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Abstract

This technical report corroborates the design of Cognitive Medium Access (CMA), a protocol

enabling coexistence with multiple parallel WLAN channels by keeping interference below a given

constraint. The derivation of CMA in [1] is solidified by measurement-based models, including an

experimental study of the physical layer interaction between both systems, as well as a stochastic

model allowing to predict the WLAN’s medium access. Due to space limitations our paper [1] focused

on the derivation of CMA and provided only the main results of our experimental studies. In this

technical report we cover the measurement aspect in detail and provide additional information to

substantiate our results.

1 Introduction

We consider the problem of designing a cognitive radio that can coexist with multiple parallel, inde-

pendently evolving WLAN channels. We focus on a hierarchical setup [2] that requires the cognitive

radio to abide by interference constraints, limiting the tolerable collision rate between both systems.

Our contribution in designing the cognitive radio is twofold. First, we study by experiment the physical

layer interaction between both systems. Second, we derive Cognitive Medium Access (CMA), a scheme

that enables coexistence by ensuring that the above listed constraints are met. The derivation of CMA

fundamentally relies on three experimental models, namely (i) the cognitive radio’s impact on WLAN’s

carrier sensing, (ii) its impact on the packet error rate, and (iii) a continuous-time Markov chain model

capturing the WLAN’s bursty medium access. All three models are fundamental to proposing CMA and

provide the foundation for our analysis. The experimental models described above were presented in

[1] but due to space limitations we could not include all of our results. This technical report includes a

thorough treatment of these models and substantiates our work’s experimental component.

This report is organized as follows. After introducing the physical layer setup, Sec. 3 characterizes

the physical layer interaction between both systems based on experimental studies. Specifically, we

evaluate the cognitive radio’s impact on the WLAN carrier sensing as well as its impact on the packet

error rate. In Sec. 4 we review the stochastic WLAN model which allows us to predict the busy and idle

durations of the different bands and ultimately constrain interference.

2 Physical Layer Setup

The physical layer setup considered in this paper consists of M parallel, independently evolving WLAN

channels, as shown in Fig. 1. The special case of M = 3 is of primary practical interest since the ISM

band at 2.4GHz supports three such channels [3].

Although there are no restrictions in designing the cognitive radio, other than our ultimate goal of

minimizing mutual interference, we shall focus on two specific setups. First, we consider the frequency

hopping (FH) setup depicted in Fig. 1. Each of the M WLAN bands overlaps with N narrowband

hopping channels. We note that this setup is representative of Bluetooth/WLAN coexistence. Second,
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Figure 1: System setup. The cognitive radio is a time-slotted FH or DSSS system.

we consider the direct-sequence spread spectrum (DSSS) setup depicted in Fig. 1, where the cognitive

radio uses the same frequency bands as the WLAN, but employs a different spreading code to reduce

interference. Both the FH and DSSS setup are slotted with period Ts. In our analysis we chose

Ts = 625µs, which corresponds to the Bluetooth slot duration.

The choice of these setups is practical for two reasons. First, WLAN is an unslotted system that

performs medium access based on carrier sensing (CSMA/CA). A logical approach for enforcing an in-

terference constraint is thus to sense the medium periodically, and transmit in a slotted fashion. Second,

mutual interference is reduced by exploiting the fact that WLAN uses spread spectrum communications

and thus has some inherent robustness to narrowband interference, or a DSSS system with different

spreading code.

The FH setup is moreover supported by practical experience. The FH setup considered in this work

can be seen as a “smart Bluetooth”. While the physical layer setup is the same, we are free to design

the system’s hopping sequence based on sensing results at the beginning of every slot. This similarity

enables us to use standard Bluetooth [4] as a benchmark in our numerical evaluation [1].

3 Measurement-Based Interference Model

Based on the physical layer setup introduced in the last section, we characterize the mutual interference

between both systems. This will in turn provide a basis for deriving CMA. Our mutual interference

model consists of two parts. First, we evaluate whether the cognitive radio impacts the WLAN’s carrier

sensing. Second, we obtain empirical results for the probability that a collision between both systems

leads to a WLAN packet error.
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3.1 Impact on WLAN’s carrier sensing

The WLAN’s behavior is altered at the transmitter if the cognitive radio impacts WLAN’s carrier sensing.

The WLAN uses CSMA/CA [3] for multi access communication. If the WLAN mistakes the cognitive

radio’s transmission for other active WLAN stations, it will defer medium access. This would not only

undermine our paradigm of hierarchical DSA but also render our prediction model useless unless it

included the WLAN’s backoff behavior. The design of the cognitive radio thus needs to ensure that its

transmissions remain transparent to the WLAN.

