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Abstract

The effect of Multipacket Reception (MPR) on stability and delay of slotted ALOHA based random

access systems is considered. A general asymmetric MPR model is introduced and the MAC capacity

region is specified. An explicit characterization of the ALOHA stability region for the two user system

is given. It is shown that the stability region undergoes a phase transition from a concave region

to a convex polyhedral region as the MPR capability improves. It is also shown that after this phase

transition, slotted ALOHA is optimal i.e., the ALOHA stability region coincides with the MAC capacity

region. Further, it is observed that there is no need for transmission control when ALOHA is optimal

i.e., ALOHA with transmission probability one is optimal. These results are extended to a symmetric

N > 2 user ALOHA system, where it is shown that for a large class of symmetric MPR channels no

transmission control is optimal from a stability viewpoint. This finding suggests that if the physical

layer is even reasonably good, there is no need for sophisticated Medium Access Control protocols.

Next, sufficient conditions for stability of slotted ALOHA for the asymmetric N > 2 case are provided.

Finally, a complete characterization of average delay in capture channels for the two user system is

given. In cases with non-zero capture probability, no transmission control is found to minimize delay

for a subset of stable arrival rates. It is shown that in certain capture scenarios, no transmission control

is delay-optimal for all stable arrival rates. Further, it is also shown that no transmission control is

optimal for stability and delay simultaneously in the two user capture channel.

Index Terms

Wireless networks, Random access, Multipacket reception, Capacity, Stability, Delay, Slotted ALOHA,

Scheduling.

I. INTRODUCTION

A. Motivation

It has been more than three decades since Abramson’s landmark work on ALOHA [1]. Much of

what we know about slotted ALOHA is based on the so-called collision model: a transmission

is successful if and only if a single user transmits. While a deterministic collision model is

accurate for wire-line communications, it is inadequate to model probabilistic receptions in

wireless multiple access. Furthermore, advances in multiuser detection and space-time processing

make it necessary to have a multipacket reception model that captures the ability of the receiver

to decode simultaneous transmissions and the probabilistic nature of reception.
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Fig. 1. Two user stability region of slotted ALOHA for the Collision Channel and Orthogonal Channels. Solid lines represent

the boundary of the ALOHA stability region.

Insights into the effect of MPR on ALOHA can be gained by examining two extreme cases:

the collision channel and the orthogonal channel. Figure 1 shows the ALOHA stability regions

of the two-user system for these cases. By stability region we mean the set of arrival rates such

that there exists transmission probabilities under which the system is stable, in a sense to be

made precise later. For the collision model, the stability region is not convex; the increase of

the maximum rate for one user implies an disproportionate decrease of the other. As a random

access protocol, ALOHA is inferior to centralized TDMA since its stability region is contained

inside that of TDMA. To stabilize any point in the rate region, transmission control is necessary

by choosing transmission probabilities carefully. The onus of handling multiuser interference

rests entirely with the random access protocol. The orthogonal channel, in contrast, models a

physical layer that nullifies multiuser interference. As a result, the stability region takes the

simple form of a unit square. There is no need for transmission control, and the rate for one

user is independent of that of the other; ALOHA is optimal.

The orthogonal channel, of course, is not interesting for random access. What would be

interesting are those cases when the multiuser interference affects the reception but not as severely

as in the collision model. Can a distributed random access protocol such as ALOHA still be

optimal? Is transmission control necessary? Is the stability region convex? A positive answer to

August 17, 2004 DRAFT



4

the last question implies that proportional change of rates maintains stability. What can we say

about the performance of ALOHA for the general N -user system?

B. Summary of Contributions

We consider a general multipacket reception model. For each scheduled transmission, this

model specifies a probability measure on the event space. We first give a complete characteriza-

tion of MAC capacity region. By MAC capacity we mean the maximum throughput achievable

by any MAC protocol without considering queue stability. We show that this region is a convex

hull of a set of marginal probabilities. In particular, the MAC capacity region is specified only

by the marginal probabilities of success of individual users.

We consider next the ALOHA stability region. Obviously, the ALOHA stability region is

contained in the MAC capacity region. As already shown in Figure 1, the ALOHA stability

region is, in general, strictly smaller than the capacity region. We give a complete characterization

for the two-user ALOHA system. We show that the stability region undergoes a distinct phase-

transition, from a nonconvex region to a convex polyhedral region, from a strict subset of the

capacity region to the exact capacity region (thus ALOHA is optimal). Furthermore, there is no

need for transmission control once ALOHA is optimal. The same results hold for the symmetrical

N -user system which has indistinguishable users with equal arrival rates. An inner bound for

the general asymmetrical N -user systems is provided.

For a given rate vector, there are usually many transmission probabilities that stabilize the

system. It is thus interesting to find the transmission probability that minimizes the average delay.

We provide a complete delay characterization for the capture model in a symmetrical two-user

system. Any nonzero probability of capture leads to a set of rates for which no transmission

control minimizes the delay. As the probability of capture increases, the region of rates for which

no transmission control minimizes the delay increases. As soon as the stability region becomes

convex, no transmission control is delay-optimal for all stable arrival rates.

C. Related Work

In spite of being such a simple random access protocol, queueing theoretic analysis of ALOHA

turns out to be extremely difficult under the collision model. Tsybakov and Mikhailov [2] initiated

the stability analysis of finite-user slotted ALOHA. They found sufficient conditions for stability
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of the queues in the system using the principle of stochastic dominance. They found the stability

region for the two-user case explicitly. For the symmetric case (viz. equal arrival rates for all

terminals), they gave the maximum stable throughput. Rao and Ephremides [3] explicitly used the

principle of stochastic dominance to find inner bounds to the stability region for the N > 2 case.

Szpankowski [4] found necessary and sufficient conditions for the stability of queues for a fixed

transmission probability vector for the N > 2 case. However, there is no simple computational

procedure to verify these conditions since it involves the stationary joint queue statistics, which

have not been found in closed form yet. Later, Luo and Ephremides [5] introduced the concept

of instability ranks in queues to obtain tight inner and outer bounds on the stability region for

the N > 2 case. Interestingly, Anantharam [6] found the exact stability region of ALOHA for

the finite user case, albeit with a specific correlated arrival process. All the above stability results

were derived for the collision channel only. And to date there is no closed form characterization

of the stability region for the N > 2 case (even for the collision channel with i.i.d. arrivals). The

primary difficulty in analyzing this problem is the complex interactions amongst the queues.

The first attempt at analyzing ALOHA under multipacket reception was made by Ghez, Verdú

and Schwartz in [7], [8] under the infinite-user single-buffer model. Their MPR model was

symmetrical in which users were indistinguishable. A special case of the symmetrical MPR

model, but for finite users, was analyzed by Sant and Sharma [9]. They found a sufficient

condition for stability with no transmission control. Adireddy and Tong [10] considered the

effect of having knowledge of fading at the transmitters on the design of ALOHA. They showed

that significant gains can be made by allowing the transmission probability to be a function

of the channel state (as opposed to conventional power control). However, the MPR model

that they used was symmetric with respect to the users while ours is not. A study of stability

and capacity of general wireless networks for MPR models was presented in [11] where the

MAC stability and capacity regions were characterized. In [11], the main focus was stability

and capacity considerations with optimal MAC layer protocols whereas in this work we analyze

performance of a specific random access protocol viz., ALOHA. Protocols that exploit MPR

have been proposed [12], [13], [10].

At this point we would like to mention that a different line of analysis is based on the infinite-

user single-buffer model [7], [8]. Such a model does not accommodate asymmetric arrivals and

is generally considered to give a performance lower bound.
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The remainder of this paper is organized as follows. In Section II, we specify the system

model. In Section III, we define the notion of capacity region and in Section IV we define

stability region. In Section V, we derive the stability region for the two user case. We also

characterize some interesting properties of this region. In Section VI, we provide stability results

for the symmetric MPR case with N > 2. We also give sufficient conditions for stability for

the asymmetric MPR case with N > 2. In Section VII, we apply our analytical results to three

different receiver structures viz., Decorrelating, Matched filter and MMSE and compare their

performance in terms of the stability region to gain some insights. In Section VIII, we find

expressions for delay and the optimizing transmission probability for the N = 2 case for a

subclass of MPR reception models. Finally, we conclude in Section IX.

II. SYSTEM MODEL

The system consists of N users communicating with a common receiver. Each user has an

infinite buffer for storing arriving and backlogged packets. The channel is slotted in time and a

slot duration equals the packet transmission time. Packets are assumed to be of equal length for all

the users. The arrivals at the ith queue (i ∈ {1, 2, . . . , N} , M) are independent and identically

distributed from slot to slot with mean λi. Arrival processes are assumed to be independent from

user to user. If the ith users’ buffer is nonempty, he transmits a packet with probability pi in a

slot.

A multiuser physical layer is assumed that allows the receiver to receive multiple packets

simultaneously. Specifically, suppose that the set S ⊆ M of users transmit in a slot, then we

define for R ⊆ S , the conditional probability of reception by

qR,S = Pr{only packets from R are successfully received | S transmits}. (1)

We assume that packet receptions are independent from slot to slot. Note that our reception

model completely defines the probability space of packet receptions. The MPR reception model

defined in [7] is symmetric with respect to the users and a special case of the above model. It

follows that the marginal probability of success of R given that set S of users transmit is given

by

qR|S =
∑

U :R⊆U⊆S
qU ,S . (2)
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For example, consider the two user case N = 2. Then for i = 1, 2,

qi,{i} = Pr{user i is successful | only user i transmits},

qi,{1,2} = Pr{only user i is successful | both users transmit},

q{1,2},{1,2} = Pr{both users are successful | both users transmit} (3)

and the marginal probabilities of success are (i = 1, 2)

qi|{i} = qi,{i}, qi|{1,2} = qi,{1,2} + q{1,2},{1,2}. (4)

We assume that the receiver gives an instantaneous feedback of all the packets that were

successful in a slot at the end of the slot to all the users. The users remove successful packets

from their buffers while unsuccessful packets are retained. It should be clear that the probabilities

qR,S are a function of the receiver front-end which will be employed by the receiver to “separate”

users’ signals.

Let Qt
j represent the queue length at the jth buffer at the beginning of time slot t. Under the

above system model, the N -dimensional process Qt = (Qt
1, Q

t
2, · · · , Qt

N) is a Markov Chain.

The transition probability matrix of the Markov chain Qt can be computed using the reception

probabilities given by (1). Under mild conditions (for instance, qi|i > 0 for all i ∈ M) Qt is

irreducible and aperiodic. We will assume Qt to be an irreducible and aperiodic Markov Chain

throughout this paper. The queue evolution for the jth queue has a well known form [4]

Qt+1
j = [Qt

j − Y t
j ]+ + βt

j, (5)

where βt
j is the number of arrivals during the tth slot to the jth user with E(β t

j) = λj < ∞ and

[x]+ denotes max{0, x}. The Bernoulli random variable Y t
j denotes departures1 from queue j

in time slot t. For the ALOHA model we are considering, Y t
j can be represented as

Y t
j = Rt

j

∑

S⊆M\{j}
1[ S = {k : Rt

k1[Qt
k > 0] = 1}] 1[Z t

j(S) = 1], (6)

where Rt
j

i.i.d∼ Bernoulli(pj) for 1 ≤ j ≤ N denote the “coin tossing” outcomes that determine

transmission attempts, 1[·] the indicator function, and Z t
j(S) a Bernoulli random variable that

1The process {Y t
j }

∞
t=1 represents departures in the sense that Y t

j = 1 implies that a packet from queue j was successfully

received in slot t only when Qt
j > 0. However, we could have Y t

j = 1 even when Qt
j = 0. Nonetheless, equation (5) still

models the queue evolution process correctly [3].
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takes the value 1 in slot t with probability qj|{j}∪S . Thus, the event {Z t
j(S) = 1} captures all

possible successful MPR events which include queue j.

