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Abstract—We study the use of channel state information (CSI)
for random access in fading channels. Traditionally, random ac-
cess protocols have been designed by assuming simple models for
the physical layer where all users are symmetric, and there is no
notion of channel state. We introduce a reception model that takes
into account the channel states of various users. Under the assump-
tion that each user has access to its CSI, we propose a variant of
Slotted ALOHA protocol for medium access control, where the
transmission probability is allowed to be a function of the CSI.
The function is called the transmission control. Assuming the fi-
nite user infinite buffer model we derive expressions for the max-
imum stable throughput of the system. We introduce the notion of
asymptotic stable throughput (AST) that is the maximum stable
throughput as the number of users goes to infinity. We consider
two types of transmission control, namely, population-independent
transmission control (PITC), where the transmission control is not
a function of the size of the network and population-dependent
transmission control (PDTC), where the transmission control is
a function of the size of the network. We obtain expressions for
the AST achievable with PITC. For PDTC, we introduce a par-
ticular transmission control that can potentially lead to significant
gains in AST. For both PITC and PDTC, we show that the effect of
transmission control is equivalent to changing the probability dis-
tribution of the channel state. The theory is then applied to code-
division multiple-access (CDMA) networks with linear minimum
mean-square error (LMMSE) receivers and matched filters (MF)
to illustrate the effectiveness of using channel state. It is shown that
through the use of channel state, with arbitrarily small power, it is
possible to achieve an AST that is lower-bounded by the spreading
gain of the network. This result has implications for the reachback
problem in large sensor networks.

Index Terms—Distributed channel state information (CSI), dis-
tributed transmission control, fading channels, maximum stable
throughput, random access, Slotted ALOHA.

I. INTRODUCTION

THE rapid increase in the demand for data rate over wire-
less channels has led to a rethinking of the traditional

network architecture and design principles. Cross layer de-
sign, where information is exchanged between layers is being
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Fig. 1. Cellular uplink.

explored as an alternative to the traditional design paradigm
[1]. In this context, allowing interaction between the medium
access layer (MAC) and physical layer (PHY) layers seems
natural, especially for mobile wireless communication where
the channel quality is changing with time. As illustrated in
Fig. 1, users might experience different channel conditions and
this knowledge can be used to control the access to medium and
improve the throughput of the network. The source of asym-
metry between users might be due to various parameters such
as propagation channel gain, distance from the base station,
transmit power capabilities, etc.

There is a recent line of work that studies the effect of channel
state information (CSI) on resource allocation in multiple-ac-
cess fading channels [2]–[7], [9], [10]. These papers however
assume a centralized controller that has the knowledge of the
channel states of all the users in the network. While this assump-
tion might be reasonable for channel allocation on the down-
link, a similar assumption on the uplink is not easy to justify.
Resource allocation on the uplink, specifically power control,
with each user having access to his channel state alone was
considered by Telatar and Shamai in [11]. A simple threshold
power control scheme is proposed in which each user transmits
when his channel state is better than a certain threshold. The
threshold is chosen so as to keep the number of active users
small compared to the total number of users. It is demonstrated
that this scheme achieves a sum capacity that is close to that
obtained by the optimal centralized power control scheme. De-
centralized schemes have also been considered for code-divi-
sion multiple-access (CDMA) networks. Viswanath et al. [12]
have shown the asymptotic optimality of a decentralized power
control scheme for a multiple-access fading channel that uses
CDMA with an optimal receiver. The effect of decentralized
power control on the sum capacity of CDMA with linear re-
ceivers and single-user decoders was studied by Shamai and
Verdú in [13].

In this paper, we complement the existing information-the-
oretic literature by considering the effect of decentralized CSI
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under random-access framework. Each user uses the CSI to
determine the probability of transmission, whereas the power
of transmission is kept constant. We are interested in deter-
mining transmission control schemes that maximize the stable
throughput of the system. As has been noted in [14], [15],
the field of random access is built upon simplistic models
for the physical layer. Random-access protocols such as tra-
ditional ALOHA, splitting algorithms, and carrier sense mul-
tiple access (CSMA) have all been developed assuming that
the physical layer behaves like a collision channel. To con-
duct a meaningful study of the use of CSI in random access,
it is necessary to develop models that can first incorporate
the channel states of the transmitting users and, second, ab-
stract the increasing sophistication of the underlying signal
processing algorithms. One such model is the multipacket re-
ception (MPR) model introduced by Ghez et al. [16], [17].
It is possible to model the simultaneous reception of mul-
tiple packets using this model but the level of abstraction does
not allow for the incorporation of the CSI of the transmit-
ting users. As a result, the version of ALOHA proposed in
[16], [17] is symmetric with respect to the users. Random-ac-
cess protocols that are built upon the MPR model have been
proposed by Zhao and Tong [18], [19]. Again, there is no
concept of channel state in these protocols. Random access
for general reception models without using channel state have
also been considered in [20]–[22].

The contents and contributions of this paper can be broadly
separated into two parts. In the first part, we focus on deriving a
general theory of random access with CSI. Our main contribu-
tions in this part can be summarized as follows.