3.1.1 Measurement setup

We evaluated the cognitive radio’s impact by measurement using the setup shown in Fig. 2. It consists

of an 802.11b router and an RF signal source, generating the WLAN and the cognitive radio’s signal,

respectively. More precisely, we consider a static (non-hopping) FH signal with Bluetooth’s modulation

parameters [4] and a DSSS signal with 802.11b transmission parameters [5] except different spreading

code1. Since the FH signal remains static in one of the hopping channels it is possible to examine the

mutual interference resulting from this specific channel.

As shown in Fig. 2 the WLAN router and the signal source are connected via circulators, which

couple signal generator and router while providing isolation in the reverse direction. A WLAN adapter

is used to capture the received signal, and an Agilent vector signal analyzer is used to verify the correct

operation of the setup. Please see Fig. 2 for names and model numbers of all devices.

The impact of the FH signal on the WLAN was assessed in the following way. The WLAN router

continuously transmits packets and the WLAN receiver is used to capture these packets over long periods

of time. In this way the rate of transmitted packets can be measured. In the presence of the interferer,

some of these packets will not be transmitted since the channel is sensed busy at the transmitter, in

turn decreasing the packet rate. It is this change in rate that is used to assess the interference caused

by the WLAN.

3.1.2 Measurement result

The numerical results of our experimental study are shown in Tab. 1. The first column lists the signal

generator’s power level. This signal is present at the WLAN router with a small attenuation induced by

the circulators (about 1.2 dB). The remaining columns in Tab. 1 specify the channel of the FH interferer

with respect to the center frequency of the WLAN band. In our experimental study we focused on

WLAN Channel 11 [3], which is located at a center frequency of 2.462GHz. The 802.11b WLAN signal

has a bandwidth of 22MHz.

The result of our measurement can be interpreted as follows. The impact of the FH interferer

on the WLAN’s carrier sensing heavily depends on the channel index. In fact, the router seems to

1The standard prescribes the Barker code [1,0,1,1,0,1,1,1,0,0,0] (see [5]). We used [1,1,0,1,1,1,0,1,0,0,0].
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Figure 2: Measurement setup used to assess the impact on the WLAN’s carrier sensing.

Offset from center frequency in MHz

P1/dBm -10 -9,. . . ,-1 0 1,. . . ,9 10

+10 1 – 1 – 1

-10 1 – 1 – 1

-30 41% – 29% – 40%

-50 – – 28% – –

Table 1: Assessing the impact of a FH interferer on the WLAN’s carrier sensing.

perform energy detection in narrow bands spaced about 10MHz apart. Interference present in channels

in between does not appear to impact the device’s sensing behavior.

As a result, the WLAN’s medium access will not be impacted by transmissions outside these nar-

rowband channels. Furthermore, even if the cognitive radio transmits in those channels, no impact will

occur as long as the interferers power level is small enough.

Given typical setups [6] and path loss models [7], we can thus conclude that the cognitive radio

does not alter the WLAN’s medium access. This solidifies our hierarchical approach and renders the

stochastic prediction model applicable.

DSSS interferer In the case of a DSSS interferer, transmitting at the same center frequency as the

WLAN but employing a different spreading code, we did not find any impact on the WLAN’s carrier

sensing up to a power level of +10 dBm. We conclude that a DSSS interferer does not have any impact

on the WLAN system.

WLAN interferer Lastly, we consider interference from a DSSS type signal that uses the same spread-

ing code as the WLAN. While such a signal design is not attractive from the coexistence viewpoint,

we use this signal to validate our measurement setup. Ultimately, WLAN devices have to guarantee a

certain sensing performance to ensure inter-operability between different WLAN manufacturers. There

6



P0 -65 -70 -75 -76 -77 -80

CCA 98% 92% 73% 1% – –

Table 2: Assessing the impact of WLAN-type interference on the WLAN’s carrier sensing.

are specifications for this so-called Clear Channel Assessment, which can be found in the standards [3, 5].

The standard mentions that sensing can be based on energy-detection or by identifying the WLAN’s

specific spreading code but does not mandate either method; only a required detection performance

is specified. Using our measurement setup we confirm that this specification is met, which in turn

substantiates our results.

A table with measurement results for this scenario is found in Tab. 2. It shows for an interferer’s

power level higher than −70 dBm the channel is continuously being sensed busy. For power levels smaller

than −77 dBm on the other hand, the interferer does not impact the WLAN’s carrier sensing. This result

is in accordance with the standard, which specifies a sensitivity threshold of −76 dBm [5, p.58].