III. MAC CAPACITY

For the reception model defined by (1), we now define the notion of capacity region (C ) of

the network. Suppose that at t = 0 all users in the network have infinitely many packets to send

to the receiver. One may ask what possible long term rates the reception model specified by

(1) can support or achieve with optimal centralized scheduling. Here, we neglect the effects of

source burstiness and thus the long term “achievable” rates depend only on the reception model.

Let RS(t) be the set of successful transmissions when the set of users SS(t) transmit in slot

t under scheduling policy S. We allow the scheduling policy to be a function of the history of

the network viz., all the past arrivals and the packet success outcomes. The scheduling policy

can be randomized as well.

Definition 1: A rate λ = (λ1, · · · , λN) is called achievable if there exists a scheduling policy

(S∗) with delivery rate at least λ, i.e.,

lim inf
T→∞

1

T

T−1∑

t=0

1(i ∈ RS∗(t)) ≥ λi ∀i a.s. (7)

Capacity region (C ) is the closure of the set of all achievable rates.

This notion of “achievable” rate has been used before in [14], [11]. The next theorem provides

a simple way to compute C in terms of the marginal probabilities of success of each user.

Theorem 1: A rate λ is achievable if and only if there exists a probability measure {p(S) :

S ⊆M} such that ∀i ∈M,

λi ≤
∑

S⊆M
qi|Sp(S). (8)

Proof: Refer to the Appendix.

The above result shows that C is the convex hull of the N tuples consisting of the marginal

reception probabilities of the users in all possible 2N transmission scenarios. Intuitively, the

achievability part of the proof follows by observing that if a scheduler chooses the subset of
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transmitting users S with probability p(S) i.i.d. in every slot, then λ satisfying (8) is achievable.

Note that a direct consequence of the above theorem is that the capacity region is convex.
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Fig. 2. C (two user case) under different reception models

Figure 2 shows the two user capacity region for two different reception models. Clearly,

the convex hull can take only two possible forms; either it is a triangle (Case (a)) or it is

a quadrilateral (Case (b)). For Case (a), optimal scheduling is equivalent to TDMA where to

achieve any rate in the capacity region, it suffices to allow only one user to transmit in a slot.

On the other hand in Case (b), the scheduler has to consider allowing both users to transmit

simultaneously to achieve some rate pairs.

IV. MAC STABILITY REGION

Before we proceed to derive some of the results of the next section, a few definitions are in

order. We use the definition of stability used by Szpankowski [4].

Definition 2: A multidimensional stochastic process, Qt = (Qt
1, . . . , Q

t
N ) is stable if for x ∈

N
N the following holds

lim
t→∞

Pr{Qt < x} = F (x) and lim
x→∞

F (x) = 1. (9)

If a weaker condition holds viz.,

lim
x→∞

lim inf
t→∞

Pr{Qt < x} = 1, (10)
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then the process is called substable. Further, the process is said to be unstable if it is not substable.

The related concepts of stability and substability have been well studied (see [4], [5]). For

a queueing system, stability can be interpreted as the convergence of the queue lengths in

distribution to a proper random variable (viz., a random variable that is finite with probability

one) or, equivalently, the existence of a proper limiting distribution. As mentioned before, with

ALOHA, the queue process Qt is an aperiodic and irreducible Markov Chain on a countable

state space. It can be shown that for Qt, the notions of stability and substability are equivalent

and stability is equivalent to the existence of a unique stationary distribution (see [15]). Though

the transition matrix of Qt depends on the reception probabilities given by (1), we will see that

the stability properties of Qt can be characterized with only the marginal probabilities of success

of users ({qi|T : T ⊆M, i = 1, · · · , N}).

It would be natural to expect the stability of a queueing system to depend on the average arrival

rate and average service rate. This intuition is made concrete by the Loynes’ theorem [16] which

says that if the arrival and departure process of a queueing system are strictly stationary and

ergodic then (i) the queueing system is stable if the average arrival rate is less than the average

departure rate and (ii) the queueing system is unstable if the average arrival rate exceeds the

average departure rate.

It follows from Loynes’ theorem that the arrival rates λ = [λ1, λ2, . . . , λN ] (i.e., the first order

arrival statistics) and the packet reception model would completely characterize the stability of

queues. This motivates the following characterization of stability.

Definition 3: For an N user multiple access system with a given MAC protocol, the stability

region is defined as the closure2of the set of arrival rates λ = [λ1, λ2, . . . , λN ] for which the

queues in the system are stable.

In particular, for an N user slotted ALOHA system, the stability region is defined as the set

of arrival rates λ = [λ1, λ2, . . . , λN ] for which there exists a transmission probability vector

p = [p1, p2, . . . , pN ] such that the queues in the system are stable. We will denote the stability

region of ALOHA by SALOHA. We define the stability region (S ) to be the union of the stability

regions over all MAC protocols (for the reception model given by (1)).

2Generally, it is difficult to characterize stability on the boundary of the stability region. The set operation of closure allows

us to conveniently get around stability properties of points on the boundary of the stability region.
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The capacity region characterizes the set of departure rates that are supported by centralized

scheduling whereas the stability region provides the set of stable arrival rates with all MAC

protocols. Here, note that we also consider MAC protocols with memory viz., the MAC scheme

can allow users to transmit based on the past history of the channel outcomes. Intuitively, we

expect the stability region of any MAC protocol to be contained within the capacity region since

in a stable system, the arrival rate is equal to the departure rate3.

Theorem 2: For the N user random access system with reception model specified by (1),

S ⊆ C .

Proof: Refer to the Appendix.

Thus, C provides a simple easily computable upper bound to SALOHA. However, unlike the

capacity region, the stability region of ALOHA is not easy to characterize. We have the following

relation: SALOHA ⊆ S ⊆ C .

V. STABILITY AND OPTIMALITY OF ALOHA FOR N = 2

A. Stability region of ALOHA

We first find the stability region for the N = 2 case for the general reception model given by

(3). We will show that only the marginal probabilities given by (4) are sufficient to characterize

the stability region of ALOHA.

Define Q1 , q1|{1}−q1|{1,2}, Q2 , q2|{2}−q2|{1,2} and q , [q1|{1}, q2|{2}, q1|{1,2}, q2|{1,2}]. Thus,

Q1 and Q2 denote the difference between the (conditional) probability of success in the absence

of interference and the (conditional) probability of success in the presence of interference for the

users. For the collision channel, Q1 = Q2 = 1 whereas for orthogonal channels, Q1 = Q2 = 0.

To find the stability region, we first find the stability region of the ALOHA system for a fixed

transmission probability vector p(= [p1, p2]). The following lemma gives us exactly that.

Lemma 1: If Q1 ≥ 0 and Q2 ≥ 0, the stability region of slotted ALOHA for the general

packet reception model for a given [p1, p2] (SALOHA(p)) is given by

λ1 ≤ p1q1|{1} −
p1p2λ2Q1

λ∗2
, for λ2 ≤ λ∗2 (11)

3In fact in [11], it is shown that under certain conditions on the reception model, S = C .
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and

λ2 ≤ p2q2|{2} −
p1p2λ1Q2

λ∗1
, for λ1 ≤ λ∗1, (12)

where,

λ∗1 = p1q1|{1} − p1p2Q1 and λ∗2 = p2q2|{2} − p1p2Q2.

Proof: We use the idea of stochastic dominance and an argument similar to that by Rao and

Ephremides [3]. Refer to the Appendix for details. 2

The stability region of ALOHA with fixed [p1, p2] for the following well known cases are:

(a) Orthogonal channel: In this case Q1 = Q2 = 0. By Lemma 1, the stability region is the two

dimensional box in the nonnegative quadrant bounded by the lines λ1 = 0, λ2 = 0, λ1 = p1q1|{1}

and λ2 = p2q2|{2}.

(b) Collision channel: Since Q1 = Q2 = 1 in this case, λ∗1 = p1(1 − p2) and λ∗2 = p2(1 − p1).

The stability region is

λ1 ≤ p1

(

1− λ2

(1− p1)

)

, for λ2 ≤ p2(1− p1) (13)

and

λ2 ≤ p2

(

1− λ1

(1− p2)

)

, for λ1 ≤ p1(1− p2). (14)

PSfrag replacements

(λ∗1, λ
∗
2)

λ1
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Fig. 3. Stability region for a fixed transmission probability vector [p1, p2]

Irrespective of the reception model, the stability region for a given p has a form as shown in

Figure 3. The conditions Q1 ≥ 0 and Q2 ≥ 0 are equivalent to the probability of success of any

user in the presence of interference (from the other user) be no greater than the probability of
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success in the absence of interference—a reasonable and practical assumption. Note that although

Figure 3 shows the stability region for a fixed p to be convex but it need not be convex as p

varies over [0, 1]2. It follows from Lemma 1 directly that the stability region of ALOHA in the

two user case depends only on the marginal probabilities of success of the users since Q1 and

Q2 depend only on the marginals.

Using

SALOHA =
⋃

p∈[0,1]2

SALOHA(p),

we give a complete description of the stability region of ALOHA with this Lemma.

Lemma 2: If Q1 ≥ 0 and Q2 ≥ 0, then the stability region of slotted ALOHA (SALOHA) for

the general reception model is given by R1 ∩ R2 where

R1 , {(λ1, λ2) : (λ1, λ2) ≥ (0, 0), (λ1, λ2) lies

below the curve λ2 = f(λ1; q1|{1}, q2|{2}, Q1, Q2)} (15)

and

R2 , {(λ1, λ2) : (λ1, λ2) ≥ (0, 0), (λ1, λ2) lies

below the curve λ1 = f(λ2; q2|{2}, q1|{1}, Q2, Q1)}, (16)

where,

f(λ; α, β, γ, δ) =







β − λδ
α−γ

, λ ∈ I1

(
√

αβ−
√

λδ)2

γ
, λ ∈ I2,

(17)

where,

I1 = [0,
β(α− γ)2

αδ
] and I2 = (

β(α− γ)2

αδ
,
αβ

δ
]. (18)

If either Q1 or Q2 equals zero, then we assume 1
0

= ∞ and the result still holds.

Proof: Refer to the Appendix.

We note a few interesting things about the stability region. First, the function f characterizing

the stability region in (17) is linear for some part of the domain [0, λ1c) and is strictly convex

in the remainder of its domain as illustrated in Figure 4. The stability region for the two user

collision channel can be found as a special case with q1|{1} = 1, q2|{2} = 1, q1|{1,2} = 0 and

q2|{1,2} = 0 and it is bounded by the curve
√

λ1 +
√

λ2 = 1, which is strictly convex everywhere.

In fact, it is easy to see from Figure 4 that the interval where f is linear has non-zero Lebesgue

August 17, 2004 DRAFT



14

PSfrag replacements
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Fig. 4. The appearance of f(λ1) as a function of λ1.

measure as soon as there is a nonzero probability of success in the presence of interference i.e.

q1|{1} −Q1 = q1|{1,2} > 0. Thus, there is a characteristic change in the structure of the stability

region as soon as we have multipacket reception. Second, we see that there is a symmetry in

the way the two regions R1 and R2 are defined in terms of the function f .

We now provide one of the main results that gives a structural characterization of the ALOHA

stability region.

Theorem 3: Let Q1 ≥ 0 and Q2 ≥ 0. Assume q > 0 i.e., non-zero probability of success in

the presence and absence of interference. Then, the following are equivalent.

1) SALOHA is convex.

2) SALOHA is a polyhedron.

3) The marginal reception probabilities satisfy

D(q) ,
q1|{1,2}
q1|{1}

+
q2|{1,2}
q2|{2}

≥ 1. (19)

4) SALOHA = S = C .