• We introduce a model for the physical layer where the re-
ception is allowed to depend on the channel states of the
transmitting users and it is also possible to model the si-
multaneous reception of multiple packets. Any parameter
that influences the reception could be chosen as channel
state. Examples include propagation channel gain, posi-
tion of the mobile with respect to the base station, etc. This
model can be considered as a generalization of the MPR
model proposed by Ghez et al. in [16], [17]. Similar gen-
eralizations have also been considered in [20]–[22].

• A variant to the classical Slotted ALOHA protocol is pro-
posed where the knowledge of channel state is utilized to
vary the transmission probability. The function that maps
the CSI to the probability of transmission is termed the
transmission control.

• Maximum stable throughput [23] is used as a figure of
merit to compare different transmission control schemes.
We assume a network with finite number of users and
infinite buffers and derive the expression of maximum
stable throughput of the network as a function of the recep-
tion model, CSI distribution, and the transmission control
used. The notion of asymptotic stable throughput (AST)
defined as the maximum stable throughput of the network
as the number of users go to infinity is introduced. The
AST expression allows us to derive “good” transmission
control algorithms.

• Two types of transmission control schemes are studied
namely, population-independent transmission control
(PITC) and population-dependent transmission control
(PDTC). PITC does not use the size of the network. Such
a strategy is attractive when nodes are added and elim-
inated from the network from time to time because it is
not necessary to keep track of the size of the network. We
derive expressions for AST with population-independent
transmission and characterize what can be achieved by
varying the transmission probability as a function of
channel state but not the size of the network. In contrast,
PDTC, as the name suggests, refers to transmission con-
trol schemes that are a function of the size of the network.
We introduce a particular PDTC scheme, evaluate its
AST, and show that it can be used to obtain significant
gains. For either type of control, the effect of using a
transmission control sequence is shown to be equivalent
to changing the probability distribution of the channel
state. Thus, the problem is one of identifying the good
target distributions for various reception models.

In the second part, we apply the results of the general theory
to CDMA networks and demonstrate the effectiveness of the
proposed strategies. We focus on the application of results to
CDMA networks that use either a linear minimum-mean square
error (LMMSE) multiple-user receiver or a matched filter (MF).
This context provides us with two particular reception models
for which the theory can be applied. For this application, we as-
sume that the propagation channel gain is used as the channel
state and it is assumed that the channel undergoes Rayleigh
fading. Our main contributions in this part are as follows.

• We characterize the gain in AST through PITC. It is
shown that the gain possible through this technique is
quite limited.

• For PDTC, we identify the class of distributions that are
good target distributions and construct transmission con-
trol schemes that can achieve this target distribution.

• We show that if we use an MMSE multiple-user detector
as the receiver, with arbitrarily small power, it is possible
to obtain an AST that is lower-bounded by the spreading
gain of the system.

The final comment above is important for the uplink of networks
that have a large number of nodes but each is equipped with
small power. The regime of large number of nodes and small
power is relevant to sensor networks [46]. Thus, the theory that
we have derived finds an important application in the reachback
problem in sensor networks. For us, reachback refers to the data
gathering phase of the operation of sensor networks. Typically,
hundreds and thousands of sensors, each with limited transmis-
sion power capabilities, are deployed in order to collect some
information and this information has to be relayed back through
some collecting agent like the airplane that is shown in Fig. 2.
Thus, our results for CDMA networks have an important impli-
cation on the design of the protocol stack for sensor networks.

Almost all other related work in collision resolution is in the
analysis and design of the Slotted ALOHA protocol for the cap-
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Fig. 2. Reachback in sensor networks.

ture model, a specific model that can be represented with the
proposed general reception model. The performance of Slotted
ALOHA for uplink in fading channels both with and without
capture has been previously explored in [24]–[27] and the ref-
erences therein. But these papers did not assume that the users
have access to their CSI. Design of retransmission probability
was considered in [28]–[30]. An important concern in these
papers was to make the protocol fair to all the users. In [31],
Liu and Polydoros study the design of retransmission proba-
bilities to maximize the throughput, but it was assumed that
the design was done by a central controller who has access
to channel state of all the users. The Slotted ALOHA scheme
where mobiles have knowledge of the uplink signal-to-noise
ratio (SNR) was considered in [32], [33]. In [32], Qin and Berry
used this knowledge to vary the power of transmission but the
transmission probability was kept fixed. It was shown that with
the choice considered, the throughput increases with the number
of users. The reception model considered was a collision model.
In [33], the design of transmission probability was chosen in
a heuristic fashion and it was not optimized. In [34], Chock-
alingam et al. studied the design of Slotted ALOHA for cor-
related Rayleigh-fading channel. It was not assumed that the
mobiles have access to the channel state but it was shown that
the correlation in the fading channel can be exploited to improve
the throughput of ALOHA. Stability analysis for capture model
was considered in [35] by Sant and Sharma. It was not assumed
that the nodes have access to their CSI. The retransmission prob-
abilities of different users was therefore kept fixed. Characteri-
zation of stability region for Slotted ALOHA in networks with
multiple antennas (without the use of CSI) has been considered
in [21], [22].

The rest of the paper is organized as follows. In Section II,
we describe the system model in detail. In Section III, we de-
rive the expression for the maximum stable throughput of the
system under consideration. In Section IV, we introduce the no-
tion of AST and derive the expressions for AST for various types
of transmission. In Section V, the theory is applied to CDMA
networks. In Section VI, we list our concluding remarks and
describe some interesting directions for related future research.
The proofs of all the theorems and propositions have been in-
cluded in the Appendix.

