ1), T (ρ2) ∈ [ρ1, ρ2], i.e., Vβ(T (ρ1)) = Vβ,S(T (ρ1)) and the same for Vβ(T (ρ2)).

Consequently, (24) would have a single solution given by (21) and we would have ρ1 = ρ2, this contradicts

the assumption that ρ1 < ρ2.

Assume that λF ∈ [0, ρ1], then Vβ(p) = R1

1−β
for p ∈ [0, ρ1] (see lemma 5 in the appendix). Now for

p ∈ [ρ2, ρ3], we have Vβ(p) = R1 + βVβ(T (p)). However T (p) ≤ p for p ≥ λF and Vβ(·) is increasing,

hence Vβ(p) ≤ R1+βVβ(p) or equivalently, Vβ(p) ≤ R1

1−β
. Remember that Vβ(p) ≥ Vβ(λF ) = R1

1−β
(because

Vβ(·) is ↗). Consequently, Vβ(p) = R1

1−β
for p ∈ [ρ2, ρ3] and for the same reasons for p ∈ [ρ1, ρ2], i.e.,

Vβ(p) = R1

1−β
for p ∈ [0, ρ3], this is a contradiction with the assumption that we have a three threshold

policy. Finally, using the same reasoning we prove that λF 6∈ [ρ2, ρ3].

We now turn to the computation of ρ1, ρ2 and ρ3. Since ρ3 ≤ λF and ρ3 is the solution of R1 +

βVβ(T (ρ3)) = Vβ,Th
(ρ3), it follows that ρ3 is given by (20). ρ1 and ρ2 are computed as in the following

lemma.

Lemma 4. If the three thresholds policy is optimal then let J+1=min{k ≥ 1 : δ(k) < γ(k)ρ3}, where

γ(k) is given by

γ(k) = [(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]
1

αk
− βk[R2 + β(Vβ(λ1)− Vβ(λ0))], (25)

and

δ(k) = R1
1− βk

1− β
+β(βk−1)Vβ(λ0)+

λ0(1− αk)

αk(1− α)
[(1−τ)(R2−R1)+β(Vβ(λ1)−Vβ(λ0))]−(1−τ)R1. (26)
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We have then

ρ2 =
R1(

1−βJ+1

1−β
− (1− τ)) + βJ+1[PF (1− αJ+1)(R2 + β(Vβ(λ1)− Vβ(λ0))) + βVβ(λ0)]− βVβ(λ0)

(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))− (αβ)J+1(R2 + β(Vβ(λ1)− Vβ(λ0)))
.

(27)

If Vβ,Tl
(T−1(ρ2)) < Vβ,S(T−1(ρ2)) then ρ1 will be given by (21). Else, let J ′+1 = min{k ≥ J + 2 :

γ(k)ρ3 < δ(k)}, and ρ1 will be given by (27) with J replaced by J ′.

Proof: Note first that there exists no k ∈ N such that T−(k+1)(ρ3) < ρ1 < ρ2 < T−k(ρ3), for

otherwise, we would have Vβ,Tl
(ρ1) = Vβ,Tl

(ρ2) and hence (24) would have only one solution, thereby

contradicting the three-thresholds assumption. Let J+1=min{k∈N :T−k(ρ3)<ρ2}, it follows then that

T−(J+1)(ρ3) < ρ2 ≤ T−J(ρ3), or equivalently

Vβ(ρ2) = R1 + βVβ(T (ρ2)) = R1 + βR1 + β2Vβ(T 2(ρ2)) = . . . = R1
1− βJ+1

1− β
+ βJ+1Vβ,Th

(T J+1(ρ2)).

(28)

Hence Vβ(ρ2) will be given by

Vβ(ρ2) = R1
1− βJ+1

1− β
+ βJ+1[PF (1− αJ+1)(R2 + β(Vβ(λ1)− Vβ(λ0))) + βVβ(λ0)]

+(αβ)J+1(R2 + β(Vβ(λ1)− Vβ(λ0)))ρ2. (29)

Since ρ2 is a solution to (24), we solve for ρ2 to obtain (27).