5) p = [1, 1] is optimal in the sense that SALOHA = SALOHA([1, 1]).

If SALOHA is non-convex, then it is bounded by lines close to the axes and by a strictly convex

function in the interior.

Proof: Refer to the Appendix.

Figure 5 shows the stability regions characterized by the q vector as given by Theorem 3. For

the collision channel, the stability region is non-convex and bounded by a strictly convex curve.

August 17, 2004 DRAFT



15

PSfrag replacements

Linear

Linear

Nonlinear

No MPR Weak MPR Critical MPR Strong MPR

q2|2q2|2q2|2q2|2

q1|1q1|1q1|1q1|1

(q1|{1,2}, q2|{1,2})

(q1|{1,2}, q2|{1,2})(q1|{1,2}, q2|{1,2})

(q1|{1,2}, q2|{1,2})

λ1λ1λ1
λ1

λ2λ2λ2λ2

Fig. 5. SALOHA for different reception models with q1|{1} and q2|{2} fixed.

As soon as there is (weak) MPR, the stability region is bounded by lines near the axes and a

non-linear strictly convex function elsewhere. After a certain critical MPR level (D(q) = 1) is

reached, the stability region becomes a convex polyhedron. Thus, there is a critical point for

the q vector at which the behavior of the stability region makes a phase transition from a very

complex form to a much more simpler form (a quadrilateral). Further, this critical point depends

only on the sum of the ratios of probability of success of users in the presence of interference

to that in the absence of interference.

The condition of the stability region being a convex polyhedron corresponds to a regime in

which when one user increases his rate, the other user’s maximum supportable rate decreases

linearly, and that too at a rate which is low until a certain point and then suddenly increases.

Another interpretation is that when the stability region is convex then higher sum rates can be

achieved. In addition, when the stability region is convex we know that if two rate pairs are

stable then any rate pair lying on the line segment joining those two rate pairs is also stable.

When equality holds in equation (19), the stability region is a triangle as shown in Figure 5. All

the rate pairs in this region can be stabilized by TDMA schemes (even in a collision channel).

Thus, the condition
q1|{1,2}

q1|{1}
+

q2|{1,2}

q2|{2}
> 1 gives us the regime in which a distributed strategy like

slotted ALOHA can do better than a TDMA scheme.

When SALOHA is not a polyhedron, it has a much more complex form. This is also the regime
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PSfrag replacements
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ALOHA

Fig. 6. SALOHA when it is convex.

in which the stability region is not convex. In this regime, when one user increases his rate the

other user’s rate has to be reduced drastically in order to keep the system stable.

B. Optimality of ALOHA and Dumb Scheduling

Equivalence conditions three and four in Theorem 3 specify the regime of MPR capability

where slotted ALOHA is optimal. SALOHA = S implies that ALOHA can stabilize all rates

that can be stabilized by any centralized or decentralized MAC protocol. Note that the point

from where slotted ALOHA is optimal coincides with the phase transition point of the ALOHA

stability region.

In order to stabilize a rate within the stability region of ALOHA, one has to choose an

appropriate transmission probability p which, in general is a function of the arrival rate. But the

surprising observation when the stability region is convex, is that SALOHA = SALOHA([1, 1]). This

implies that when the stability region is convex, both users should always transmit packets (if

they have any) to stabilize any stabilizable rate and no transmission control is required. We call

this degenerate instance of ALOHA “Dumb Scheduling”. Note that with centralized scheduling,

to stabilize a particular rate the scheduler has to allocate a proportion of time for each possible

subset of transmitting users. But the above result implies that there is no need for “scheduling”

any transmissions. The strategy—transmit if you have packets—will do. The reason for this is

that the users’ queues empty out ever so often as a result of which there is a proportion of time

when the users are transmitting alone. This pseudo scheduling of users automatically takes care
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of stabilizing the queues for the particular arrival rates.

The implication for cross layer design is clear—if we can design a reasonably strong physical

layer, then there is no need for a sophisticated MAC layer. Intuitively it is quite clear that as the

ability of the physical layer to orthogonalize users increases, then the need for random access

protocols does not arise. However, surprisingly we find that the point at which we could dispense

the MAC layer comes well before we have an ideal physical layer. Equation (19) gives both

the metric for measuring the MPR capability and the condition under which the MAC layer is

dispensable.

PSfrag replacements

λ1

Strong processing, Dumb scheduling

Weak processing, Need scheduling

λ2

Fig. 7. Regions showing optimal allocation of resources to PHY and MAC layer for all MPR models

Figure 7 shows how the knowledge of MPR capability can help in designing a better MAC

layer. In a low MPR regime, the PHY layer is weak; a larger amount of resources should be

allocated to the MAC layer. On the other hand, if we allocate more resources to the PHY layer

(with advanced signal processing) thereby guaranteeing a strong MPR channel, no resources are

needed at the MAC layer; dumb scheduling is optimal.

VI. STABILITY OF ALOHA FOR THE N > 2 CASE

Little progress has been made in giving an exact characterization of the stability region of

ALOHA for the N > 2 case. In this section, for a symmetric MPR channel, we provide conditions

under which Dumb scheduling is optimal amongst all MAC protocols. For the more general

asymmetric MPR channel, we provide sufficient conditions for stability.
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A. Symmetric MPR, Symmetric arrivals case

For completeness, we first provide the symmetric MPR reception model introduced by Ghez,

Verdu and Schwartz [7]. Multipacket reception is parametrized by a matrix C whose entries are

given by

Cn,k = Pr{k packets are successfully received |n packets are transmitted}. (20)

Thus, we can write C as

C =








C1,0 C1,1

C2,0 C2,1 C2,2

...
...

...
. . .








. (21)

This channel model is general enough to model the collision channel and the capture channel

as special cases. The corresponding MPR matrices for the collision channel, and the capture

channel are, respectively,








0 1 0 . . .

1 0 0 . . .
...

...
...

. . .








,











0 1 0 . . .

1− b2 b2 0 . . .

1− b3 b3 0 . . .
...

...
...

. . .











,

where bi denotes the probability of capture given i simultaneous transmissions. We also define

Cn ,

n∑

k=1

kCn,k

which is the expected number of correctly received packets given n packets are transmitted. By

symmetry of this reception model, it follows that Ci/i is the marginal probability of success of

any one of the i users that transmit in a slot.

Consider an N user symmetric system with each user having an arrival rate λ
N

. Let Qt be the

N tuple representing the queue lengths of users at time t. Given a reception model and a MAC

protocol, we can define the maximum stable throughput to be the supremum of all arrival rates

λ such that Qt is stable. For example, the maximum stable throughput of ALOHA for a given

transmission probability p (denoted by ρALOHA(p)) is the supremum of all arrival rates λ such that

Qt is stable. Further, we define the maximum stable throughput of ALOHA to be

ρALOHA = sup
p∈[0,1]

ρALOHA(p).
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Let ρ denote the supremum of the maximum stable throughput over all MAC protocols. By

definition, ρALOHA ≤ ρ. We also have

Corollary 1 (to Theorem 2): For the N user symmetric system with symmetric MPR recep-

tion model given by (20),

ρ ≤ max{C1, C2, · · · , CN}. (22)

Proof: By Theorem 2 for any stable arrival rates {λi = λ
N

: i ∈ M}, there exists a probability

measure {p(S) : S ⊆M} such that,

λi =
λ

N
≤
∑

S
qi|Sp(S)1[i ∈ S].

Summing over i gives

λ ≤
N∑

i=1

∑

S
qi|Sp(S)1[i ∈ S]

=
N∑

i=1

∑

S

C|S|
|S| p(S)1[i ∈ S] (23)

=
∑

S

C|S|
|S| p(S)

N∑

i=1

1[i ∈ S]

=
∑

S
C|S|p(S)

≤ max{C1, · · · , CN},

where (23) follows from user and MPR channel symmetry. Thus, the maximum stable throughput

of any MAC protocol is upper bounded by max{C1, · · · , CN}. 2

Since for some i, Ci = max{C1, · · · , CN} we can conclude that a sum rate of Ci can be

achieved by centralized scheduling of all sets consisting of i users. The above result is analogous

to the result S ⊆ C for the two user case.

The following theorem extends Theorem 3 to the symmetric N > 2 case.

Theorem 4: For the symmetric MPR channel, let

C1 ≥
C2

2
≥ · · · ≥ Ci

i
≥ · · · ≥ CN

N
. (24)

Then, the following are equivalent.

1) The reception probabilities satisfy

CN = max{C1, · · · , CN}. (25)
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2) ρALOHA(1) = ρALOHA = ρ = max{C1, · · · , CN}.

Proof: Refer to the Appendix.

Theorem 4 shows that there is a regime for which ALOHA with transmission probability

one i.e., dumb scheduling is optimal amongst all MAC protocols. Equation (24) is equivalent to

the condition that the probability of packet success per user decreases as interference increases.

Equation (25) ensures that the expected number of successful receptions is maximized when all

users transmit.

Note that for the orthogonal channel case, Ci = iC1 and obviously dumb scheduling is

optimal. As in the two user case, we see that dumb scheduling is optimal for a much larger

class of symmetric MPR channels as specified by (25) and (24).

It is interesting to compare our results with those of [17] in which the problem of scheduling

transmissions for the downlink of a multiple antenna cellular system is considered. Viswanath,

Tse and Laroia show that from an information theoretic point of view, a good strategy for the

base station is to employ “dumb” antennas (in the sense of not doing any signal processing

other than that in a single antenna system) and implement “smart” scheduling (in the sense of

scheduling users who have the best channel at that time). Thus, they show that more resources

should be allocated to scheduling than to the physical layer for the downlink. Our problem is

in some sense a conceptual dual of the downlink problem. Our results apply to the uplink of

a multiple antenna cellular system and since we wish to address source burstiness, we choose

the framework of random access. In contrast to [17], our results show the trade-off involved in

allocation of resources to the MAC and the physical layer.

Apart from the symmetric case, we cannot say whether such a result would carry over to the

finite user case (N > 2). However, we can still interpolate our two user results for systems with

N > 2 by orthogonalizing all users into groups of two and implementing optimal scheduling or

ALOHA or dumb scheduling depending on the level of MPR capability available in each group.

Though this technique is suboptimal, it shows how a trade off between MAC layer complexity and

physical layer complexity can be achieved. If the physical layer is strong enough to orthogonalize

users into groups of two and guarantee that (19) holds for every group, then the MAC layer is

not needed from a stability viewpoint.
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B. Sufficient condition for the Asymmetric case, N > 2

Deriving stability conditions for the asymmetric N > 2 case is quite hard even for the collision

channel model. Nonetheless, for a fixed transmission probability vector (p), Szpankowski [4]

gave a sufficient and necessary condition for stability of the ALOHA system with the collision

channel model for the N > 2 case. In this section we restrict ourselves to finding sufficient

conditions for stability for the general reception model for a fixed transmission probability

vector (p). The main ideas involved here are those of stochastic dominance and of constructing

suitable dominating systems for which stability conditions are easier to determine. The way to

construct such dominant systems is to assume that some of the queues in the system continue

to transmit interfering dummy packets even when they are empty. Because of the dominance,

sufficient stability conditions for the dominant system are enough for the original system as

well. For the collision channel, such systems are known to stochastically dominate the original

ALOHA system [2].

Let P = (V ,U) be a partition of M , {1, 2, · · · , N} such that users in V 6= M behave just

like those in the original ALOHA system while those in U continue to transmit dummy packets

even when their queues are empty. We call users in U persistent and those in V nonpersistent. For

a partition P defined above, let ΘP denote the ALOHA system where users behave as specified

by P . Further, let Q
t

P = (Q
t

V ,Q
t

U) denote the queue lengths in ΘP .