II. SYSTEM MODEL

We consider a network where users are communicating
with a base station over a common channel. Each user has a
buffer of infinite length for the incoming packets until they are

sent successfully to the base station. Time is slotted into inter-
vals equal to the time required to transmit a packet. We make the
slot time equal to one time unit and slot is assumed to occupy
the time . We denote by the number of incoming
packets to user during time slot . The packet arrival process
for different for and is assumed to be
i.i.d. as well. The arrival process has a finite mean (so that the
cumulative input rate is ) and finite variance. The above model
for the arrival process is the same as that in [23] for a symmetric
system.

The channel between the th user and the base station
during slot is parametrized by . It is assumed that the
quantities for and are i.i.d. with
probability distribution . Further, we assume that the user

has access to the uplink CSI at time .
We define a general reception model that is given by a set of

functions. The th function assigns probabilities to all the pos-
sible outcomes conditioned on the event that users transmitted
and that their channel states are given by . As-
suming that users transmitted, we let
be a binary -tuple that represents the outcome of a slot. The
bit equal to one represents the success of user 1 and so on.
The th function is the probability of out-
come when users whose CSI is given by
transmit. That is,

users transmit (1)

Define as the expected number of packets suc-
cessfully demodulated when the CSI of the transmitting users is

, that is,

users transmit (2)

Given a distribution function , define as the
expected number of packets received conditioned on users
transmit and their CSI is distributed i.i.d. according to .
That is,

users tx (3)

Note that this model allows the reception of multiple packets
simultaneously. Special cases of this reception model are the
classical collision model, capture model and MPR model [16].

We impose some constraints on the reception model that hold
for many practical scenarios. For each , we assume that if we
permute the CSI and apply the same permutation
to the bits of , the value of does not change. That is,
we assume long-term symmetry among the users. This condition
has been relaxed in the reception model considered in [20], [22].
Further, we assume that for any given , adding an
extra user decreases the probability of packets success for each
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of the users. That is, for all , for all

(4)

The parameter can be used to model various parameters
that influence the reception. Examples include physical channel
gain, position of the mobile, etc. In some cases, it is possible to
abstract the reception of an uplink using multiple antennas into
the above model.

In the ALOHA protocol analyzed in [23], if the user has
a packet to transmit, he transmits it with a probability . We
consider a more general random-access scheme where the prob-
ability of transmission for each user is allowed to be a function
of his CSI . The function is called the transmission control
scheme and is denoted by . Thus, we assume that in slot , if
user has a packet then it is transmitted with probability equal
to . At the end of slot , the base station broadcasts the
indexes of those users whose packets it was able to demodulate
successfully. The type of ALOHA protocol considered in this
paper, where the new arrivals are not transmitted immediately,
is known as ALOHA with delayed first transmission. This is
in contrast to ALOHA with immediate first transmission where
new arrivals are transmitted in the slot immediately following
their arrival.

III. MAXIMUM STABLE THROUGHPUT

In this section, we derive the expression for maximum stable
throughput as a function of the CSI distribution, reception
model, and the transmission control. The system is defined to
be stable if for each node the queue size does not go to infinity.
In other words, given a positive number , there exists
a buffer size such that the probability of buffer overflow is less
than . It should be obvious that stability is one of the important
requirements for a network. The requirement of stability can be
said to impose a mild requirement on delay.

We now define the notion of maximum stable throughput in a
formal manner. Let the -tuple
be the length of the buffers at each node at the beginning of slot
. We say that the system is stable for a particular arrival process,

if for , there exists an such that

(5)

where is the set of nonnegative integers. This notion of sta-
bility is also used in [23]. We will see that the stability of the
system can be characterized by , the cumulative mean of the ar-
rival process alone. This will allow us to define maximum stable
throughput as the supremum of all cumulative input rates for
which the system is stable. The following theorem gives the ex-
pression for the maximum stable throughput of the system in
terms of the transmission control, reception model, and the un-
derlying CSI distribution.

Theorem 1: Given the distribution function of the
CSI, the transmission control and the reception functions

, the maximum stable throughput is given by

(6)

If , then

(7)

where the distribution function is

(8)

Proof: Refer to Appendix I.

It should first be noted that defined above is the uncondi-
tional probability of transmission, and the distribution is
the distribution of CSI conditioned on the event that a user trans-
mits, that is, it is the a posteriori distribution of the channel state.
It is intuitively reasonable that the maximum stable throughput
should depend on only through because this is the
distribution of channel state that the base station “sees”; the un-
derlying distribution of CSI is not relevant. The power of using
a transmission control is that it allows us to manipulate the
a posteriori CSI distribution . Thus, we would like to steer
the underlying distribution to “good” a posteriori distributions
by the use of the transmission control. The problem however
is more complicated because the transmission control also af-
fects the probability of transmission . Thus, it is possible that
transmission controls that lead to good a posteriori distributions
might lead to an extremely low probability of transmission. It is
this coupling that makes it difficult to find optimal transmission
controls for various reception models. In the following section,
we will consider the SNR threshold model as an example for
which it is possible to obtain the optimal transmission control.
The optimal transmission control for a simplified capture model
was considered in [36]. Obtaining the optimal transmission con-
trol for the general capture model and other reception models is
interesting and useful but is also hard.