3.2 Impact on WLAN’s packet error rate

3.2.1 Measurement setup

The second part of our mutual interference characterization focuses on the cognitive radio’s impact on

the packet error rate. Specifically, we measure the probability that a collision between both systems leads

to a WLAN packet error. The measurement setup is shown in Fig. 3. It consists of a WLAN adapter

card and a signal source generating the WLAN signal and the interferer, respectively. The signals are

combined and captured via another WLAN card and the packet capture software “CommView for WiFi”.

A vector signal analyzer is used to verify the operation of the setup. Details on the used devices including

manufacturers and model numbers are shown in Fig. 3.

The packet error probability is obtained in the following way. A continuous stream of packets is

generated and captured at the receiver to determine the rate of packets with the interferer turned off.

Subsequently, in the presence of interference the rate is measured again. The rate will be reduced since

some packets will be too distorted to be captured by the adapter. Other packets will be captured but

will show an invalid redundancy check. By comparing the number of successfully received packets with

the interference-free case, we can calculate the probability of a packet error.

The measurement setup shown in Fig. 3 gives more details on the setup. Attenuators were used

to obtain a configuration that was in accordance with the specification of all devices involved. The

intermediate power levels are shown in the figure and correspond to the burst power of the WLAN (we

triggered to the start of packets to obtain the appropriate values). We could thus select arbitrary values

for the signal to interference value (SIR) at the WLAN receiver.
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Figure 3: Measurement setup used to assess the impact on WLAN’s packet error rate.

Offset from center frequency in MHz

P SIR 0 1 2 3 4 5 6 7 8 9 10

-15 -12.7 100% 100% 100% 100% 100% 100% 100% 100% 97% – –

-20 -7.7 97% 100% 100% 100% 100% 100% 92% 12% 1% – –

-25 -2.7 13% 94% 94% 85% 55% 10% 1% – – – –

-30 2.3 2% 6% 4% 2% 1% – – – – – –

Table 3: Measurement results for the FH interferer’s impact on the WLAN’s packet error rate.

3.2.2 Measurement results

FH interferer The impact of a FH interferer on the WLAN’s packet error rate is shown in Tab. 3.

The leftmost column represents the power level selected at the signal generator. The SIR that results

at the receiver is shown in the second column. The remaining part of the table shows the probability

of a collision leading to a packet error with respect to the interferer’s offset from the WLAN’s center

frequency. The results were symmetrical with respect to the center frequency, and thus Tab. 3 only

shows results for positive offsets.

Our results illustrate that the interferer’s impact is largest close to the center frequency. This is not

surprising and has been reported previously [7]. In fact, this behavior can be attributed to the standard

receive processing within WLAN adapter cards, specifically downconversion and IF filter stages [7, 8].

Clearly, the packet error probability heavily depends on the SIR available at the receiver, which in

turn depends on typical propagation and path loss models. Instead of postulating a ‘standard’ setup,

our derivation of CMA [1] focused on the worst-case assumption that every collision inevitably leads to a

packet drop. This assumption is representative for scenarios were cognitive radio and WLAN transmitter

are located close to each other. Otherwise it is a worst-case assumption.

DSSS-interferer We performed the same analysis for the DSSS-type interferer. The results are tab-

ulated in Tab. 4. We can see that the results are similar compared to the FH interferer.

8



P -25 -26 -27 -28 -29 -30 -35 -40

SIR -3.1 -2.1 -1.1 -0.1 0.9 1.9 6.9 11.9

PERC 92% 80% 61% 34% 18% 10% 0.4% –

Table 4: Measurement results for the DSSS interferer’s impact on the WLAN’s packet error rate.

4 Empirical WLAN model

The derivation of CMA is based on the empirical interference model presented in the previous section.

In short, we have seen that while the WLAN’s carrier sensing remains unaltered, a packet collision is

likely to cause a packet error. For ease of analysis, and because such an assumption has frequently been

made in other papers [9], we assume that every collision inevitably results in a packet error. This is a

worst case assumption given our measurement results.

Since collisions cause packet errors we need to constrain the rate of collisions between both systems.

The derivation of CMA is based on a previously established WLAN prediction model [10, 11]. This

section reviews the model specifics, including the measurement setup that was used to gather the

empirical data our model is based on.

4.1 Sensing testbed

The empirical data which forms the basis of this stochastic model was gathered via an 802.11b based

WLAN operating in the 2.4GHz ISM band. Different from related publications that capture packets

by commerical WLAN adapter cards operating in a special mode we employ a vector signal analyzer to

record raw complex baseband data which is subsequently processed to find the start and end times of

packets. This approach guarantees an accurate and verifiable characterization of the channel’s idle and

busy periods.