We note that the marginal reception probabilities given by (2) are not enough to characterize

the probability transition matrix for Qt. However, we find that the marginal probabilities given by

(2) are enough to find sufficient conditions for stability of Qt even for N > 2. We conjecture that

the marginal probabilities of success are sufficient to completely characterize the stability region

for a fixed transmission probability. For a slotted ALOHA system with set of (nonpersistent)

users M, we denote the set of marginal probabilities of success of all the users by qM. More

precisely, if qMi|S , qi|S , where qi|S is defined by (2) then,

qM = {qMi|S : i ∈ S,S ⊆M}. (26)

We also assume that the reception probabilities (qM) permit ΘP to stochastically dominate the

original system.

The point to note is that the |V| < N dimensional process Q
t

V is also a Markov Chain

which mimics the original ALOHA system [4] except with modified reception probabilities
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(qV = {qVi|S , i ∈ S,S ⊆ V}). Thus, we can use induction arguments to establish its stability.

More precisely, for any V ′ ⊆ V and i ∈ V ′, the modified reception probabilities for the smaller

ALOHA system consisting of the stand alone non-persistent set V become

qVi|V ′ =
∑

T ⊆U




∏

j∈T
pj

∏

k∈U\T
pk



 qMi|V ′∪T . (27)

Now, suppose that the Markov Chain Q
t

V is stationary and ergodic. We denote the stationary

version of queue lengths in the non-persistent set by QV . If we initialize Q
t

V with its stationary

distribution, the departure process from jth users’ queue in ΘP is also stationary and ergodic.

Let V = {v1, v2, · · · , v|V|} and define X (Q) = (1[Q1 > 0],1[Q2 > 0], · · · ,1[Q|Q| > 0]), where

1[·] is the indicator function. Also, for zV = (z1, z2, · · · , z|V|) ∈ {0, 1}|V|, define C(V , zV) =

{vi : zi = 1, i ≤ |V|}. For j ∈ U , let P j
ΘP be the probability of success of the jth user in ΘP in

the stationary version constructed above. Then, we have,

P j
ΘP = pj




∑

zV∈{0,1}|V|
Pr{X (QV) = zV}




∑

B⊆U∪C(V,zV )\j

∏

k∈B
pk

∏

l∈U∪C(V,zV )\(j∪B)

plqj|j∪B







 .

(28)

Now define a region R(qM) recursively as,

R(qM) ,
⋃

P
{λM = {λi}i∈M : λk < P k

ΘP ∀ k ∈ U , and λV ∈ R(qV)}, (29)

with R(q{i}) , {λi < piq
{i}
i|i }.

Now, we claim the sufficient condition for stability in the form of this theorem.

Theorem 5: Under conditions of stochastic dominance of ΘP over the original ALOHA

system, if λM ∈ R(qM), then the ALOHA system is stable. In other words, R(qM) ⊆ SALOHA.

Proof: Refer to the Appendix.

The reasoning behind why λM ∈ R(qM) is sufficient for stability is quite simple; for a

particular partition P , λV ∈ R(qV) is sufficient for stability (by induction arguments) of the

Markov Chain consisting of the non-persistent set and this makes the departure process for

queues in the persistent set stationary and ergodic. Then, λk < P k
ΘP ∀ k ∈ U is sufficient for

stability of persistent queues by Loynes theorem. Thus, ΘP is stable and by virtue of stochastic

dominance, the original system is stable.
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As an example, consider the asymmetric orthogonal channel case. The inner bound for the

stability region given by Theorem 5 for this case is actually tight. This follows since for

orthogonal channels we have,

qMi|S = q
{i}
i|i ∀i ∈ S,∀ S ⊆M. (30)

It is easy to check that the reception probabilities satisfying (30) are sufficient for stochastic

dominance. Further, it can also be easily seen that the region R(qM) for a fixed transmission

probability vector p is given by

R(qM) = {λM : λi < piq
{i}
i|i ∀ i ∈M}. (31)

Clearly, p = 1 is the best policy in such a case. Similarly, for the case of orthogonal doublets

the sufficient condition given by Theorem 5 is tight since in this case, R(q{1,2}) = SALOHA for all

the orthogonal doublets. However, the sufficient condition given by Theorem 5 is too difficult

if not impossible to evaluate in practice in general. This is because evaluating the stationary

distribution of the queues for N > 2 with arbitrary input distributions in closed form is an

unsolved problem as observed in [4], [18], [5], [19].

VII. MPR THROUGH MULTIPLE ANTENNAS: AN EXAMPLE

A. Two User case

To get more insights into the analytical results in section V, we now apply our results to a

two-user scenario to compare different receiver front-ends.

We consider two users, each communicating with a central base station that employs a linear

array of M antennas. The two users use slotted ALOHA as the MAC. We assume that the

slots are synchronized. The two users are located relatively far away from the base station at

fixed angular positions θ = [θ1, θ2] with respect to the array normal. We assume that most of

the energy from user transmissions is received from a planar wavefront arriving at the angle θ.

Under these assumptions, we can describe the received signal at the base station y as

y = V(θ)Hs + n, (32)

where V(θ) is a Vandermonde matrix of array responses, H = diag[h1, h2], is a diagonal matrix

of channel (flat) fading for the two users, s = [s1, s2]
T , is a vector of users’ transmitted symbols

and n ∼ CN (0, IM), is additive white gaussian noise.
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We also assume that the channel fading is slow and it is independent for the two users and

also is i.i.d. from slot to slot. For our numerical results, we assume Rayleigh fading with zero

mean and covariance matrix Σ = diag[σ2
h1

, σ2
h2

]. User symbols (si, i = 1, 2) are independent

of each other and the channel fading with E(|si|2) = 1, i = 1, 2. We also assume noncoherent

receiver operation i.e., the base station does not know the channel realization, when it implements

the front-end. We consider the effect of coherent receiver operation and knowledge of queue

statistics at the base station in [20]. We represent the front-end processing by F (ith row of F

is the set of beamforming weights for the ith user) as follows:

z = Fy =

R
︷ ︸︸ ︷

FV(θ)Hs + Fn

= Rs + w. (33)

The most important assumption we make is that of the SINR threshold model for packet success

i.e., a packet is successfully received and decoded for user i if

E(SINRi|H) =
|rii|2

|rii|2 + E(|wi|2)
≥ β. (34)

where the expectation is taken over user symbols and noise. In the above, i = {1, 2}\{i} and β

is a threshold which depends on the quality of service requirement. Under the SINR threshold

model, the q vector of packet success probabilities for a particular F can be found as

qi|{i} = Pr

{ |rii|2
E(|wi|2)

> β

}

,

qi|{1,2} = Pr

{ |rii|2
|rii|2 + E(|wi|2)

> β

}

.

The explicit computation of q is provided in the appendix. We now consider the performance

of three different front-ends for the above system:

1) De-correlating or Zero-forcing (ZF): F is the pseudo-inverse of V(θ).

2) Matched Filter (MF): F = VH(θ).

3) pseudo-MMSE (pMMSE): For this receiver, F = diag[σ2
h1

, σ2
h2

]VH(θ)R−1
yy , where Ryy is

the correlation matrix of y assuming both users transmit. Note that the perfect MMSE

receiver needs to know which users are transmitting and the channel realizations in order

to find the optimal weights.
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Using the stability region as a figure of merit, we can now compare the stability regions of

these front-ends in various situations of interest.
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Stability region of different beamformers for M=10, angles = [54  63], threshold = 10 dB and channel variance=[2  2]
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Fig. 8. M = 10, θ = [54, 63], Threshold = 10dB, channel gain = 3dB

1) Symmetric Case: In this case, the channels for the two users are symmetric i.e. σ2
h1

= σ2
h2

.

In Figure 8, we see stability regions for the three different front-ends when the two users are

relatively close, θ = [54, 63]°. We observe that in this rather pessimistic scenario, when one

of the users demands a very low rate (close to the axes) the MF performs better than the ZF

and pMMSE. This is not surprising since the MF is optimal if only one user transmits; the ZF

suffers from noise enhancement whereas the pMMSE assumes that both users transmit in every

slot. On the other hand the ZF and pMMSE perform much better than the MF when both users

demand an equal rate since in that case both the ZF and pMMSE suppress the interference from

the other user better than the MF. We also note that the stability region of the ZF is a rectangle

since, the ZF decouples the two users’ signals.

2) Asymmetric Case: Figure 9 shows the situation when the second user has a very good

channel as compared to the first and the users are almost collinear, θ = [54, 58]°. We see a

near-far effect with the ZF and pMMSE front-ends, whereas the MF performs very well. It is

not surprising since the MF does not really attempt to null out the other user while the ZF and
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Fig. 9. M = 10, θ = [54, 58], Threshold = 10dB, channel gains = [3, 13]dB

pMMSE do that. Because of the angular proximity, the ZF and pMMSE suffer. We also note

that the stability region of the pMMSE contains the stability region of the ZF receiver in Figures

8 and 9.

VIII. DELAY PERFORMANCE OF ALOHA FOR CAPTURE CHANNELS

Now, we consider characterizing delay in slotted ALOHA systems with multipacket reception.

Sidi and Segall [21] analyzed delay in buffered ALOHA type systems and found the exact

average delay in a two user system with symmetric arrival rates and transmission probabilities

under a collision channel. They also found optimal transmission probabilities to minimize delay.

Further, Nain [22] calculated the exact delay in the two user case for asymmetric arrivals and

transmission probabilities assuming a collision channel. The technique used to find delay involves

solving a functional equation in the generating function of the joint stationary queue length

distribution. This functional equation can be solved by formulating a Riemann-Hilbert boundary

value problem [23], [24]. It is indeed quite surprising that there are no results on the “exact”

delay of ALOHA for this queueing model apart from these two. Takagi and Kleinrock [25] use a

similar approach to find average delay in a two-user buffered CSMA/CD system with a collision

channel. There is also a line of work that computes bounds on average delay for N > 2 for the
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collision channel ([2], [26], [27], [19]) and for a more general symmetric MPR model [9]. There

are quite a few other results on delay of ALOHA but they are for different queueing models

viz., infinite user single buffer, finite user single buffer. These models do not quite capture the

interdependence amongst the queues and its effect on delay. The limited results found suggest

that characterizing delay in ALOHA systems is a nontrivial task.

In this section, we characterize delay for a subclass of MPR channels viz., capture channels.

In a capture channel, there is a chance that at most one user has a successful packet transmission

even if many users transmit in that slot. In some sense, it is an elementary generalization of the

collision channel with probabilistic receptions. We focus our attention on the two user symmetric

ALOHA system. We assume that every user has an infinite buffer in which he can store arriving

and backlogged packets. The arrivals to the ith user are i.i.d. Bernoulli(λi) in every slot. The

arrivals are independent across users. The reception model is like the one in the preceding

sections.

By definition, for a capture channel, q{1,2}|{1,2} = 0. Let q1|{1} = q2|{2} = a and q1|{1,2} =

q2|{1,2} = b. Further, we assume a ≥ b (to use results of the previous sections). Note that the

capture model implies that a ≤ 1 and b ≤ 0.5. Also, let λ1 = λ2 = r and p be the transmission

probability of both users.

Theorem 6: Let D be the average delay for either user in the symmetric capture channel. If

the system is stable i.e., r < pa + p2(b− a),

D =
1

a

[
a(1− r) + p(b− a)(1− r/2)

pa + p2(b− a)− r

]

. (35)

Proof: Refer to the Appendix.

From (35), we observe that the delay is an increasing function of r, as expected.

Next, we look at the problem of optimizing the transmission probability (p∗) to minimize

the average delay. We find that as soon as there is capture capability, the optimal transmission

probability is one for a set of arrival rates of the form [0, r∗] with r∗ > 0. Thus, dumb scheduling

is delay optimal in the class of ALOHA protocols with fixed transmission probability for small

arrival rates.