A. An Example

In this section, we apply the results derived in the previous
section for the SNR threshold model and obtain the maximum
stable throughput. We then optimize the transmission control by
maximizing this stable throughput. These results also shed light
on how a transmission control can be used to increase the stable
throughput of the system.

The SNR of the uplink is taken as the channel state parameter
and the reception model is defined as follows. We assume that a
user is successfully demodulated if no other user transmits, and



ADIREDDY AND TONG: EXPLOITING DECENTRALIZED CHANNEL STATE INFORMATION FOR RANDOM ACCESS 541

Fig. 3. Shaping of the a priori distribution.

if his SNR is larger than a given threshold . The reception
model for this is given by

.
(9)

The function is of course equal to . For
, is identically equal to zero. This model is sim-

ilar to the collision channel except that it also takes into account
the channel state of the transmitting user.

Given a transmission control , the maximum stable
throughput is given by

(10)

The optimal transmission control is then obtained as

(11)

We then have the following theorem.

Theorem 2: Denote . The optimal trans-
mission control is

(12)

and the corresponding maximum stable throughput is

(13)
Proof: Refer to Appendix III.

The transmission control is a step function and we find that,
as expected, if , the mobiles do not transmit. If ,
the probability of transmission is chosen such that the average
number of transmitting users in each slot is equal to one. In
order to understand the role of transmission control, we illustrate
the a priori and a posteriori distributions of CSI in Fig. 3. We
see that the a posteriori distribution starts from which
means that the base station believes that the channel states below

do not occur. We would like to finally note that the optimal
transmission control is not unique.

Fig. 4 illustrates the variation of average delay with total input
rate under the SNR threshold model. The threshold was set

at 5 dB. For the conventional transmission control, when a
station has a packet to transmit it transmits the packet with a
probability . It can be seen that the optimal transmission con-
trol has a higher maximum stable throughput and also a lower
delay at every load.

An interesting problem that we have not considered is the
selection of and how the various physical layer parameters
and the signal-processing algorithms influence its choice.

IV. ASYMPTOTIC STABLE THROUGHPUT

In this section, we define the notion of AST of a network and
consider the problem of designing transmission controls that are
optimal with respect to the AST. We consider two types of trans-
mission control: the PDTC where the transmission control de-
pends on the total number of users in the network, and the sim-
pler PITC where the transmission control is not allowed to be a
function of total number of users in the network.

We know that given the number of users in the network , re-
ception model , the CSI distribution , and the trans-
mission control such that , the maximum stable
throughput for the network is given by

(14)

The AST is defined as the maximum stable throughput as the
number of users in the network goes to infinity. Such a metric
is of value for “large” networks, and it is possible to obtain
transmission controls that are asymptotically good based on this
metric. This enables us to design transmission controls for those
reception models for which it is difficult to find the transmission
controls that are optimal with respect to the maximum stable
throughput. The formal definition of AST is as follows.

Definition 1: Given the distribution function of CSI ,
the transmission control sequence and the reception func-
tions , the AST is defined as

(15)

For what follows, we impose the following technical restric-
tions on the kind of reception models considered.
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Fig. 4. Delay versus input rate.

A1: For any distribution function

exists.

This restriction is quite mild and in fact holds for most recep-
tion models considered.

A. Population-Independent Transmission Control (PITC)

We first consider the scenario where the transmission control
sequence is such that it does not depend on . That is,

. This kind of transmission control is termed popula-
tion-independent transmission control (PITC). Such transmis-
sion controls are interesting because they are simpler to imple-
ment and they can be expected to be robust to the size of the
network. In cases where nodes may enter and leave the network,
it is easier to use a PITC because it is not necessary to keep track
of the size of the network.

The AST with PITC becomes

(16)

The AST can be given a simpler characterization as follows.

Proposition 1: Given the transmission control, , the AST
is given by

(17)

Proof: The proof follows from [17].

In contrast, the AST for PITC that does not depend on the
channel state is given by

(18)

Thus, the effect of the transmission control for PITC is equiva-
lent to changing the underlying CSI distribution. It is therefore
important to determine the set of probability distributions that
can be reached through PITC from . Given , it is easy
to see that the set of distributions that can be reached through
PITC is given by

(19)

where

(20)

Thus, we have the following proposition.

Proposition 2: The supremum of all possible stable through-
put by optimizing the transmission control function is given by

(21)

In what follows, we derive the properties of the distributions
in and try to ascertain how large this set is. We first list some
simple properties of the functions .
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P1 is a distribution function.
P2 implies . (Notation: .)
P3 There exist a positive constant such that the

Radon–Nikodym derivation for all .
We now show that in fact the above three properties characterize
the set , namely, if there exists a function satisfying the
properties above then it belongs to . Given and
satisfying the properties given above, define the transmission
control as

(22)

It is easy to see that the a posteriori CSI distribution with this
transmission control is equal to and therefore .

Thus, if the underlying channel state distribution is , it is
possible to steer the conditional distribution of the channel state
to any that satisfies the properties listed above by choosing
the transmission control as

(23)

It is important to determine how limiting the restriction to the
set is. As we shall see later, this restriction has an important
bearing on the maximum achievable AST with PITC for many
reception models and state distributions .