For recording the baseband data we used an Agilent 89640A vector signal analyzer (VSA)[12] which

internally downconverted the RF signals to an intermediate frequency and then was configured to sample

at a rate of 44MHz. We consider both a WLAN communicating via antennas, as well as an RF-isolated

setup that guarantees our measurements to be free of interference from other devices operating in

adjacent frequency bands. The setup is illustrated in Fig. 4 and Fig. 5, respectively.

4.1.1 Antenna-based setup

The antenna-based propagation setup consists of a Netgear WGT624 wireless router and three computers

with wireless adapter cards (two Netgear WG311T and one WG511T; cf. Fig. 4). The setup operated in

Channel 11, which represents a 22MHz frequency band centered at 2.462GHz. All the equipment was

located in the same room, resulting in a high-SNR setup with no hidden terminals. Using the VSA, we

verified that interference from adjacent channels was minimum although a completely interference-free

setup could not be guaranteed.

9



Access Point

PC1

PC2

PC3

802.11b WLAN

Down-
convert

Agilent 89640A VSA
I/Q 
data

Netgear WGT624

WG311T

WG311T

WG511T

2.
46

2G
H

z

Ts=1/44MHz

Figure 4: Antenna-based measurement setup.

4.1.2 Isolated RF-setup

Besides the antenna-based setup, we also considered the isolated RF-setup shown in Fig. 5. It consists

of a Linksys WRT54GC wireless router and three workstations with Netgear WG311T wireless adapter

cards. All the devices are connected to a Broadwave Technologies resistive power divider via RG174U

coaxial cables and SMA connectors. The VSA is also connected to the divider resulting in a fully isolated

setup. Strictly speaking there is still some residual interference that couples directly via the workstations

into the wireless adapter cards. However, given that all devices are connected with coaxial cables this

interference is small compared to the desired signal and can be neglected.

The Netgear router used for the antenna-based setup could not be used for the isolated measurements

as well since its built-in antenna was non-detachable. The use of two different routers caused our setup

to differ in terms of the type of synchronization preamble used. While the Netgear router could be

configured to use only long-synchronization preambles, the Linksys router did not allow for specifying

this option. As a consequence most of the time a short preamble was transmitted (given the high SNR

setup). While this leads to slightly different packet durations, the qualitative behavior of our results

remained unaltered.

4.1.3 Traffic generation

Each of the workstations was used to generate traffic using the Distributed Internet Traffic generator

(D-ITG)[13]. The software allows for a flexible statistical characterization of the traffic, including varying

packet lengths and inter-departure times. A detailed specification of the settings is provided with the

measurement results in Sec. 4.3.

Additionally, we also investigate typical usage scenarios of WLAN by using the popular “Skype”

voice-over-IP (VoIP) client to set up a conference call within the WLAN, using the traffic generator to

simulate G.711 codec based voice communication, and using an SFTP client to download files from a

central server. A detailed treatment of the results is again deferred to Sec. 4.3.

10



Down-
convert

Agilent 89640A VSA
I/Q 
data

Ts=1/44MHz

Power Divider
Broadwave Tech.

151-023-004, DC-3GHz

PC1

WLAN router

PC2

PC3

WG311T

WG311TWG311T

Linksys WRT54GC

ATT
20dB

ATT
20dB

ATT
20dB

ATT
20dB

Figure 5: Isolated measurement setup.

4.2 Sensing methods

The two measurement setups described in the last section both yield time captures of the complex

baseband signal. Given these data, we process the signals to determine the exact start and end of each

packet. Clearly, this fully determines the channel’s idle/busy durations.

We consider two different sensing strategies depending on whether the transmission standard of the

primary user is assumed to be known. In the former case, the detection of the packets shall be based

on energy. In the latter case we can exploit the standard-specifics to achieve better performance [14].

4.2.1 Energy-based detection

If the primary user’s transmission standard is unknown, a natural approach for detecting the start and end

of packets is based on the transmitted energy. In order to achieve satisfactory performance we consider

blocks of N samples whose length is shorter than the smallest packet length [14]. The detection problem

can then be formulated as

H0 : Yi = Vi, i = 1, . . . , N (1)

H1 : Yi = Si + Vi, i = 1, . . . , N, (2)

where Yi denotes the complex baseband samples, Vi are noise samples, Vi ∼ CN (0, σ2

0
), and Si denotes

the signal samples drawn from a complex Gaussian, Si ∼ CN (0, σ2

1
). Lacking any information on the

transmission standard of the primary user, the Gaussian assumption for Si appears reasonable.