Lemma 3: Let p∗ be the optimal transmission probability for minimizing delay in the capture

channel. Then,
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p∗ =







1 r ∈ [0, r∗]

a(1−r)−
√

0.5r
√

2(a−b)(1−r/2)2−a2(1−r)

(a−b)(1−r/2)
r ∈ (r∗, rmax),

(36)

where,

r∗ =







1−
(

a+b
2
− ab

a−b

)
−
√

1− (a− b) +
(

a+b
2
− ab

a−b

)2
0 ≤ b < a/2

b a/2 ≤ b ≤ min{0.5, a},
(37)

and

rmax =







a2

4(a−b)
0 ≤ b < a/2

b a/2 ≤ b ≤ min{0.5, a}.
(38)

Proof: Refer to the Appendix. 2

Lemma 3 gives p∗ explicitly in terms of the capture channel parameters and the arrival rate

r. As a direct consequence of Lemma 3 we have the following theorem.

Theorem 7: For the capture channel with a > 0, b > 0, the optimal transmission probabilities

can take only two possible forms viz.,

1) If b < a/2, then the optimal transmission probability is one for a non-empty proper subset

of all stable rates of the form [0, r∗] with 0 < r∗ < rmax.

2) If b ≥ a/2, then the optimal transmission probability is one for all stable arrival rates.

Proof: For a fixed a > 0, from Lemma 3 note that,

r∗|b=0 = 0.

It can be shown that r∗ is a strictly increasing function of b for a fixed value of a > 0. Thus,

as soon as we have capture (b > 0), r∗ > 0 and there is a set of rates [0, r∗] for which p∗ = 1

is the best policy for minimizing delay. As long as b < a/2, we have r∗ < rmax. On the other

hand when b ∈ [a/2, min{0.5, a}), from Lemma 3

(r∗ = rmax)|b∈[a/2,min{0.5,a}) = b, (39)

and so p∗ = 1 is delay optimal for any rate which is stabilizable. 2
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Note that for b < a/2, r∗ < rmax, and there is a set of rates for which the optimal transmission

probability p∗ is still a function of the arrival rate (r). Thus, b = a/2 also happens to be the

point where the optimal transmission probability ceases to be a function of the arrival rate. We

refer to r∗ as the critical rate since rates below r∗ are delay optimized by dumb scheduling. In

section V, we have already shown that rmax is the maximum stable arrival rate for the capture

model.

PSfrag replacements
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Fig. 10. Generic optimal transmission probabilities for capture channels.

Figure 10 shows the generic optimal transmission probabilities as a function of the capture

channel parameters. It is interesting to compare the structure of the stability region along the

equal rate line with the optimal transmission probability for different capture models. Note that

b = a/2 is also the point at which dumb scheduling is optimal from a stability viewpoint. Thus,

dumb scheduling is optimal from both delay and stability viewpoints when b ≥ a/2.

Figure 11 shows the set of transmission probabilities that stabilize the ALOHA system for
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Fig. 11. The optimal and stabilizing transmission probabilities for a = 0.5, b = 0.1

different arrival rates in a weak capture (b < a/2) case. The maximum and minimum stabilizing

transmission probabilities are the solution to the equation p2(b− a) + pa− r = 0 and thus form

a parabola which is truncated since the maximum transmission probability can be at most one.

The point at which the maximum and minimum transmission probabilities coincide corresponds

to the maximum stable arrival rate rmax. The delay optimal transmission probability lies in the

feasible region in the interior of the parabola.

Now, we look at the delay results in various situations of interest.

A. Maximum stable throughput and Critical rate

Figures 12 and 13 compare the critical rate with maximum stable arrival rate for all possible

capture scenarios. We see a phase transition here that occurs at the point b = a/2. As long as

b < a/2, dumb scheduling is only optimal for a subset of the stabilizable rates. On the other

hand as soon as b ≥ a/2, dumb scheduling is optimal for all stabilizable rates. Note that all

rates below the solid curve are delay optimized by dumb scheduling.
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Fig. 13. Maximum stable throughput vs critical rate q1|{1} = a = 0.5

B. Delay comparison of different capture channels

Figure 14 compares the minimal delay for three capture scenarios. In this case, we increase

a and decrease b progressively. It can be seen that at low arrival rates the capture model with
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Fig. 14. Comparison of delay for various capture scenarios, q1|{1} = a = 1, 0.9, 0.8, q1|{1,2} = b = 0.2, 0.3, 0.4

a = 1, b = 0.2 is marginally better that the other capture models. At higher arrival rates, the

capture model with a = 0.8, b = 0.4 is significantly better than the others. Thus, it seems that

for minimizing delay, “multiuser” receiver design is much better than the omnipresent “single

user” designs.

Figure 15 compares the minimal delay in collision channel a = 1, b = 0 with the delay in

strong capture scenarios. It illustrates the significant average delay reduction that can be achieved

with the strongest capture model a = 1, b = 0.5. We also note that the minimal delay in this

strong capture model (a = 1, b = 0.5) is quite close to one for arrival rates until ∼ 0.25. Since

the average delay is lower bounded by one, this suggests that ALOHA is quite close to optimal

for a large class of arrival rates for strong capture models.

C. Delay comparison with fixed “a”(or “b”)

Figures 16 and 17 show minimal delay as a function of the arrival rate for fixed q1|{1} = a

and fixed q1|{1,2} = b respectively. In Figure 16 the curves are far apart as compared to those in

Figure 17. The figures show that the delay is much more sensitive to changes in b than a.

At this point it is not clear what would happen if we had a stronger reception model than

the capture model we have considered in this work. First of all, the technique used to find
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Fig. 16. Comparison of delay for various capture scenarios, q1|{1} = a = 0.8, 0.8, 0.8, q1|{1,2} = b = 0.3, 0.4, 0.5

the average queue length fails as terms corresponding to probability of success of both users

simultaneously lead to some complications. However, we conjecture that even with a stronger

(symmetric) reception model i.e. 2q1|{1,2} > 1, p = 1 would minimize the delay. The intuition
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behind this belief is that there is no reason for the users to hold back transmissions in the

presence of a stronger reception model.

We also suspect that the delay results that we have will be upper bounds on delay of MPR

models which have the same marginal reception probabilities as the capture model we consider

i.e. for MPR models with q1|{1} = a and q1|{1,2} = b with q{1,2}|{1,2} > 0.

IX. CONCLUSIONS

In this paper, we considered the problem of characterizing stability and delay behavior of

slotted ALOHA for Multipacket reception models intended to capture the behavior of an im-

proved physical layer. It was shown that the stability region of slotted ALOHA for the two user

case has only four possible forms and that the stability region shows a phase transition from

non-convexity to convexity as the MPR capability increases. After the phase transition, slotted

ALOHA was shown to be optimal amongst all MAC protocols from the point of view of stability.

It was also found that when slotted ALOHA is optimal, ALOHA with a transmission probability

one (referred to as Dumb Scheduling) is optimal. This suggests that after a certain level of MPR

capability is provided by the PHY layer, MAC layer design is simple; dumb scheduling is the

best policy. Further, it was shown that dumb scheduling is also optimal for the N > 2 case for
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the symmetric MPR model in a wide range of MPR regimes. Generalizing the stability region

results to the finite user case seems a rather non-trivial task and although we have been able to

provide some sufficient conditions for stability, they are difficult to compute. Exact expressions

for delay minimizing transmission probabilities and the exact average delay of slotted ALOHA

for a subclass of MPR models (capture channel) for the two user case were provided. It was

also shown that dumb scheduling is optimal from a delay and stability viewpoint for all stable

arrival rates in a certain capture regime and that dumb scheduling is always delay optimal for

a subset of stable arrival rates once capture sets in. Our results present a clear case for the so

called “cross layer” approach, (where a combination of layers (here PHY and MAC) are designed

jointly to optimize network performance) by quantifying the gains that can be achieved through

an optimal design of the MAC based on an accurate model of the PHY layer.

APPENDIX

A. Proof of Theorem 1

We provide the main steps of the proof.

(a) if part: The proof relies on randomized scheduling. Since all users have infinite packets to

send, in every slot choose a set S of users to transmit with probability p(S). By the strong law

of large numbers the success rate for the ith user is

∑

S⊆M
qi|Sp(S) a.s. (40)

Therefore, every rate λ satisfying (8) for all i is achievable.

(b) only if part: Let λ be achievable. Then, there exists a scheduling policy S∗ such that

lim inf
T→∞

1

T

T−1∑

t=0

1(i ∈ RS∗(t)) ≥ λi ∀i a.s.

We will show that there exists a probability measure {p(S) : S ⊆M} such that for any ε > 0,

λi − ε ≤
∑

S⊆M
qi|Sp(S). (41)

Now, if λ is achievable, then
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λi ≤ E

(

lim inf
T→∞

1

T

T−1∑

t=0

1(i ∈ RS∗(t))

)

(42)

≤ lim inf
T→∞

1

T

T−1∑

t=0

E(1(i ∈ RS∗(t))) (Fatou’s Lemma) (43)

= lim inf
T→∞

1

T

T−1∑

t=0

Pr{i ∈ RS∗(t)}. (44)

The last inequality implies that there exists a T such that for all i,

λi − ε ≤ 1

T

T−1∑

t=0

Pr{i ∈ RS∗(t)}. (45)

Define a probability measure {p(S) : S ⊆M} by

p(S) =
1

T

T−1∑

t=0

Pr{S = SS∗(t)}. (46)

By simple manipulations, it follows that

1

T

T−1∑

t=0

Pr{i ∈ RS∗(t)} =
∑

S⊆M
qi|Sp(S). (47)

Substituting (47) in (45) gives us (41). Since ε is arbitrary, we are done. 2

B. Proof of Theorem 2

Let S denote the power set of the set M = {1, 2, · · · , N}. Let {p(S)}S∈S be a measure on

S. In order to prove Theorem 2, we use the following proposition.

Proposition 1: If the arrival rate λ = (λ1, λ2, · · · , λN) is stable (with any MAC protocol)

then ∀ ε > 0,∃ a {p(S)}S∈S such that

λi − ε1(λi > 0) ≤
∑

S∈S

p(S)qi|S ∀ i ∈M. (48)

Equivalently, S ⊆ C .

Before we prove the proposition we need a few intermediate results. We begin by focusing

our attention on any specific MAC. So, let S(t) denote the set of users that the MAC protocol

allows to transmit in time slot t. We implicitly assume that the MAC protocol knows which users
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have packets to send. Note that S(t) could be deterministic or random depending on the specific

MAC protocol. It could also be a function of the past history of transmissions and/or packet

success outcomes and/or arrivals. As before, let Qt
i denote the queue length of the ith user at

the beginning of time slot t. Further, let β t
i denote the number of packets which arrive at the

ith users buffer at the beginning of time slot t. By assumption {β t
i}∞t=0 is i.i.d. and E(βt

i) = λi.

Let Rt
i denote the departure process from the ith users’ queue i.e.,

Rt
i =







1, if ith users’ packet is successfully received in time slot t

0, otherwise.
(49)

Then, we have,

Lemma 4: If the system is stable, then ∀ i ∈M
1

t
E(Qt

i) → 0 as t →∞.

We will prove Lemma 4 shortly. If we assume that Lemma 4 is true, then ∀ ε > 0, we can

find a T > 0 large enough such that ∀ i ∈M,

E

(
QT

i

T

)

< ε. (50)

Now, we define a measure {p(S)}S∈S as follows.

p(S) =
1

T

T−1∑

t=0

Pr{S(t) = S}. (51)

Lemma 5: Let {p(S)}S∈S and T be defined by equations (51) and (50). Then, ∀ i ∈ M we

have

E

(

1

T

T−1∑

t=0

Rt
i

)

=
∑

S∈S

qi|Sp(S).