B. Population-Dependent Transmission Control (PDTC)

We now consider the more general case, when the transmis-
sion control is allowed to be a function of number of users in the
network. As discussed previously, given a sequence of transmis-
sion controls , the AST is defined as

(24)

We will first derive the AST for transmission control se-
quences that do not use CSI and then introduce a simple PDTC
sequence that can improve significantly over this AST. The
results in [17] can be directly used to show that if we use
a transmission control , where is an
arbitrary positive real number, we achieve an AST equal to

(25)

The following proposition says that in fact the control above
achieves all possible AST, and it is not possible to do better using
a more complicated transmission control.

Proposition 3: If the sequence of transmission control
is chosen to be independent of but as a function of alone,
then the maximum possible AST is given by ,
where is the distribution of .

Proof: The proof follows directly from [17].

It is possible to construct a simple sequence of trans-
mission controls that improves significantly upon the AST
obtained above. Let be a distribution function such that

. From the Radon–Nikodym theorem, there exists
a nonnegative function such that

(26)

The sequence of transmission controls is chosen as

(27)

The following proposition characterizes the achievable
throughput.

Proposition 4: With the sequence of transmission controls
chosen as

(28)

the AST is given by

(29)

Proof: Refer to Appendix IV.

By comparing Proposition 3 with Proposition 4, it can be seen
that the effect of the chosen transmission control sequence is
to effectively change the CSI distribution from to .
From Propositions 4 and 1, we can see that the advantage of
using PDTC is two-fold. First, the set of distributions that can
be reached is larger than the set because we do not need
the target distribution to obey P3 listed earlier. Second, the per-
formance is no longer limited by but is given by

. It can be shown using techniques in [17] that the
function has the property that

(30)

This implies that .
The intuition behind choosing the particular sequence of

transmission controls is that first we have while
and second we have the a posteriori distribution

point wise (31)

The first condition ensures that the number of transmission at-
tempts in any given slot converges to a Poisson random vari-
able with mean , and the second condition ensures that the
a posteriori CSI distribution converges to .

It can be seen that through a judicious choice of transmission
control sequence, it is possible to achieve an AST of

(32)
The quantity is in some sense the capacity associated with the
reception model, CSI distribution , and the protocol pro-
posed. For a given reception model, it is important to charac-
terize and find distributions that achieve an AST that is
close to .

For a given reception model and CSI distribution ,
choosing a target distribution that guarantees improvement
is in general not easy. The reason is that the AST is equal
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to which in turn depends on all of .
However, it is at times easy to characterize the value of
as and this offers us a way of comparing different
distributions. As mentioned previously, for any [17]

(33)

Hence, if for a distribution function , we find a distribution
such that , then improvement

is guaranteed by using a transmission control that changes
the distribution to . However, it is important to note
that does not in general guarantee
improvement.

V. APPLICATION TO CDMA NETWORKS

In this section, we apply the results derived in the previous
section to the uplink of CDMA networks. This application illus-
trates the theory and also demonstrates the magnitude of gains
possible through the use of CSI.

In order to apply the theory, we need to first select the pa-
rameter that will be used as the channel state. The choice of
the channel state parameter might be influenced by issues like
potential gain and ease of estimation. Once the channel state
parameter is fixed, the distribution of the CSI should be deter-
mined. Then a reception model as described in Section II should
be developed for the physical layer processing.

For the purposes of the current application, we will choose
the propagation channel gain as the CSI. The possible models
for the CSI and the distributions that arise due to these models
are delineated as part of the section below on channel model.
We analyze the CDMA network under two receiver structures;
one where the receiver uses an MF and the other where the re-
ceiver uses a linear MMSE multiuser receiver. The two struc-
tures give rise to two different reception models. The results
for the linear MMSE multiuser receiver are presented in con-
siderable detail and the corresponding results for the matched
filter are stated in brief because they are conceptually similar to
the ones for the LMMSE multiuser receiver. For each reception
model, the program is to first analyze the performance possible
without transmission control. Since the use of transmission con-
trol essentially changes the underlying CSI distribution, the ob-
jective then is to find distributions that improve over the existing
CSI distributions. In this connection, we will show that distri-
butions with rolloff (see (36)) form “good” target distributions
for PDTC and that it is possible to obtain large gains by using
transmission controls that steer the underlying CSI distribution
to this distribution.

A. Channel Model

The propagation channel gain from each user to the base sta-
tion is selected as the channel state. Since we require that each
user has access to his channel state, we imagine a time-division
duplex (TDD) system where the base station is transmitting a
pilot tone.

If the received power is modeled as

(34)

where is a constant, is Rayleigh distributed, and the
channel state is given by , then the underlying CSI
distribution is exponential. This corresponds to the case when
a slow power control is being employed. This model is also
reasonable for modeling the propagation channel gain in the
reachback problem because all the nodes are typically at the
same distance from the collecting station and undergo the same
propagation loss and shadow fading. Thus, the underlying CSI
distribution for the reachback problem can be assumed to be
exponential.