The hypothesis testing problem defined above is standard [15] and the optimal Neyman-Pearson

detector is given by

T (y) =
N

∑

i=1

|yi|
2
H1

≷
H0

γ, (3)
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where the threshold γ is determined according to the probability of false alarm, which amounts to

α = Pr(T (y) > γ|H0) = 1 − Γ̃r(N,
γ

σ2

0

), (4)

where

Γ̃r(N, ξ) =
1

Γ(N)

∫ ξ

0

tN−1e−tdt (5)

is the regularized gamma function and Γ(N) is the complete gamma function. Similarly, the power of

the detector is given by

β = Pr(T (y) > γ|H1) = 1 − Γ̃r(N,
γ

σ2

0
+ σ2

1

). (6)

The above expressions show that the detection performance depends on the SNR = σ2

1
/σ2

0
as well as

the block length N . For our setup we chose N = 44 samples, which corresponds to 1µs long blocks.

If we demand α = 1 − β < 10−5 then we can see that we have to guarantee that the SNR is above

4.29 dB which is easily met in our setup.

Finally, it has to be noted that the Gaussian assumption for the noise Vi might not be appropriate

if significant interference occurs. Indeed, this might be a limiting factor if we consider that the WLAN

channels are partially overlapping. Suppressing this interference by a filter may thus be necessary in

practice.

4.2.2 Feature-based detection

The energy-based detection scheme described in the last section is based on the assumption that the

primary user’s transmission standard is unknown. In some applications, however, it is reasonable to

assume that the transmission specifics are known to the primary user. This knowledge can in turn be

exploited to improve the detection of packets.

The layout of an 802.11b physical layer (PHY) frame is shown in Fig. 6. It consists of a PLCP

preamble, split into a block of scrambled ‘1’s (‘0’s for the short-preamble) and the start-of-frame

delimiter (SFD) indicating the beginning of the PLCP header. The SFD can be used to precisely detect

the start of the packet. The information provided in the header consists of a Signal, Service, and

Length field as well as a CRC protecting these three blocks.

From our viewpoint the Sfd and the Length field are most interesting; the former determines the

start of the packet while the latter provides the duration (and thus the end) of the packet.

The receive processing for the feature-based detection scheme is depicted in Fig. 7. The complex

baseband data collected at a rate of 44MHz is first passed through a Gaussian pulse shaping filter

with a bandwidth-symbol time product of BTs = 1/2. In order to obtain chip-synchronization the

filtered signal is correlated with the 11-sample Barker sequence specified by the standard [5]. The

resulting signal shows periodic peaks whenever the spreading sequence lines up with the input signal.

We detect these peaks and downsample the signal to the symbol rate of 11Mbps. Subsequently, we

12
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despread and demodulate the DBPSK/DQPSK encoded preamble. The frequency offset at the receiver

is noticeable but can be neglected since the signals are differentially encoded. After successful decoding,

the resulting bit stream is descrambled and the start-of-frame delimiter (SFD) is detected. In the same

way, the Signal, Service, and Length field are extracted and the CRC check is performed to ensure

that the extracted information is correct.
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Figure 7: Receive processing for feature-based detection.

4.3 Measurement results

In this section we present the measurement results for the statistics of the busy/idle durations of the

channel. We investigate different traffic scenarios as pointed out in Sec. 4.1.3. In particular, we first

consider constant length Udp traffic with exponentially distributed inter-arrival times. This allows us

to parameterize the ‘business’ of the channel by increasing the rate parameter σ of this distribution.

Second, we consider FTP and Voice-over-IP traffic to investigate whether our idealized setup extends

to practical traffic scenarios. For a better understanding of the results we start this section with a brief

illustration of WLAN’s medium access in order to keep this paper self-contained.

4.3.1 WLAN Medium Access Protocol

The 802.11 standard for WLAN [3, 5] uses the CSMA/CA protocol to control the station’s access to

the medium (cf.Fig. 8). This implies that before transmitting a packet, the station has to first sense the

medium. If the channel is free, the station continues sensing for the distributed coordination function
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inter-frame space (DIFS). If the channel remains idle during the entire period, the station can go ahead

and start transmitting.

After a packet transmission, the receiver has to confirm reception immediately by transmitting an

acknowledgement. Only a short inter-frame space (SIFS) is necessary as to give priority to the (required)

transmission of acknowledgements (cf. Fig. 8).

If the channel is busy in the first place the station has to defer access until the medium becomes

idle again. Then, after a DIFS, a contention window is used to avoid collision between the multiple

stations trying to access the medium. Specifically, each station generates a uniform random number

i ∈ {0, . . . , 31} and defers transmission for iTslot = i · 20µs before accessing the channel (given that no

other station has already started to access the channel before).