Now we are in a position to prove Proposition 1.

Proof of Proposition 1: First we note that all the arriving packets until time T are either

transmitted successfully or are queued up in the buffer. So, we have ∀ i ∈M

1

T

T−1∑

t=0

Rt
i =

1

T

T−1∑

t=0

βt
i −

1

T
QT

i a.s., (52)

which implies ∀ i ∈M

E

(

1

T

T−1∑

t=0

Rt
i

)

= E

(

1

T

T−1∑

t=0

βt
i −

1

T
QT

i

)

. (53)
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By Lemma 5 and (53) we have,

∑

S∈S

qi|Sp(S) = E

(

1

T

T−1∑

t=0

βt
i −

1

T
QT

i

)

(54)

= λi − E

(
1

T
QT

i

)

(55)

≥ λi − ε, (56)

where, (55) follows because {βt
i}∞t=0 are i.i.d. with mean λi and (56) follows from Lemma 4.

Thus, we have shown that for every ε > 0, ∃ a {p(S)}S∈S such that (48) is satisfied. 2

Proof of Lemma 4: By assumption, Qt is stable. By Lemma 5 in [4], it follows that Qt
i is

substable ∀ i ∈M. So,

lim
x→∞

lim sup
t→∞

Pr{Qt
i > x} = 0. (57)

Also, note that ∀ x, ε > 0 we can find a t0 such that ∀ t > t0,

Pr{Qt
i > tε} ≤ Pr{Qt

i > x}, (58)

and so,

lim sup
t→∞

Pr{Qt
i > tε} ≤ lim sup

t→∞
Pr{Qt

i > x}. (59)

Note that the left hand side of equation (59) does not depend on x and so we have

lim sup
t→∞

Pr{Qt
i > tε} ≤ lim

x→∞
lim sup

t→∞
Pr{Qt

i > x} = 0, (60)

which implies that

lim
t→∞

Pr

{
Qt

i

t
> ε

}

= 0. (61)

In other words, (
Qt

i

t

)

P−→ 0, (62)

where we use
P−→ to denote convergence in probability. Note that we need to show more than

convergence in probability. Precisely, we need L1 convergence.

By (52) we have,

Qt
i =

t−1∑

j=0

(
βj

i −Rj
i

)
. (63)
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By, the strong law of large numbers,

1

t

t−1∑

j=0

βj
i

a.s.−→ λi. (64)

Now, we use a Lemma from Billingsley [28].

Lemma 6: Xn
P−→ X iff for every subsequence Xnk

∃ a further subsequence Xnk(i)
such that

Xnk(i)

a.s.−→ X as i →∞.

By Lemma 6 and (62) for any subsequence
(

Q
tk
i

tk

)

, ∃ a further subsequence

(

Q
tk(l)
i

tk(l)

)

such that

(

Q
tk(l)

i

tk(l)

)

a.s.−→ 0 as l →∞. (65)

It follows from (63), (64) and Lemma 6 that,

1

t

t−1∑

j=0

Rj
i

P−→ λi. (66)

Now since 1
t

∑t−1
j=0 Rj

i is bounded, we can apply the Bounded Convergence Theorem and conclude

that,

E

[

1

t

t−1∑

j=0

Rj
i

]

→ λi. (67)

Dividing both sides of (63) by t and taking averages gives us

E

(
1

t
Qt

i

)

= λi − E

[

1

t

t−1∑

j=0

Rj
i

]

→ 0, (68)

as required. 2

Proof of Lemma 5: We have

E

(

1

T

T−1∑

t=0

Rt
i

)

=
1

T

T−1∑

t=0

E(Rt
i) (69)

=
1

T

T−1∑

t=0

[
∑

S∈S

E(Rt
i|S(t) = S) Pr{S(t) = S}

]

(70)

=
1

T

T−1∑

t=0

[
∑

S∈S

qi|S Pr{S(t) = S}
]

(71)

=
∑

S∈S

qi|S

[

1

T

T−1∑

t=0

Pr{S(t) = S}
]

(72)

=
∑

S∈S

qi|Sp(S). (73)

2
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C. Proof of Lemma 1

We construct parallel dominant ALOHA systems in which one of the queues continues to

transmit dummy packets even when the queue is empty. Dummy packets cause interference but

the successful reception of a dummy packet has no significance. It has been shown [3] that

for the collision channel model, these dominant systems stochastically dominate4 the original

ALOHA system in the sense that if both the dominant system and the original system have the

same initial queue sizes, both systems have the same arrivals in every slot, and have the same

“coin tossing” outcomes (that determine transmission attempts) in every slot, then the queue

sizes in the dominant system are necessarily not smaller than those in the original system. As

a result, conditions for stability of dominant systems are sufficient for stability of the original

system.

Consider a two user ALOHA system in which queue 1 transmits dummy packets when it is

empty. The probability of success for a packet from queue 2 is always p2p1q2|{2} + p1p2q2|{1,2}.

However, in the original ALOHA system, the probability of success in queue 2 would be

p2p1q2|{2} + p1p2q2|{1,2} if queue 1 were nonempty and p2q2|{2} otherwise. If

p2q2|{2} ≥ p2p1q2|{2} + p1p2q2|{1,2} ⇐⇒ Q2 ≥ 0, (74)

the probability of success in queue 2 in the “dummy” packet transmitting system would always

be lower than that in the original system. Now consider queue 1. Using standard G/G/1 queue

results, it follows that the average probability of success seen in queue 1 is

p1q1|{1}

(

1− λ2

p2p1q2|{2} + p1p2q2|{1,2}

)

+ (p1p2q1|{1} + p1p2q1|{1,2})

(
λ2

p2p1q2|{2} + p1p2q2|{1,2}

)

,

(75)

which simplifies to

p1q1|{1} −
p1p2λ2Q1

λ∗2
. (76)

Now, if

p1q1|{1} ≥ p1p2q1|{1} + p1p2q1|{1,2} ⇐⇒ Q1 ≥ 0, (77)

4A real random variable X is said to stochastically dominate a real random variable Y if ∀ z ∈ R, Pr{X > z} ≥ Pr{Y > z}.

We denote this dominance by X ≥st Y .
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queue 1 in the “dummy” packet system also stochastically dominates queue 1 in the original

system. This is because if (77) is true, then (76) would certainly be less than the average

probability of success in queue 1 in the original ALOHA system.

Now, by definition λ∗2 = p2p1q2|{2} + p1p2q2|{1,2} and so by a simple application of Loynes

Theorem we find that the dummy packet system is stable (with the possible exception of boundary

points) if and only if

λ1 ≤ p1q1|{1} −
p1p2λ2Q1

λ∗2
, λ2 ≤ λ∗2. (78)

If in addition Q1 ≥ 0 and Q2 ≥ 0, by stochastic dominance the original ALOHA system is also

stable.

PSfrag replacements
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λ∗2

λ∗1 p1q1|{1}

λ1 = p1q1|{1} − p1p2λ2Q1/λ∗2

Fig. 18. Stability region of dominant system in which queue 1 transmits dummy packets.

By a parallel argument for a system in which queue 2 transmits dummy packets, we find that

the original ALOHA system is stable (with the possible exception of boundary points) if Q1 ≥ 0

and Q2 ≥ 0 and

λ2 ≤ p2q2|{2} −
p1p2λ1Q2

λ∗1
, λ1 ≤ λ∗1. (79)

Combining the sufficient conditions for both the dominant systems gives the sufficiency part

of the Lemma.

The necessary part of the lemma follows by an “indistinguishability” argument similar to the

one used by Rao and Ephremides [3]. Consider the system in which queue 1 transmits dummy

packets. If along some realizations of queue 1 of nonzero probability, queue 1 never empties

then the original system and the dummy packet transmitting system are “indistinguishable”.

Thus, with a particular initial condition, if queue 1 never empties with nonzero probability in
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the dominant system (which is equivalent to the Markov chain being unstable) then queue 1 in

the the original system must be unstable as well. Thus, for λ2 ≤ λ∗2, λ1 = p1q1|{1} − p1p2λ2Q1

λ∗2
is

the boundary of the stability region of the original system as well. It follows that the conditions

given in Lemma 1 are necessary for stability as well. 2

D. Proof of Lemma 2

We use Lemma 1. Since we know the stability region for a fixed transmission probability

vector p, we need to find the union of all the stability regions as the parameter p varies over

[0, 1]2. One way of doing this is to setup a corresponding constraint optimization problem i.e.

for a fixed λ1, maximize λ2 as p varies over [0, 1]2, where λ1 and λ2 are related by (11) and

(12). The difficulty in using known optimization techniques is that the objective function is

not differentiable at a point in its domain and so the optimization has to be carried out rather

explicitly.

Replacing λ1 by x and λ2 by y, we write the boundary given by equations (11) and (12) as

x = p1q1|{1} −
p1yQ1

(q2|{2} − p1Q2)
, for 0 ≤ y < p2(q2|{2} − p1Q2), (80)

and

y = p2q2|{2} −
p2xQ2

(q1|{1} − p2Q1)
, for 0 ≤ x < p1(q1|{1} − p2Q1). (81)

Note that any (x∗, y∗) which satisfies (80) does not satisfy (81) and vice versa.

Now, we consider three cases:

• Case 1: Q1 > 0 and Q2 > 0.

Consider the following constrained maximization problem where the domain of x is uncon-

strained,

max
p2∈[0,1]

y′ = max
p2∈[0,1]

(

p2q2|{2} −
p2xQ2

(q1|{1} − p2Q1)

)

, for x ≥ 0. (82)

Differentiating with respect to p2,

dy′

dp2

= q2|{2} −
xQ2q1|{1}

(q1|{1} − p2Q1)2
. (83)

Equating the derivative to zero gives p∗2 as,

(q1|{1} − p∗2Q1) =

√

xQ2q1|{1}
q2|{2}

. (84)
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A simple check on the second derivative shows that the maximizing p∗2 is

p∗2 =
q1|{1}
Q1

− 1

Q1

√

xQ2q1|{1}
q2|{2}

. (85)

But since p∗2 is a probability, 0 ≤ p∗2 ≤ 1. Also, by (84),

0 ≤ p∗2 ≤ 1 ⇐⇒ q2|{2}(q1|{1} −Q1)
2

q1|{1}Q2

≤ x ≤ q1|{1}q2|{2}
Q2

, (86)

and so for x in the range given by (86), we have by substituting (85) in (81),

y′max =

(

q1|{1}q2|{2} −
√

xQ2q1|{1}q2|{2}

Q1

)(

1−
√

xQ2

q1|{1}q2|{2}

)

. (87)

Now, we consider the constraint on the domain of x as given by (81). For a fixed x, (81)

is valid only for p2 <
(q1|{1}−x)

Q1
. So, we need to show that p∗2 given by (85) is in fact less

than 1
Q1

(q1|{1} − x). Clearly,

p∗2 <
(q1|{1} − x)

Q1

iff x <
q1|{1}Q2

q2|{2}
, (88)

and therefore, y′max given by (87) is actually really valid only in the range of x given by

the intersection of (88) and (86). Now observe that for

0 ≤ x <
q2|{2}(q1|{1} −Q1)

2

q1|{1}Q2

, (89)

dy′

dp2

> 0 ∀p2 ∈ [0, 1].

This means that y′ is a strictly increasing function of p2 in the range of x given by (89).

Thus, the optimizing p∗2 in this range of x is equal to one. So, we have

y′max = q2|{2} −
xQ2

(q1|{1} −Q1)
. (90)

But again we have to check that (81) is really valid. Note that for x < (q1|{1} − Q1), y

given by (81) is valid for any p2 ∈ [0, 1]. So, y′max given by (90) is also really valid only

in x < min{ q2|{2}(q1|{1}−Q1)2

q1|{1}Q2
, (q1|{1} −Q1)}.