Another possible model for received power at the base station
is

(35)

where is Rician or Rayleigh distributed, is Gaussian dis-
tributed, with zero mean and standard deviation and is the
constant transmitted power, is the distance from base station,
and is the propagation constant that typically lies between
and . In this case, the CSI distribution is a complicated func-
tion of the distribution of , the distance from the base station. A
particular property of this distribution that turns out to be very
crucial is the way in which the tail of the distribution rolls off.
Given a distribution function , define to be the rolloff of

, if there exists a such that and [37]

(36)

If there exists a positive constant such that the cumulative
distribution function (CDF) of the distance of a station satisfies

(37)

where is a positive constant. Then it can be shown that [37]
the distribution of the received power above has a rolloff

. This model corresponds to the case when there is no power
control. Different possible distributions for are the so-called
uniform distributions where

(38)

the quasi-uniform distribution for which the density of is given
by

(39)

and bell-shaped distribution.

B. Linear MMSE Multiuser Receiver

In this subsection, we study the case when the receiver uses an
LMMSE multiuser receiver. We start by describing the reception
model to be used and then apply the results to this reception
model.

We assume that each user is assigned a particular signature
waveform that is used to modulate the data. Each packet starts
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with sufficient training symbols that the receiver can use to form
an equalizer. The packet is assumed to be successfully demodu-
lated if the signal-to-interference ratio (SIR) after the LMMSE
multiuser receiver is greater than . (The parameter is a func-
tion of modulation, code, and quality of service required for
the application.) For the LMMSE receiver structure, the SIR
for each user is a complicated function of the received power
and signature sequences of the transmitting users. However, if
the signature sequences are random, the size of the network and
the spreading gain are large, the SIR can be approximated as a
simple function of the received powers [38]. Given that users
transmit, is the processing gain of the system, and is the
power received from user , user goes through if

(40)

This condition can be used1 as a reception model as defined in
Section II. The above condition can be rewritten as

(41)

This shows that the effective interference from other users is
limited to at most 1. This is the advantage of using an MMSE
multiuser detector over a matched filter. In deriving this condi-
tion, it is assumed in [38] that the receiver employs a true MMSE
filter or equivalently that the receivers knows the spreading se-
quences of the transmitting users. This assumption is not a con-
tradiction to the fact that we are considering a random-access
protocol because we assume that each packet starts with training
and these training symbols are used to obtain a least squares
equalizer and if we have a sufficient number of training symbols
present we can ensure that the least squares equalizer converges
to the true LMMSE equalizer derived under the assumption that
the receiver knows exactly who the transmitting users are.

1) PITC: For PITC, the AST without the use of CSI
is and the AST with CSI is where

. We first assume that the underlying CSI distribu-
tion is exponential and we evaluate for the exponential
distribution.

Proposition 5: Let and the noise variance
be equal to , then

(42)

Proof: Refer to Appendix V.

Thus, the AST for exponential distribution is equal to zero.
The following proposition gives the AST for the set of distribu-
tions that can be reached from the exponential distribution.

Proposition 6: Let and the noise variance
be equal to , and , then

(43)

Proof: Refer to Appendix VI.

1Note that the signal-to-interference-noise ratio (SINR) condition in [38] may
not be accurate for random access whenK is small.

This proposition implies that it is not possible to improve the
asymptotic throughput with PITC if the underlying distribution
is exponential. Hence, the set is not “large enough” to im-
prove the throughput.

We now consider the case when the distribution of the re-
ceived power has a rolloff . This corresponds to the case when
there is no power control.

Proposition 7: If has a rolloff , then

(44)

where satisfies

(45)

Proof: Refer to Appendix VII.

Thus, for large , we can neglect the quantity and
assume that AST is . We conjecture that for any finite

(46)

For all the arguments that follow, we assume that the AST is
given by .

When the distribution of the received power has a rolloff, the
asymptotic throughput is not equal to zero. In order to determine
if the use of CSI can increase the AST, we consider the AST of
the distributions in the set .

Proposition 8: Let be a distribution function with
rolloff , , and has a rolloff then .
Further, for all , there exists a such that the
rolloff of is .

Proof: Refer to Appendix VIII.

If (which is typical), then the asymptotic throughput
is a decreasing function of and if , the asymptotic
throughput reaches a maximum for some value of that lies
between and . This fact together with Proposition 8 has the
following implications on possible improvements in AST. If

, the AST cannot be improved by steering to distribu-
tions with a rolloff. However, if , it can be shown quite
easily that for a , the AST can be improved by PITC if

(47)

To illustrate: for example, if and , then improve-
ment is possible.

Thus, for the reception model under consideration, if the
transmission control is not allowed to use the size of the
network, improvement in AST is not possible for most cases.
As shown later, this will change quite significantly when the
transmission control is allowed to use the size of the network.

2) PDTC: We now consider the use of CSI for PDTC when
the underlying distribution is exponential. As shown in Propo-
sition 3, the AST obtained without the use of CSI is given by

(48)
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Fig. 5. AST with PDTC that does not use CSI.