Busy

Contention
windowS

IF
S

Ack

DIFSDIFS

Busy Busy

Figure 8: Medium access in an 802.11b-based WLAN.

The standard provides some more technical details that are not addressed above. In particular, if

collisions occur the length of the contention window is increased. These specifics, however, do not

manifest themselves in our measurement results and shall thus not be addressed here.

4.3.2 Measurement validation

We first look at a simple measurement scenario to further illustrate the specifics of the medium access

and to validate our measurement setup. In particular, we consider the isolated measurement setup

depicted in Fig. 5 with only one PC and the wireless router turned on (the other ports of the resistive

power divider were terminated to eliminate reflections). The traffic generator was then used to generate

UDP packets of constant length 512B with constant inter-arrival times at a rate of 105pkts/s. This

rate is too high to be transmitted across the channel but ensures that the workstation’s transmit buffer

is never empty.

Using the setup described above we used the VSA to capture 100 blocks of complex baseband data,

of duration 0.25 s each. The blocks were then processed using both sensing strategies discussed in

Sec. 4.2. The results of energy- and feature-based detection match nicely leading to the histograms for

the busy/idle durations shown in Fig. 9.

The histograms indeed reflect the characteristics of the standard. First, the histogram of the busy

durations depicted in Fig. 9(a) shows only three components, corresponding to the transmission of

acknowledgement packets (t ≈ 0.11ms), data packets (t ≈ 0.51ms) and beacon frames (t ≈ 0.76ms),

respectively. Given that we forced the data packets to be of constant length, this result is in accordance

with our expectations.

The histogram of the idle durations reflects the standard as well. We see a discrete component at
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(b) Histogram for the idle durations.

Figure 9: Measurement validation using 1PC (cf. Sec. 4.3.2)

t ≈ 10µs, which nicely corresponds to the SIFS. Furthermore, we see 32 discrete components, each

spaced 20µs apart. These correspond to the contention window as described in Sec. 4.3.1.

4.3.3 Constant Payload UDP Traffic

In the last section we have validated the measurement setup using a simplified traffic scenario. In

this section we are now using all three workstations together with the wireless router (cf. Fig. 4 and

Fig. 5). The traffic generator was used to generate UDP packets of constant length of 1024B but the

inter-arrival rates for each workstation were now drawn from independent exponential distributions with

common but varying rate parameter σ. As σ increases, the number of transmitted packets per unit time

increases and consequently the amount of whitespace decreases.

Exemplary histograms for busy and idle durations are shown in Fig. 10. In particular, the busy

durations are again discrete as in Fig. 9(a) with the components corresponding to the acknowledgement

packets, the data packets, and the router’s beacons, respectively. The idle durations on the other

hand allow for two preliminary conjectures. First, there is a significant component around 0.7ms

(corresponding to the effect of the contention window and the DIFS). Second, the tail of the histogram

appears to decay slower than exponentially, suggesting that a heavy-tailed distribution might be a good

fit.

Given the above observations as well as the standard specifics it makes sense to define the following
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Figure 10: Histograms for the UDP traffic scenario (cf. Sec. 4.3.3)

set of states depending on the medium’s usage.

Data The channel is busy due to the transmission of a data packet. The sojourn time in this state is

deterministic and amounts to the time required to transmit the 1024B size packet.

Sifs The channel is idle due to the short inter-frame space required between a data packet and its

subsequent acknowledgement. The sojourn time in this state is 10µs.

Ack The channel is busy due to the transmission of an acknowledgement packet. The sojourn time is

deterministic and amounts to 0.11ms.

Cw The channel is idle but there are primary users contending for the medium. The sojourn time in

this state can be (approximately) derived from the standard. We assume a finite support from

[0, 0.7ms] (the size of the contention window). The type of the distribution depends on how many

terminals are contending for the medium at the same time. Given that we are mainly concerned

with a lightly used channel a uniform distribution will turn out to be a good fit.

Free The channel is idle since none of the primary users has packets to transmit. From the viewpoint

of dynamic spectrum access the time spent in this state is essentially defining to what extent the

channel can be reused. A generalized Pareto distribution will turn out to be a good fit for the

sojourn time in this state.
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The Sifs, Cw, and Free state each correspond to an idle medium. In our statistical analysis we

will focus on the latter two since the Sifs duration is purely deterministic and too short to be used for

dynamic spectrum access (only 10µs).