It is easily seen that J+1=min{k∈N : Vβ,Tl
(T−k(ρ3)) < Vβ,S(T−k(ρ3))}. The term Vβ,Tl

(T−k(ρ3)) can

be calculated as follows

Vβ,Tl
(T−k(ρ3)) = R1

1− βk

1− β
+ βk+1Vβ(λ0) + βk[R2 + β(Vβ(λ1)− Vβ(λ0))]ρ3. (30)

Similarly,

Vβ,S(T−k(ρ3)) = [(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]
ρ3

αk
+ (1− τ)R1 + βVβ(λ0)

−λ0(1− αk)

αk(1− α)
[(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]. (31)

Hence after some manipulations we obtain the expressions of γ(k) and δ(k) as shown in the lemma.

Finally, if Vβ,Tl
(T−1(ρ2)) < Vβ,S(T−1(ρ2)) we will have ρ1 < T (ρ1) < ρ2 and hence ρ1 will be given by
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(21). Else we are in the situation where T (ρ1) > ρ2, hence by letting J ′+1=min{k ≥ J + 2 : T−k(ρ3) <

ρ1} = min{k ≥ J + 2 : Vβ,Tl
(T−k(ρ3)) > Vβ,S(T−k(ρ3))} and using the same approach used above we

obtain the result presented in the lemma.

V. COMPUTATION OF THE VALUE FUNCTION

Since Vβ,S(p) and Vβ,Th
(p) are linear functions of p, once Vβ(λ0) and Vβ(λ1) are computed, Vβ(p) is

completely determined when p ∈ ΦS

⋃
ΦTh

. Vβ(p) needs however to be determined for p ∈ ΦTl
.

A. One threshold policy

The goal is to find Vβ(p) for p ≤ ρ. Here we can distinguish two possibilities

If λF ≤ ρ, then Vβ(p) = R1

1−β
for all p ≤ ρ (see lemma 5 in the appendix). If λF > ρ, then let

J +1 = min{k ∈N : T−k(ρ) < 0}. Let FJ+1 = [0, T−J(ρ)] and Fi = (T−i(ρ), T−(i−1)(ρ)] for 1 ≤ i ≤ J .

Then for p ∈ Fi, we have T i(p) > ρ ≥ T (i−1)(p), i.e.,

Vβ(p) = R1 + βVβ(T (p))

= R1 + βR1 + β2Vβ(T 2(p))

...

= R1
1− βi

1− β
+ βiVβ,Th

(T i(p)). (32)

The optimal policy for this last case is illustrated in Fig. 1.

B. Two thresholds policy

The approach here is similar to the previous case, i.e.,

If λF ≤ ρ1, then Vβ(p) = R1

1−β
for all p ≤ ρ1. If ρ1 < λF ≤ ρ2, let J +1 = min{k ∈N : T−k(ρ1) < 0}.

Let FJ+1 = [0, T−J(ρ1)] and Fi = (T−i(ρ1), T
−(i−1)(ρ1)] for 1 ≤ i ≤ J . Then for p ∈ Fi, we have

ρ2 > T i(p) > ρ1 ≥ T (i−1)(p), i.e.,

Vβ(p) = R1
1− βi

1− β
+ βiVβ,S(T i(p)). (33)
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The optimal policy for this case is illustrated in Fig. 2.

If λF > ρ2, two case can be distinguished; If T (ρ1) ≤ ρ2 then the computation is similar to the situation

where ρ1 < λF ≤ ρ2 discussed above. If T (ρ1) > ρ2, let FJ+1 = [0, T−J(ρ1)], for 2 ≤ i ≤ J let

Fi = (T−i(ρ1), T
−(i−1)(ρ1)] and F1 = (T−1(ρ1), T

−1(ρ2)]. Then for p ∈ Fi, i ≥ 1, Vβ(p) will be given by

(33). For p ∈ F0 = (T−1(ρ2), ρ1] we have

Vβ(p) = R1 + βVβ,Th
(T (p)). (34)

C. Three thresholds policy

The goal is to find Vβ(p) for p ∈ [0, ρ1]∪ [ρ2, ρ3]. For p ∈ [ρ2, ρ3], let J+1=min{k∈N :T−k(ρ3)<ρ2}.