Fig. 5 illustrates the AST for LMMSE when the underlying CSI
distribution is exponential and CSI is not used for transmission
control. The transmit power is 4 dB over noise, spreading gain

and 4 dB. The -axis is the design variable ,
the average number of transmissions in each slot. We see that it
is possible to achieve an AST of approximately 2.6 packets per
slot without using CSI by setting to be approximately equal
to 15 transmissions per slot. We should now find distributions

such that and for some . If
is a distribution with a rolloff, Proposition 7 gives the value of

, and we see that there are many distributions for which
. This implies that for these distributions, there

do exist such that improves over . We
select distributions with rolloff and as the target distri-
butions and Fig. 6 plots for each of them. The solid line
in Fig. 6 illustrates the AST when the underlying channel state
is distributed exponentially with mean 4 dB. The dotted lines
are the AST for distributions with a rolloff. We see that it is in
fact possible to obtain significant gains over the maximum AST
that can be obtained without the use of CSI. From Proposition
4, a transmission control that can be used to steer the underlying
exponential distribution to a distribution with rolloff is given by

(49)

where is any fixed constant.
From Fig. 6, it can also be seen that for a given AST, the mean

number of transmissions required is smaller for the rolloff distri-

butions compared to those required for the exponential distribu-
tion. This implies that utilizing a transmission control that uses
CSI decreases the required average number of transmissions in
a slot. This has implications on network-wide power savings.

We now consider the importance of the use of CSI at low
transmit power. Even for arbitrarily small power , the distri-
butions with rolloff are dominated by the underlying exponen-
tial CSI distribution. This implies that it is possible to steer to
the rolloff distributions from an exponential distribution with an
arbitrarily small mean. From Proposition 7, when (typ-
ical), it is possible to achieve an AST of using distributions
with a rolloff (that corresponds to ). Thus, even if the
CSI is exponential with an arbitrarily small mean it is possible
to achieve an AST of using CSI. However, without the use of
CSI, the maximum achievable AST goes to zero. The following
theorem summarizes the importance of CSI for the reception
model under consideration at small powers.

Theorem 3: Assume and , then

(50)

However, for any given , the maximum achievable AST with
CSI satisfies

(51)

Proof: Refer to Appendix XI.

The preceding theorem implies that CSI can be used to
achieve large asymptotic throughputs even in cases where each
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Fig. 6. AST with and without CSI for PDTC.

node is equipped with small power. This result is of relevance
for the reachback problem because sensors are typically de-
ployed in large numbers but each is capable of transmitting at a
low power. However, with the use of the CSI, it is possible for
the nodes to employ transmission control and achieve a large
throughput.

As a final note, we would like to point out that the distribu-
tions that can be used to improve the AST beyond and achieve
the capacity are not known.

C. Matched Filter (MF)

In this subsection, we list the results that correspond to the MF
reception model. We do not give detailed comments in this part,
because the results are conceptually similar the ones obtained
for the LMMSE reception model.

The reception model is as follows: given that users
transmit, is the power received from user , user goes
through if and only if the corresponding SINR is greater than

, that is,

(52)

This criterion follows from the heuristics [38] for networks with
large . It can be seen that criterion is quite similar to the
capture model and is most popular for CDMA networks with
matched filters.

1) PITC: We will now characterize the AST with PITC
with and without using CSI when the underlying distribution is
exponential.

Proposition 9: If is the distribution function of an ex-
ponential random variable with mean , then

(53)

Proof: Refer to Appendix IX.

Proposition 10: If is the distribution function of an ex-
ponential random variable with mean , and then

(54)

Proof: Refer to Appendix X.

Propositions 9 and 10 imply that if the received power is dis-
tributed exponentially, then PITC does not improve the AST.

We now consider the case when the received power has a
distribution with a rolloff. The following proposition follows
from a straightforward application of the result in [37].

Proposition 11: If has a rolloff , then

.
(55)

We see that in this case it is possible to obtain nonzero asymp-
totic throughput with constant transmission control. In order to
determine if the use of CSI can increase the AST, we consider
the AST of the distributions in the set . From Proposition 8,
we have that if we start with a distribution with a rolloff, we
can go to distributions that have a larger rolloff but we cannot
go to distributions with a smaller rolloff. This fact has the fol-
lowing implications on the possible improvements in AST. If
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Fig. 7. Asymptotic throughput versus �.

, then the asymptotic throughput is a decreasing func-
tion of , therefore, the AST cannot be improved if by steering
to distributions with a rolloff. However, if (typical), the
asymptotic throughput reaches a maximum for some value of
that lies between and . Hence, it is possible that decreasing

increases the throughput. It can be shown quite easily that for
a the AST can be improved by PITC if

(56)

To illustrate: for example, if and then im-
provement is possible. Fig. 7 shows the variation of asymptotic
throughput with for and 4 dB. It can be seen that
significant gains are possible if we start with a is less than .

2) PDTC: We now consider the use of CSI for PDTC. As
shown in Proposition 3, the AST obtained without the use of
CSI is given by

(57)

Fig. 8 illustrates the AST for matched filter when the underlying
CSI distribution is exponential. The transmit power is 4 dB over
noise, spreading gain , and 4 dB. The -axis is the
design variable . We see that it is possible to achieve an AST of
approximately one packet per slot without using CSI by setting

to be approximately equal to seven transmissions per slot. We

would like to find if there exist distributions such that, for
some , and . If is a distribution
with a rolloff, Proposition 11 gives the value of , and
we see that there exists a distribution with a rolloff for which

. Fig. 9 plots for distributions with a rolloff
and . We see that it is in fact possible to improve over

the AST that was possible without CSI. From Proposition 4, we
know that a transmission control that can be used to steer to a
distribution with rolloff is given by

(58)

where is any fixed constant.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the use of decentralized CSI for
random access. To perform this study, we first proposed a
reception model for the physical layer that takes into account
the channel states of the transmitting users. A variant of Slotted
ALOHA where the transmit probability is a function of the
channel state was used for random access. We then obtained
expressions for the maximum stable throughput of the network
as a function of the transmission control used and the recep-
tion model. Determining optimal transmission controls for a
reception model is in general a hard problem.