While the histograms depicted in Fig. 10 give a first impression on the distribution of the idle

durations, more insight can be gained by looking at the empirical distribution function, which is defined

as the fraction of observations smaller than t [16]

Fe(t) =
#i : yi ≤ t

n
, (7)

where yi, i = 1, . . . , n correspond to n independent samples. The empirical distribution function is shown

in Fig. 11 for several values of the rate parameter σ. We normalized the rate parameter according to the

maximum packet rate supported by the WLAN setup, that is σ̄ = σ/σmax. We can make two important

observations. First, the idle duration (whitespace) decreases with σ. Second, for σ̄ ≤ 0.5 we can clearly

see that the distribution of the idle times is a mixture of the contention window and the distribution of

the truly ‘free’ channel (note the bend in the curves at 0.7ms). Furthermore, the vertical line in Fig. 11

illustrates the finite support of the contention window’s distribution. We can see that the slope of Fe

within that region is approximately constant, suggesting that a uniform distribution as an appropriate fit

(this is also suggested by the standard specifics). The tail distribution corresponding to the free channel

shows heavy-tailed behavior and will be analyzed in detail in Sec. 4.4.

0    1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

idle duration [ms]

C
D

F

σ=0.05

σ=0.1

σ=0.2

σ=0.5

σ=0.1

Figure 11: Empirical cdf for the idle durations. The rate parameter is normalized to the maximum traffic

load supported by the setup, that is σ̄ = σ/σmax.
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4.3.4 Representative Traffic Scenarios

In addition to the Udp traffic, we have also looked at a variety of typical traffic scenarios, including file

transfers and Voice-over-IP sessions over the WLAN. The resulting empirical cdfs for the idle durations

are shown in Fig. 12 and are discussed separately in the following.

First, consider file transfer via secure-FTP from a remote server. In order to collect enough baseband

data a text file of approximately 100 kB was transferred 1000 times using a secure-FTP client. The

resulting curve shows that there is little remaining whitespace. The effect of the contention window is

well-visible by the bend in the empirical cdf at 0.7ms.

Second, we used D-ITG to generate traffic according to the G.711 codec (used in some VoIP clients).

We consider the case of one and three codecs running simultaneously on each of the workstations. The

resulting curves show an almost idle channel in the case of one active codec, while the channel appears

quite busy in the case of three.

Finally, we used the popular “Skype” client to set up a conference call within the WLAN. A prere-

corded audio sample was used to simulate the speech conversation on each of the workstations. The

resulting empirical cdf shows that the channel is mostly idle.
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Figure 12: Empirical cdf for FTP and VoIP traffic.

In summary, the empirical cdfs for the traffic scenarios shown in Fig. 12 show a similar behavior

compared to the Udp traffic considered before. Specifically, the tails of the distribution appear to be

heavy-tailed again, and the influence of the contention window is again visible. We have considered

goodness-of-fit for such nonstationary traffic scenarios in [10].
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4.4 Semi-Markov Model

The definition of states given in Sec. 4.3.3 allows us to convert the processed measurement data to a

sequence of states. Note however, that the states Cw and Free are not observable since we can only

detect an idle medium but not conclude whether the system is in either of the states. We shall refer to

the lumped version of Cw and Free as the Idle state for brevity.

We have shown previously [11, 10] that a continuous-time semi-Markov model is an appropriate fit.

A semi-Markov model can be viewed as an extension to a continuous-time Markov chain (CTMC) with

separate statistical specification of the transition behavior and sojourn time within each state [17]. The

transition behavior in a semi-Markov process retains the Markovian property with transitions from state

i to j occurring with probability pij. In contrast to a CTMC though, given that a transition i → j

occurs, the sojourn time t in state i (before transitioning to j) can be specified arbitrarily according to

some cdf [17]. Recall that in a CTMC the sojourn times in all states need to be exponentially distributed

[18].

For specifying the parameters of the semi-Markov process we treat these two parts separately. First,

the transition behavior is estimated using the observation sequence and then distributions for the sojourn

times are fit to each state.

4.4.1 Estimating transition probabilities

First, we need to find the transition probabilities given the sequence of states obtained by measurement.

To this end we can use the well-known maximum likelihood estimator for the transition probability

[19, 17]

pij =
nij

ni
, (8)

where nij is the number of transitions i → j in our observation sequence, and ni is the total number of

state i occurring in the sequence. Using the above estimator, we have shown in [14] that the sequence

of states

Data → Sifs → Ack (9)

is essentially deterministic since its transition probabilities are very close to one. In fact, this does not

come as a surprise provided that our system is operating at high SNR and the above sequence simply

corresponds to a successful transmission. It should be noted that while collisions still occur infrequently

in our setup, their effect appears negligible. The transition diagram resulting from the above analysis is

depicted in Fig. 13.