Let FJ+1 = [ρ2, T
−J(ρ3)) and Fi = [T−i(ρ3), T

−(i−1)(ρ3)) for 1 ≤ i ≤ J . For p ∈ Fi, we have T i(p) ≥ ρ3,

i.e., Vβ(p) is given by (32).

For p ∈ [0, ρ1] we can distinguish two cases;

If T (ρ1) ≤ ρ2, Vβ(p) for p ∈ [0, ρ1] is computed using (33). If T (ρ1) > ρ2, let H +1 = min{k ∈ N :

T−k(ρ1) < 0}. Then we have two subcases: If T−(H+1)(ρ2) ≥ 0, then let ZH+1 = [0, T−(H+1)(ρ2)), for

1 ≤ i ≤ H let Zi = [T−i(ρ1), T
−i(ρ2)) and for 1 ≤ i ≤ H + 1 let Qi = [T−i(ρ2), T

−(i−1)(ρ1)). For

p ∈ Zi, T i(p) ∈ [ρ1, ρ2) and hence Vβ(p) is computed using (33). For p ∈ Qi, T i(p) ∈ [ρ2, ρ3), hence

there exits 1 ≤ j ≤ J + 1 such that T i(p) ∈ Fj , i.e.,

Vβ(p) = R1
1− βi+j

1− β
+ βi+jVβ,Th

(T i+j(p)). (35)

The optimal policy for this case is illustrated in Fig. 3.

If T−(H+1)(ρ2) < 0, then let ZH+1 = [0, T−H(ρ1)), for 1 ≤ i ≤ H let Zi = [T−i(ρ2), T
−(i−1)(ρ1)) and

Qi = [T−i(ρ1), T
−i(ρ2)). For p ∈ Zi, T i(p) ∈ [ρ2, ρ3) and hence Vβ(p) is given by (35). For p ∈ Qi,

T i(p) ∈ [ρ1, ρ2) and consequently Vβ(p) is computed using (33).

VI. IMPERFECT SENSING

In the previous sections we have assumed that when the transmitter takes the sensing action, the state

of the channel becomes perfectly known. In reality, however, sensing errors may exist due to several

imperfections and limitations of communication systems. In that sense the previous results can be viewed
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as an optimistic performance bound. In this section, we will examine the impact of the CSI errors on

the optimal policy. We assume a fixed channel sensor. Let p = Pr[G0 = 1|H0] be the initial belief,

and let Y0 denote the CSI acquired after taking the S action. Note that Y0 is a binary random variable

with Y0 = 1 meaning that the channel is declared to be good. Define PF = Pr[Y = 1|G = 0] and

PD = Pr[Y = 1|G = 1] as the probability of false alarm and the probability of correct detection,

respectively. Then we have4

Vβ,S(p) = (1− τ)R1 Pr[Y0 = 0] + β Pr[Y0 = 0]Vβ(T (Pr[G0 = 1|Y0 = 0]))

+(1−τ)R2 Pr[G0 =1, Y0 =1]+β[Pr[G0 =1, Y0 =1]Vβ(λ1)+Pr[G0 =0, Y0 =1]Vβ(λ0)].(36)

To explain the first two terms in the equation, notice that when Y0 = 0, the transmitter uses the action Tl

for the remaining duration of the slot (i.e., 1− τ ), since in this case the transmission is always successful,

and the belief about the state of the channel in the next slot will be Pr[G1 = 1|Y0 = 0] or equivalently

T (Pr[G0 = 1|Y0 = 0]). The second line of the equation can be explained as follows. When the channel

is declared to be in a good condition (i.e., Y0 = 1), the transmitter will use action Th for the remaining

duration of the slot (i.e., 1− τ ). However the communication will be only successful when G0 = 1, this

event happens with probability Pr[G0 = 1, Y0 = 1] and the belief about the state of the channel in the

next slot will be λ1. The probability of a failed communication is Pr[G0 = 1, Y0 = 0] and the belief about

the state of the channel in the next slot in this case is λ0.