Figure 19 shows the behavior of y′max as a function of x as given by equations (87) and

(90).
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PSfrag replacements

q2|{2}(q1|{1}−Q1)2

q1|{1}Q2

q1|{1}q2|{2}

Q2

y′max

x

y

Fig. 19. The appearance of y′max as a function of x.

By an exactly parallel argument applied to equation (80), we can show that

x′max = q1|{1} −
yQ1

(q2|{2} −Q2)
, for 0 ≤ y <

q1|{1}(q2|{2} −Q2)
2

q2|{2}Q1

, (91)

and

x′max =

(

q1|{1}q2|{2} −
√

yQ1q1|{1}q2|{2}

Q2

)(

1−
√

yQ1

q1|{1}q2|{2}

)

, (92)

for
q1|{1}(q2|{2} −Q2)

2

q2|{2}Q1

≤ y ≤ q1|{1}q2|{2}
Q1

.

The idea of the proof is this—First we assume that a rate x can be stabilized for the

first user and then we find the highest rate for the second user ymax for which the second

queue is stable. We also note from the preceding discussion that if (q1|{1}−Q1) <
q1|{1}Q2

q2|{2}
,

then ymax = y′max for 0 ≤ x <
q1|{1}Q2

q2|{2}
where y′max is given by equations (90) for x ∈

[0,
q2|{2}(q1|{1}−Q1)2

q1|{1}Q2
) and (87) for x ∈ [

q2|{2}(q1|{1}−Q1)2

q1|{1}Q2
,

q1|{1}Q2

q2|{2}
]. On the other hand if (q1|{1}−

Q1) ≥ q1|{1}Q2

q2|{2}
, then ymax = y′max for 0 ≤ x < (q1|{1}−Q1) where y′max is given by equation

(90). But the problem is that the first users’ rate x might, in fact, not be stabilizable. So,

we interchange the users and find the best possible rate for the first user assuming the

second users’ rate can be stabilized. It can be checked that the point where y ′max ceases to

be equal to ymax is exactly the point from where x′max = xmax and vice versa. Therefore,

it is clear that the intersection of the regions below ymax = f(x, q1|{1}, q2|{2}, Q1, Q2) and

xmax = f(y, q2|{2}, q1|{1}, Q2, Q1) where f is defined in equation (17), is actually the stability

region that we seek, because for any rate pair in this intersection, there exists a [p1, p2] such

that the system is stable.
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• Case 2: Q1 = 0 and Q2 = 0.

It’s obvious from equations (80) and (81), that in this case the stability region is the rectangle

0 ≤ x < q1|{1} and 0 ≤ y < q2|{2}.

• Case 3: Q1 > 0 and Q2 = 0.

For this case, equations (80) and (81) take the form

y = p2q2|{2}, for 0 ≤ x ≤ p1(q1|{1} − p2Q1), (93)

and

x = p1q1|{1} −
p1yQ1

q2|{2}
, for 0 ≤ y < p2q2|{2}. (94)

Now, if y < q1|{1}q2|{2}/Q1 (the only case of interest), then p∗1 = 1 maximizes x in equation

(94) and in this range

xmax = q1|{1} −
yQ1

q2|{2}
. (95)

Also, y in equation (93) has a maximum value of q2|{2}. Again, by arguments similar

to Case 1, the stability region is the region bounded by the lines y = q2|{2} and x =

q1|{1} − yQ1/q2|{2}.

The case when Q1 = 0 and Q2 > 0 can be handled similarly.

An equivalent formulation would be to find the geometric envelope of the two parameter(p1, p2)

family of curves which define the boundary of the stability region given in Lemma 1. 2

E. Proof of Theorem 3

We proceed to prove equivalence between the five statements as follows.

Proof of (2) equivalent to (3)

(a) SALOHA is polyhedral =⇒ (19): If Q1 = 0 and Q2 = 0, then it can be easily seen that the

stability region is bounded by perpendicular lines and (19) is trivially satisfied. If either Q1 or

Q2 is equal to zero, then by Case 3 of the proof of Lemma 2, the stability region is polyhedral

and (19) holds. So, we consider the case Q1 > 0 and Q2 > 0. Under our assumptions, the point

of intersection of the lines defined by (90) and (91) is (q1|{1} −Q1, q2|{2} −Q2). From (90) and

(91), it follows that the stability region is polyhedral if
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(q1|{1} −Q1) ≤
q2|{2}(q1|{1} −Q1)

2

q1|{1}Q2

(96)

and

(q2|{2} −Q2) ≤
q1|{1}(q2|{2} −Q2)

2

q2|{2}Q1

. (97)

which is equivalent to (19).

(b) (19) =⇒ SALOHA is polyhedral: For the case Q1 = 0, Q2 = 0 and Q1 or Q2 equal to

zero, we know that the stability region is indeed polyhedral. When Q1 > 0 and Q2 > 0, then

(19) clearly implies (96) and (97) and these equations in turn imply that the stability region is

polyhedral.

Proof of (1) equivalent to (2)

(a) SALOHA is polyhedral =⇒ SALOHA is convex: Consider the line with X-intercept q1|{1} and

Y-intercept q2|{2},

PSfrag replacements

q1|{1}

q2|{2} x/q1|{1} + y/q2|{2} = 1

x

y

Fig. 20. The line with X-intercept q1|{1} and Y-intercept q2|{2}.

x

q1|{1}
+

y

q2|{2}
= 1, (98)

as shown in Figure 20. By (2)⇐⇒(3), if the stability region is polyhedral, then (19) holds. Also,

the point of intersection of the lines is (q1|{1} −Q1, q2|{2} −Q2). So, we have

(q1|{1} −Q1)

q1|{1}
+

(q2|{2} −Q2)

q2|{2}
= 2−

(
Q1

q1|{1}
+

Q2

q2|{2}

)

≥ 1, (99)

which implies that the point (q1|{1}−Q1, q2|{2}−Q2), lies above the line given by (98). Since, the

stability region is bounded by two lines, (99) is equivalent to the stability region being convex.
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(b) SALOHA is convex =⇒ SALOHA is polyhedral: We will prove that the contrapositive is true.

So, assume that the stability region is not a polyhedron. Then, by proposition 2 (proved below)

the stability region has a form where the boundary is a strictly convex function in the middle

with or without lines at the the ends. In any case, it follows that the stability region is not convex.

Proof of (3) equivalent to (5)

We use Lemma 1. Substitute p = [1, 1] in Lemma 1. Then, λ∗1 = q1|{1,2} and λ∗2 = q2|{1,2}

and it is easily seen that the stability region with p = [1, 1] coincides with SALOHA if and only if
q1|{1,2}

q1|{1}
+

q2|{1,2}

q2|{2}
≥ 1. 2

Proof of (3) equivalent to (4)

It can be easily verifed that when equation (19) holds, SALOHA = C . On the other hand, if

equation (19) does not hold, then C is a triangle with vertices (0, 0), (q1|{1}, 0), and (0, q2|{2})

whereas from Lemma 2, SALOHA lies strictly inside this triangle. 2

Next, we claim the following.

Proposition 2: If SALOHA is polyhedral, then the strictly convex parts of f which bound the

regions R1 and R2 in Lemma 2 coincide on the boundary of the stability region.

Proof:

Consider the equations,

x =

(

q1|{1}q2|{2} −
√

yQ1q1|{1}q2|{2}

Q2

)(

1−
√

yQ1

q1|{1}q2|{2}

)

(100)

and

y =

(

q1|{1}q2|{2} −
√

xQ2q1|{1}q2|{2}

Q1

)(

1−
√

xQ2

q1|{1}q2|{2}

)

, (101)

which are the strictly convex parts of f characterizing regions R2 and R1 respectively. If we

make the substitution x′ =
√

xQ2q1|{1}q2|{2} and y′ =
√

yQ1q1|{1}q2|{2}, then (100) and (101)

become

(q1|{1}q2|{2} − y′)2 = x′
2 and (q1|{1}q2|{2} − x′)2 = y′

2
. (102)

Solving the equations in (102) simultaneously gives,

x′ + y′ = q1|{1}q2|{2}. (103)
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It follows that any (x∗, y∗) which satisfies (103) satisfies (102) as well. In other words, all the

points (x, y) which satisfy (100) also satisfy (101) and vice versa and we are done.

The above claim guarantees that the non-linear portions of the function f in Lemma 2 coincide

for regions R1 and R2. This implies that the non-linear boundary of SALOHA is a strictly convex

function since f is strictly convex. 2

F. Proof of Theorem 4

From [29], it can be shown (as a special case) that for a finite (N ≥ 2) user system, with

symmetric arrival rate, a symmetric MPR reception model as given by (20) and transmission

probability p, under the following stochastic dominance condition

C1 ≥
C2

2
≥ · · · ≥ Ci

i
≥ · · · ≥ CN

N
, (104)

the maximum stable throughput of ALOHA is given by

ρALOHA(p) =
N∑

i=1

(
N

i

)

pi(1− p)N−iCi, (105)

Now, note that
N∑

i=1

(
N

i

)

pi(1− p)N−iCi ≤ max{C1, · · · , CN}. (106)

Clearly, if CN = max{C1, · · · , CN} then the above inequality is satisfied with equality for p = 1.

By Corollary 1, it follows that ρALOHA(1) = ρALOHA = ρ = max{C1, · · · , CN}. The converse follows

directly. 2

G. Proof of Theorem 5

The proof is similar to the one provided by Szpankowski [4] with appropriate modifications.

We will prove the claim with induction on N = |M|. It can be easily shown that the claim is

true for N = 2. In fact, the region given by Theorem 5 is actually the stability region for N = 2

for a fixed [p1, p2].

Now, we apply induction on N . Assume that the claim is true for ALOHA systems with

number of users less than N . Now, consider the ALOHA system with N users and with reception

probabilities qM. Under conditions of stochastic dominance, we know that ΘP dominates the

original ALOHA system. In system ΘP , queues in V are “decoupled” from those in U or in
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other words queues in V appear to be a smaller version of the ALOHA system with modified

reception probabilities qV as given by (27). But since |V| < N , by the induction hypothesis if

λV ∈ R(qV) then the queues in V are stable. Thus in the dominant system ΘP , queues in V are

stable if λV ∈ R(qV).

Now, we focus our attention on the set of persistent queues U in ΘP . Here, we use Loynes

Theorem for stability in queueing systems [16]. In order to use Loynes Theorem, it is necessary

to show that the departure process Y t
j in ΘP is stationary and ergodic. Let Y t

j (ΘP) denote the

departure process of a queue j in ΘP . Then, we have

Y t
j (ΘP) = Rt

j

∑

S⊆M\{j}
1
[

S =
{

{k : Rt
k1[Q

t

k > 0] = 1, k ∈ V} ∪ {k : Rt
k = 1, k ∈ U}

}]

1[Zt
j(S) = 1].

(107)

From the above equation it follows that if the Markov chain Q
t

V is stationary and ergodic, then

Y t
j (ΘP) for j ∈ U is also stationary and ergodic, since the coin tosses (determining transmission

attempts) and packet reception events are independent from slot to slot. But, since λV ∈ R(qV),

we know that Q
t

V is stable and also ergodic. So, if we initialize Q
t

V with its unique stationary

distribution, then the departure process Y t
j (ΘP) for persistent queue j is also stationary and

ergodic in ΘP . Now, we can apply Loynes theorem to this persistent queue in ΘP . So, if

λj < E(Y t
j (ΘP)), queue j is stable in ΘP . In the above, the expectation is with respect to the

stationary distribution of Q
t

V . It can be shown that E(Y t
j (ΘP)) = P j

ΘP where P j
ΘP is given by

(28).