4.4.2 Specifying the sojourn times

So far, we have arrived at the transition diagram shown in Fig. 13. Since the transitions Data →

Sifs → Ack are deterministic and the sojourn time in each of these states is deterministic as well, we

only need to fit the sojourn time the Idle state (and the substates Cw and Free).
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Figure 13: Transition diagram of the semi-Markov model.

The fact that the Idle state consists of both the Cw and the Free state suggests a mixture

distribution,

F (t;θ) = pcFc(t) + pfFf (t;θ), (10)

where Fc(t) is the cdf of the contention window (assumed uniform on [0, Tc] and Ff (t;θ) denotes the

generalized Pareto cdf of the unused channel depending on the unknown parameters θ. The transition

probabilities pc and pf are also shown in Fig. 13.

In order to simplify the analysis we can exploit some structure in (10). In fact, we know that the

support of Fc(t) is limited to [0, Tc] (cf. Sec. 4.3 and Fig. 11, Tc ≈ 0.7ms). Hence, if we discard all

observations yi ∈ [0, Tc] (whether or not they are really coming from Fc(t)) we are no longer dealing

with a mixture but can estimate the parameters of Ff (t;θ) directly.

According to the above we are concerned with estimating the parameters of the generalized Pareto

distribution from left-truncated data. Let the truncated data gained by discarding all idle times smaller

than the threshold Tc be denoted by ỹi, i = 1, . . . , Nt. Assuming a generalized Pareto distribution we

have the following expression for the pdf

ff (t; k, σ) =
1

σ

(

1 + k
t

σ

)−1−1/k

, (11)

where k denotes the shape, and σ denotes the scale parameter [20]. The cdf is given by

Ff (t; k, σ) = 1 −

(

1 + k
t

σ

)−1/k

. (12)

Provided that we can only use the left-truncated samples ỹi for estimating the parameters the maximum

likelihood estimate of the parameter vector θ = [k, σ]T is given by [21]

θ̂ = arg max
θ

Nt
∏

i=1

ff (yi;θ)

1 − Ff (Tc;θ)
, (13)

where the term in the denominator is due to the left-truncation of the data at Tc. The maximization

in the above formula was performed numerically, using an initial value obtained by a moment estimate

for the non-truncated data [20].
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WLAN traffic load σ̄ = σ/σmax

Parameter 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CTMC approximation

λ−1 [ms] 15.9 9.10 4.48 2.90 1.98 1.39 1.01 0.74 0.55 0.36 0.21

µ−1 [ms] 1.11 1.08 1.05 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.03

semi-Markov model

σ [ms] 18.7 11.3 5.46 3.95 3.09 2.35 1.87 1.48 1.40 0.98 0.04

k/10−2 -2.11 -2.50 2.47 1.51 2.61 1.69 7.9 13.3 7.55 11.2 50.1

pc [%] 13.2 18.3 21.2 30.1 40.0 47.7 58.0 67.2 76.1 84.3 98.8

Tµ [ms] 1.11 1.08 1.05 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.03

Table 5: Measurement parameters for semi-Markov model and its CTMC approximation.

Given that we have estimated one of the terms in the mixture distribution (10), and realizing

that Fc(t) is a uniform distribution on [0, Tc] we can find pc and pf , thus fully specifying the desired

approximation to the empirical cdf. The fitted distribution as well as the empirical cdf are shown in

Fig. 11 for σ̄ = 0.05, σ̄ = 0.4, and σ̄ = 0.8, respectively. The semi-Markov model with mixture

distribution shows an excellent fit, which has been validated statistically in [11]. The fitted parameters

are shown in Tab. 5 and were used in [1] for defining the simulation parameters.

4.5 CTMC approximation

The semi-Markov model presented above provides for an excellent fit with the empirical data. However, in

deriving CMA the semi-Markov model is difficult to analyze since it does not possess the continuous-time

Markov property. In order to simplify analysis we consider a CTMC approximation, which corresponds

to fitting exponential (instead of mixture) distributions to the distributions of idle and busy periods

as shown in Fig. 14. The exponential fit provides a good approximation although it is not strongly

validated by statistical measures of fit. Nevertheless, we showed in [1] that CMA derived from the

CTMC approximation is quite robust and performs well even if run on data generated using the semi-

Markov model.

The parameters of the CTMC model are the exponential parameters λ and µ for idle and busy state

respectively, leading to Ft(t) = 1− exp(−µt) and Fi(t) = 1− exp(−λt). The estimated values for both

parameters are tabulated in Tab. 5.
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