Now using the law of total probability, Vβ,S(p) becomes

Vβ,S(p) = (1− τ)[R1(1− PF + p(PF − PD)) + R2pPD] + β[pPDVβ(λ1) + PF (1− p)Vβ(λ0)]

+β(1− PF + p(PF − PD))Vβ

(
T

(
p(1− PD)

1− PF + p(PF − PD)

))
. (37)

Notice that when PF = 0 and PD = 1 we retrieve the expression obtained with no CSI errors. The

expressions Vβ,Tl
(p) and Vβ,Th

(p) rest unchanged.

The main complication with CSI errors is that the threshold structure of the optimal policy is not guaranteed

anymore. Indeed, even though the optimality region of the Th action (i.e., ΦTh
) is still convex, the sensing

4In the following, all probabilities should be understood as conditioned on H0.
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region ΦS may be not convex as it will be shown in the numerical results section.

VII. OPTIMAL POLICY WITH CHANNEL STATE INFORMATION FEEDBACK

A. Structure of the value function and of the optimal policy

In this section we consider the situation where the transmitter knows the channel state information

(CSI) at the end of each slot. Note that in the previous model, the transmitter acquires this delayed CSI

only if the S or Th actions are taken5. But, if the action Tl is taken instead, the CSI is not known since in

all cases the transmission is successful. Now, in this new model, we assume that if the action Tl is taken,

the receiver replies back with the CSI. This CSI feedback can take the form of one bit; 0 indicating a

bad channel and 1 for a good channel. If the transmitter receives a 0, then he will know that he selected

the correct action (i.e., Tl). Whereas if a 1 is received, he will know that he just missed an opportunity

of sending more data (if he has selected Th instead of Tl).

In this new model, Vβ,Tl
(p) changes to

Vβ,Tl
(p) = R1 + β((1− p)Vβ(λ0) + pVβ(λ1)). (38)

Whereas Vβ,S(p) and Vβ,Th
(p) rest unchanged and as usual Vβ(p) = max{Vβ,Tl

(p), Vβ,S(p), Vβ,Th
(p)}.

Remember, in the previous model, Vβ(·) is convex, hence Vβ(T (p)) ≤ (1 − p)Vβ(λ0) + pVβ(λ1) which

proves that Vβ(·) with CSI feedback is bigger than Vβ(·) with no CSI feedback.

The optimal policy is easily obtained and is given in the following theorem.

Theorem 4. If τR1

(1−τ)(R2−R1)
> (1−τ)R1

(1−τ)R1+τR2
then the optimal policy is a one threshold policy, i.e.,

π∗(p) =





Tl if 0 ≤ p ≤ R1

R2

Th if R1

R2
≤ p ≤ 1

.

5The CSI is acquired through the ACK/NAK received from the transmitter if the Th action is chosen or through sensing if the S action
is taken.
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If τR1

(1−τ)(R2−R1)
≤ (1−τ)R1

(1−τ)R1+τR2
then the optimal policy is a two threshold policy, i.e.,

π∗(p) =





Tl if 0 ≤ p ≤ τR1

(1−τ)(R2−R1)

S if τR1

(1−τ)(R2−R1)
≤ p ≤ (1−τ)R1

(1−τ)R1+τR2

Th if (1−τ)R1

(1−τ)R1+τR2
≤ p ≤ 1

.

As one should expect, the optimal strategy here is a myopic policy, i.e., a policy that maximizes the imme-

diate reward. Indeed, the optimal policy for this problem is identical to the optimal policy corresponding

to the following MDP: Wβ(p) = max{R1, (1− τ)[(1− p)R1 + pR2], pR2}.