Thus, if λV ∈ R(qV) and λj < P j
ΘP for all j ∈ U , each queue in ΘP is stable. Now, we

use the fact that for a countable state space irreducible and aperiodic Markov chain, stability of

individual queues implies stability of the Markov Chain [4]. Thus, if λV ∈ R(qV) and λj < P j
ΘP

for all j ∈ U , then ΘP is stable and by virtue of the stochastic dominance, the original ALOHA

system is also stable. Clearly, the partition P can be arbitrary with |V| < N ; hence the union

over all the partitions. 2
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H. Computation of q with linear front-ends

Let vi denote the ith column of V i.e., V = [v1, v2]. Also, let fi denote the ith row of F .

When user i, (i = 1, 2) transmits alone, then it is easy to see that

qi|i = Pr

{ |rii|2
E(|wi|2)

> β

}

,

= Pr

{ |hi|2|fivi|2
fifH

i

> β

}

,

= exp

(

− βfif
H
i

|fivi|2σ2
hi

)

,

since we assume that the fading is Rayleigh.

Now, without loss of generality we compute the probability of success of the first user when

both users transmit in a slot. In this case,

q1|{1,2} = Pr

{ |r11|2
|r12|2 + E(|w1|2)

> β

}

,

= Pr

{ |h1|2|f1v1|2
|h2|2|f1v2|2 + f1fH

1

> β

}

.

Since |h1|2 ∼ exp(1/σ2
h1

), |h2|2 ∼ exp(1/σ2
h2

) and they are independent, we can evaluate the

above probability using the joint density of |h1|2 and |h2|2. Thus, we have

q1|{1,2} =
1

σ2
h1

σ2
h2

∫ ∞

βf1fH
1

|f1v1|
2

exp(− x

σ2
h1

)





∫ x|f1v1|
2−βf1fH

1
β|f1v2|

2

0

exp(− y

σ2
h2

) dy



 dx.

After a few algebraic manipulations we get,

q1|{1,2} = exp

(

− βf1f
H
1

|f1v1|2σ2
h1

)[
σ2

h1
|f1v1|2

σ2
h1
|f1v1|2 + β|f1v2|2

]

.

A similar calculation can be done for the second user as well. Note that under our model with

linear front-ends, qi|i − qi|{1,2} = Qi ≥ 0 and thus our stability results apply to this q.

I. Proof of Theorem 6

Let Qt
i denote the queue length of the ith user in time slot t. Let β t

i
i.i.d∼ Bernoulli(r), denote

the number of packets that arrive at the ith users’ queue in time slot t. Let F (x, y) be the moment

generating function of the joint arrival process. Thus, ∀|x| ≤ 1, |y| ≤ 1, t ∈ N

F (x, y) = E

(

xβt
1yβt

2

)

= (xr + r)(yr + r). (108)
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Then, from the queue evolution equation (5), it can be seen that

E

(

xQ
(t+1)
1 yQ

(t+1)
2

)

= F (x, y)

[

E
(
1[Qt

1 = 0, Qt
2 = 0]

)

+
(pa

x
+ p(1− a) + (1− p)

)

E

(

xQt
11[Qt

1 > 0, Qt
2 = 0]

)

+

(
pa

y
+ p(1− a) + (1− p)

)

E

(

yQt
21[Qt

1 = 0, Qt
2 > 0]

)

+

(
(
pa + p2(b− a)

)
(

1

x
+

1

y

)

+ (1− p)2 + 2p(1− p)(1− a) + p2(1− 2b)

)

×E

(

xQt
1yQt

21[Qt
1 > 0, Qt

2 > 0]
)]

. (109)

By Lemma 1, if r < (pa + p2(b− a)), then the ALOHA system is stable. Since, (Qt
1, Q

t
2) is an

irreducible, aperiodic Markov chain, stability is equivalent to existence of a unique stationary

(limiting) distribution. Let G(x, y) be the moment generating function of the joint stationary

queue process viz.,

G(x, y) = lim
t→∞

E

(

xQt
1yQt

2

)

. (110)

Now, note that

G(0, 0) = lim
t→∞

E
(
1[Qt

1 = 0, Qt
2 = 0]

)
, (111)

G(x, 0)−G(0, 0) = lim
t→∞

E

(

xQt
11[Qt

1 > 0, Qt
2 = 0]

)

, (112)

G(0, y)−G(0, 0) = lim
t→∞

E

(

yQt
21[Qt

1 = 0, Qt
2 > 0]

)

, (113)

G(x, y) + G(0, 0)−G(x, 0)−G(0, y) = lim
t→∞

E

(

xQt
1yQt

21[Qt
1 > 0, Qt

2 > 0]
)

. (114)

Using an approach similar to ([21], [22]), from (109) it follows that G(x, y) satisfies the following

functional equation.

G(x, y) = F (x, y)

(

C(x, y)(G(x, y) + G(0, 0)−G(x, 0)−G(0, y)) (115)

+A(x, y)(G(x, 0)−G(0, 0)) + B(x, y)(G(0, y)−G(0, 0)) + G(0, 0)

)

,

where
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A(x, y) =
pa

x
+ p(1− a) + (1− p)

B(x, y) =
pa

y
+ p(1− a) + (1− p)

C(x, y) = (p2b + ppa)

(
1

x
+

1

y

)

+ p2 + 2pp(1− a) + p2(1− 2b). (116)

As observed by Sidi [21], the above functional equation cannot be solved for G(x, y) easily.

However, (115) can be used to compute the average delay as follows: First, use the fact that

G(1, 1) = 1 and G(1, 0) = G(0, 1)(symmetry) to find

G(1, 0)(2p2(b− a) + pa)−G(0, 0)p2(b− a) = pa + p2(b− a)− r. (117)

Let G1(x, y) , dG(x, y)/dx. From (115), we can show that

G1(1, 1) =
p2(b− a)G1(1, 0) + rr

pa + p2(b− a)− r
(118)

and

dG(x, x)

dx

∣
∣
∣
∣
x=1

= 2r +
(pa + 2p2(b− a))G1(1, 0)

pa + p2(b− a)− r
+

(r2 + 2r − 4r(p2(b− a) + pa))

2(pa + p2(b− a)− r)
. (119)

It follows by symmetry that

dG(x, x)

dx

∣
∣
∣
∣
x=1

= 2G1(1, 1). (120)

Substituting (120) in (119) and eliminating G1(1, 0) from (118) and (119) gives

G1(1, 1) =
1

pa

[

r +
(2r2 − 2r2pa− r2p2(b− a))

2(pa + p2(b− a)− r)

]

. (121)

Since G1(1, 1) is equal to the mean queue length of the users, a simple application of Little’s

theorem gives us the mean queueing delay (D) as
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D =
G1(1, 1)

r

=
1

pa

[

1 +
(2r − 2rpa− rp2(b− a))

2(pa + p2(b− a)− r)

]

=
1

a

[
a(1− r) + p(b− a)(1− r/2)

pa + p2(b− a)− r

]

. (122)

2.

J. Proof of Lemma 3

The difficulty in finding the optimizing transmission probability (p∗) is that it is the solution

to a constrained optimization problem and the objective function is not convex. Mathematically,

the problem can be cast as follows.

p∗ = arg min
pa+p2(b−a)−r>0,

p∈[0,1]

1

a

[
a(1− r) + p(b− a)(1− r/2)

pa + p2(b− a)− r

]

. (123)

We first focus on a looser constrained optimization problem. So, let

p′ = arg min
pa+p2(b−a)−r>0

1

a

[
a(1− r) + p(b− a)(1− r/2)

pa + p2(b− a)− r

]

. (124)

The roots of the quadratic equation p2(b− a) + pa− r = 0 are

s1 =
a−

√

a2 − 4(a− b)r

2(a− b)

s2 =
a +

√

a2 − 4(a− b)r

2(a− b)
.

It is easy to check that s1 and s2 are real. Thus, the constraint p2(b−a)+pa−r > 0 is equivalent

to s1 < p < s2. Next, we differentiate the objective function in (124) and equate it to zero. That

yields

[
−p2(a− b)2(1− r/2) + 2a(a− b)p(1− r)− a2(1− r) + r(a− b)(1− r/2)

]
= 0. (125)

The roots of the above quadratic equation are
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p1 =
a(1− r)−

√
0.5r

√

2(a− b)(1− r/2)2 − a2(1− r)

(a− b)(1− r/2)
(126)

p2 =
a(1− r) +

√
0.5r

√

2(a− b)(1− r/2)2 − a2(1− r)

(a− b)(1− r/2)
.

Now, we have to consider two cases:

Case 1: a2 − 2(a− b) ≤ 0.

It can be easily shown that in this case p1 and p2 are real. Equivalently for this case, 0 ≤ b ≤
a− a2/2. Note that for a ≤ 1, a/2 ≤ a− a2/2.

Next, algebraic manipulations yield, (i) s1 < p1 < s2 < p2 and (ii) 0 ≤ s1 ≤ 1. Note that

(i) implies that the objective function in (124) is strictly decreasing on (s1, p1) and is strictly

increasing on (p1, s2). This implies that p1 is a local minima. The constraint p ∈ (s1, s2) and

the fact that s2 < p2 together imply that p′ = p1.

Next, we turn our attention to the actual constrained optimization problem in (123). Here, (i)

and (ii) imply that p′ > 0. So, we need to check when p′ ≤ 1. If p′ ≤ 1, then obviously p∗ = p′.

Else if p′ > 1, (i) and (ii) together imply that p∗ = 1. This is because the objective function is

strictly decreasing on (s1, p
′) and so the optimal p lies on the boundary viz., 1. Thus, we can

conclude that,

p∗ = min(1, p′)

= min

(

1,
a(1− r)−

√
0.5r

√

2(a− b)(1− r/2)2 − a2(1− r)

(a− b)(1− r/2)

)

. (127)

Again after some manipulations it can be shown that (127) is equivalent to

p∗ =







1, r ∈ [0, r∗]

a(1−r)−
√

0.5r
√

2(a−b)(1−r/2)2−a2(1−r)

(a−b)(1−r/2)
, r ∈ (r∗, rmax),

(128)

where

r∗ =







1−
(

a+b
2
− ab

a−b

)
−
√

1− (a− b) +
(

a+b
2
− ab

a−b

)2
, 0 ≤ b < a/2

b, a/2 ≤ b ≤ a− a2/2
(129)

and
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rmax =







a2

4(a−b)
, 0 ≤ b < a/2

b, a/2 ≤ b ≤ a− a2/2.
(130)

Case 2: a2 − 2(a− b) > 0.

This case is equivalent to a − a2/2 < b ≤ min{0.5, a}. This case is much easier to handle.

It follows that in this case, the derivative of the objective function with respect to p in (124) is

always negative which implies that the objective function is a strictly decreasing function of p.

In this case, it can also be easily shown that s1 < 1 < s2 where s1 and s2 as defined before

are the roots of p2(b − a) + pa − r = 0. The additional constraint that p ∈ [0, 1] together with

p ∈ (s1, s2) implies that the optimal transmission probability in this case is always one.

Combining the results from Cases 1 and 2, we get

p∗ =







1, r ∈ [0, r∗]

a(1−r)−
√

0.5r
√

2(a−b)(1−r/2)2−a2(1−r)

(a−b)(1−r/2)
, r ∈ (r∗, rmax),

(131)

where

r∗ =







1−
(

a+b
2
− ab

a−b

)
−
√

1− (a− b) +
(

a+b
2
− ab

a−b

)2
, 0 ≤ b < a/2

b, a/2 ≤ b ≤ min{0.5, a}
(132)

and

rmax =







a2

4(a−b)
, 0 ≤ b < a/2

b, a/2 ≤ b ≤ min{0.5, a}.
(133)
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