B. Value function

Note that the value function is totally determined by finding Vβ(λ0) and Vβ(λ1). In order to determine

the optimal action when the belief is λ1 or λ0, we compare these values to the thresholds established

above. Then all that remains is solving a system of two linear equations with two unknowns (i.e., Vβ(λ0)

and Vβ(λ1)). To illustrate the procedure of determining Vβ(λ0) and Vβ(λ1), we consider here the example

where the optimal policy is a one threshold policy and λ0 ≤ R1

R2
≤ λ1. We have then

Vβ(λ0) = R1 + β(Vβ(λ0) + (Vβ(λ1)− Vβ(λ0))λ0), (39)

Vβ(λ1) = λ1R2 + β(Vβ(λ0) + (Vβ(λ1)− Vβ(λ0))λ1). (40)

Solving for Vβ(λ0) and Vβ(λ1) leads to

Vβ(λ0) =
(1− βλ1)R1 + βλ0λ1R2

(1− β)(1− βα)
, (41)

Vβ(λ1) =
β(1− λ1)R1 + (1− β + βλ0)λ1R2

(1− β)(1− βα)
. (42)

Note that the other cases are treated similarly, and for space limitations we don’t treat all the different

cases here.

VIII. NUMERICAL RESULTS

We will first consider three different scenarios each one of them leading to a different optimal policy.

To validate the closed-form solutions obtained above we will also generate the optimal value function
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Vβ(p) using the value iteration algorithm.

The parameters chosen below are selected in order to illustrate that in theory, any of the three policies

could be optimal. The first set of parameters considered is λ0 = 0.2, λ1 = 0.9, τ = 0.4, R1 = 1, R2 = 2

and β = 0.1. Note that from a practical standpoint τ = 0.4 represents a substantial duration for sensing.

As shown in Fig. 4, the optimal policy in this case is a one threshold policy, whereas the two and three

thresholds policies are unfeasible in this case. If we keep all the parameter values fixed and diminish the

sensing time to τ = 0.1, then from Fig.5, we can see that the optimal policy becomes a two thresholds

policy, whereas the one threshold policy gives suboptimal values (the three thresholds policy is unfeasible

in this case). Fig. 6 shows the optimal value function for the following settings: λ0 = 0.81, λ1 = 0.98,

τ = 0.035, R1 = 2.91, R2 = 3 and β = 0.7. Here, the optimal policy is a three thresholds policy, and

the one and two thresholds policies provide suboptimal results. These numerical simulations prove that

all scenarios can be possible and that our developed formulae give always the optimal policy. Finally, it

should be noted that finding a scenario where the optimal policy has three-thresholds was not obvious.

The parameters had to be repeatedly tuned in order to obtain such a case.

Fig. 7, shows the effect of the sensing time τ on the length of the sensing region |ΦS| = ρ2 − ρ1. The

system parameters in this plot are as follows: R1 = 1, R2 = 2, β = 0.99, λ0 = 0.1 and λ1 = 0.9. In

this example, the two-thresholds policy is optimal for τ ∈ [0, 0.537], and beyond this critical value, the

one threshold policy will become optimal. As expected, the sensing region ΦS expands when the cost of

sensing τ decreases until it covers the whole interval [0, 1] when τ = 0.

Fig. 8 shows the impact of the sensing action on the overall performance. The system parameters in

this plot are as follows: R1 = 3, R2 = 4, τ = 0.1, β = 0.9, λ0 = 0.6 and λ1 = 0.9. In this example,

when the transmitter has perfect CSI feedback but can only use the actions Tl and Th, the total number of

transmitted bits is reduced. However, when the transmitter can access the sensing action, the total number

of transmitted bits is substantially augmented and the optimal policy performs closely to the case with

full CSI feedback.

Fig. 9 depicts the plots of Vβ,R1(p), Vβ,S(p) and Vβ,R2(p) for the following parameters; λ0 = 0.6,

λ1 = 0.99, τ = 0.01, R1 = 3.6, R2 = 4, β = 0.9, PF = 0.1 and PD = 0.3. This figure shows the

impact of the sensing errors on the choice of the optimal action. As it can be seen the threshold structure
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established in Theorem 2 does not hold anymore. Indeed as this example shows the region ΦS is not

convex, more precisely we have ΦTl
= [0, 0.7] ∪ [0.766, 0.785], ΦS = (0.7, 0.766) ∪ (0.785, 0.88] and

ΦTh
= (0.88, 1].

IX. CONCLUSION

In this paper, we have studied a communication system operating over a Gilbert-Elliot channel. In order

to maximize the number of successfully transmitted bits, the transmitter judiciously selects the best action

among three possible options: (i) transmit a high number of bits with no protection against a bad channel,

ii) transmit a low number of bits but with perfect protection, iii) sense the channel for a fixed duration

and then decide between the two previous actions.

We have formulated the aforementioned problem as a Markov Decision Process, and we have established

that the optimal strategy is a threshold policy. Namely, we have proved that the optimal policy can have

either one threshold, two thresholds, or three thresholds. We have provided closed-form expressions and

simplified procedures for the computation of these policies as well as the resulting optimal number of

transmitted bits. From a practical standpoint, the results presented in this paper could be used to optimize

the channel utilization of real systems such as High-Speed Downlink Packet Access (HSDPA) [20].

We have left some interesting problems open. We have not considered the design of the optimal policy

when the communication system can communicate with more that two different rates. Another possibility

is the extension of the problem to a multiple channel setup.

APPENDIX: COMPUTATION OF Vβ(λ1) AND Vβ(λ0)

Before giving the expressions of Vβ(λ1) and Vβ(λ0) we present an alternate expression for Vβ(p). This

new expression will prove to be useful in the subsequent derivations.

Theorem 5. The value function can be written as

Vβ(p)=max
n≥0

{
1− βn

1− β
R1+βn max{Vβ,S(T n(p)), Vβ,Th

(T n(p))}
}

, (43)

where T n(p) = T (T (n−1)(p)) = λF (1− αn) + αnp, α = λ1 − λ0 and λF = λ0

1−α
is the fixed point of T (·).
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Proof: Recall that we have

Vβ(p) = max{R1 + βVβ(T (p)), Vβ,S(p), Vβ,Th
(p)}. (44)

By replacing Vβ(T (p)) by its expression we obtain

Vβ(p) = max{R1(1 + β) + β2Vβ(T 2(p)), R1 + βVβ,S(T (p)), R1 + βVβ,Th
(T (p)), Vβ,S(p), Vβ,Th

(p)}. (45)

Iterating over the same steps, we have for all N ≥ 0 that

Vβ(p) = max

{
R1

1− βN

1− β
+ βNVβ(TN(p)), max

0≤n≤N−1

{
1− βn

1− β
R1+βn max{Vβ,S(T n(p)), Vβ,Th

(T n(p))}
}}

.

(46)

Since N is arbitrary and 0 ≤ β < 1, letting N →∞ we obtain the desired result.

Intuitively the previous result can be explained as follows; The expression 1−βn

1−β
R1 + βnVβ,S(T n(p)) is

the expected return when the transmitter selects n (≥ 0) times the action Tl, then selects the action S

and the procedure continues on there on optimality. Similarly for the other term but instead of taking the

S action at the (n + 1)th stage, the action Th is selected. The value function is then just the maximum

between these two expressions over all stages.

Before proceeding with the computation of Vβ(λ1) and Vβ(λ0) we need the following lemma

Lemma 5. For the one and two-thresholds policies, let ΦTl
= [0, ρ). If λF ∈ ΦTl

then Vβ(p) = R1

1−β
for

all p ∈ ΦTl
.

Proof: For all p ≤ λF , Vβ(p) = R1 + βVβ(T (p)), however, p ≤ T (p) ≤ λF , hence Vβ(T (p)) =

R1 + βVβ(T 2(p)), i.e., Vβ(p) = R1(1 + β) + β2Vβ(T 2(p)). By induction we obtain

Vβ(p) = R1
1− βn

1− β
+ βnVβ(T n(p)) for all n. (47)

We obtain the desired result by letting n → ∞. Similarly, for λF ≤ p ≤ ρ, Vβ(p) = R1 + βVβ(T (p)),

however, p ≥ T (p) ≥ λF , hence by induction we arrive at the same conclusion.

We are now ready to compute Vβ(λ1) and Vβ(λ0) for each policy individually.



25

A. One threshold policy

There are two possible scenarios:

If λ1 ≤ ρ then since λF ≤ λ1 ≤ ρ, from lemma 5, we have Vβ(λ1) = Vβ(λ0) = R1

1−β
.

If λ1 > ρ then Vβ(λ1) = Vβ,Th
(λ1), i.e., Vβ(λ1) =

λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
and using (43), we have that Vβ(λ0)

is a solution to the following equation

Vβ(λ0) = max
n≥0

{
1− βn

1− β
R1 + βn(κnR2 + β(Vβ(λ0) + κn(Vβ(λ1)− Vβ(λ0))))

}
, (48)

where κn = T n(λ0) = (1− αn+1)λF . Hence solving for Vβ(λ0) we obtain

Vβ(λ0) = max
n≥0

{
1−βn

1−β
R1 + βngnR2

1− βn+1[1− (1− β)gn]

}
, (49)

where gn = κn

1−βλ1
. Note that the last maximization is just a one dimensional search and is computationally

inexpensive. Indeed, since 0 ≤ β < 1, the search for a maximum can be effectively restricted to values

of n ≤ N , where N is a sufficiently large value such that βN ¿ 1.

Once Vβ(λ0) and Vβ(λ1) have been computed for both cases, we retain the scenario that achieves the

maximal values. Indeed, from (2), it is seen that the optimal policy is the one that gives the maximal

value for any initial belief p. Hence, in particular, the threshold ρ should be tuned so as to maximize

Vβ(λ0) and Vβ(λ1).

B. Two thresholds policy

There are three possible scenarios:

If λ1 ≤ ρ1 then Vβ(λ1) = Vβ(λ0) = R1

1−β
. If ρ1 ≤ λ1 ≤ ρ2 then Vβ(λ1) = Vβ,S(λ1), i.e., Vβ(λ1) =

(1−τ)[R1+λ1(R2−R1)]+β(1−λ1)Vβ(λ0)

1−βλ1
. And, using (43), Vβ(λ0) is computed as follows

Vβ(λ0) = max
n≥0

{
R1

1−βn

1−β
+ βn(1− τ)[(1− (1− β)gn)R1 + gnR2]

1− βn+1[1− (1− β)gn]

}
. (50)
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If λ1 ≥ ρ2 then Vβ(λ1) = Vβ,Th
(λ1), i.e., Vβ(λ1) =

λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
. And, using (43), Vβ(λ0) is computed

as follows Vβ(λ0) = max{X1, X2}, where X1 is given by (49) and X2 is given by

X2=max
n≥0

{
[1−βn

1−β
+ βn(1− τ)(1− κn)]R1 + βn[gn − τκn]R2

1− βn+1[1− (1− β)gn]

}
. (51)

Again, once Vβ(λ0) and Vβ(λ1) have been computed for the three scenarios, we retain the scenario that

gives the maximal values.

C. Three thresholds policy

Since λ1 ≥ λF ≥ ρ3, we have Vβ(λ1) =
λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
and Vβ(λ0) is calculated as Vβ(λ0) =

max{X1,X2}, where X1 is given by (49) and X2 is given by (51).
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Fig. 1: Illustration of the one threshold policy for λF > ρ.

Fig. 2: Illustration of the two thresholds policy for ρ1 < λF ≤ ρ2.

Fig. 3: Illustration of the three thresholds policy for T (ρ1) > ρ2 and T−(H+1)(ρ2) ≥ 0.
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