We then considered the regime of large networks and intro-
duced the notion of asymptotic stable throughput (AST). AST
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Fig. 8. AST with PDTC that does not use CSI.

Fig. 9. AST with PDTC that uses CSI.
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is the maximum stable throughput of the network as the number
of users goes to infinity. PITC (transmission control is not a
function of the size of the network) was considered and the AST
was derived for it. It was shown that the effect of transmission
control is to effectively change the underlying CSI distribution
and the set of distributions that can be reached through PITC
was characterized.PDTC (transmission control is a function of
the size of the network) was then studied. If transmission control
is not used, then the maximum possible AST is given by

(59)

where is the CSI distribution. We showed that if the trans-
mission control sequence is chosen as

(60)

where is the underlying distribution, is a target distribution
that is dominated by , is the size of the network, and is a
design variable which is equal to the average number of attempts
per slot then the AST is given by

(61)

The problem then is one of identifying the right target distribu-
tions to use for a given reception model. We note that the trans-
mission control scheme derived using AST provides significant
gain even for moderate network size ; see [46].

The theory was then applied to the uplink of CDMA net-
works with LMMSE multiuser detectors and MF receivers. In
either case, propagation channel gain was used as the channel
state. Two different models leading to two different distribu-
tions were considered for the propagation channel gain. It was
shown that if the channel state distribution is exponential, there
is no gain to be achieved from PITC. However, with PDTC, if
the target distribution is chosen as a distribution with a rolloff,
it is possible to obtain significant gains. For the LMMSE re-
ceiver, it was shown that if the nodes do not use CSI then the
AST tends to zero as transmit power decreases but with the use
of CSI the achievable AST is lower-bounded by the spreading
gain of the network. This outcome has important implications
for the reachback problem in sensor networks where the number
of nodes is large but each is equipped with small transmit power
capabilities.

We now discuss some possible further research directions
that arise from this study. The theory can be applied to a va-
riety of reception models with different channel state parame-
ters. In this paper, we have primarily considered the case when
the propagation channel gain is chosen as the channel state.
Other possibilities include position of the mobile, etc. This leads
to interesting problems in development of reception models for
different signal processing and physical layer architectures as-
suming different channel state parameters. Once the reception
model has been developed, then it is important to determine
good target distributions and then evaluate the possible gains
from transmission control. See [47] for related discussions.

The results presented in this paper are mostly asymptotic in
nature and there are different transmission control algorithms
that give the same AST. But, these different choices might have
different performance in terms of convergence to the asymptotic
value. We feel that convergence will depend on how “different”
the target distribution is from the current distribution. Hence,
more work needs to be performed to characterize the rate of
convergence. We suspect that this will have a bearing on the
delay of the network.

For the LMMSE and MF reception model, we have only char-
acterized the AST for two types of probability distributions (ex-
ponential and rolloff distributions). An interesting direction is
to determine the AST for other distributions and the related
problem of the capacity of both reception models is open.

For the case of CDMA networks, it is interesting to compare
the strategy of transmission control with the strategy of power
control. Both of them require only decentralized CSI. The com-
parison between the two strategies is currently under investiga-
tion. It should be noted that transmission control is in general
easier to implement than power control because power control
might require a large dynamic range for the power amplifier.

In this paper, we have assumed that the distribution of the
channel state is the same across users and that the reception
model is invariant to permutation of channel states. The recep-
tion model considered in this paper thus cannot capture long-run
asymmetry in the users of the network. Addressing the problem
after relaxing these assumptions is definitely interesting. We
have assumed that the channel state is independent from slot
to slot, and we have restricted ourselves to stationary policies.
Other important models which we believe might lead to inter-
esting results are when the channel state is independent from
user to user but correlated in time and we are allowed to use non-
stationary policies. The model where the channel state is corre-
lated between users is also quite interesting and might lead to
different solutions. The results in this paper are quite surprising
because we have demonstrated that CSI can be used to improve
the performance of the network even when it is i.i.d. and the
users are restricted to stationary policies. However, we conjec-
ture that our results go through if the channel states are inde-
pendent from user to user and ergodic and the user is restricted
to stationary policies. In this case, the proofs might be more in-
volved because the theory of Markov chains cannot be used to
analyze the queue lengths.

APPENDIX I
PROOF OF THEOREM 1

The time evolution of the random variable is given by

(62)

where is equal to one if node successfully transmits a

packet during slot and is equal to zero otherwise, and is
the number of newly arrived packets in slot . Since the channel
is independent from slot to slot and the transmission proba-
bility depends only on the current channel state, the -dimen-
sional process is a Markov chain. We assume that the ar-
rival process and the reception model are such that the Markov
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chain is aperiodic and irreducible. This is a mild requirement
that is satisfied for most nontrivial arrival processes and recep-
tion models.

The stability of the system, which is equivalent to the exis-
tence of a limiting distribution for the Markov chain is therefore
also equivalent to the ergodicity of the Markov chain.

In order to show the stability of this Markov chain, we borrow
the techniques that were used in [23]. We state a key lemma from
[23] that will be used to obtain a sufficient condition for stability.

Lemma 1: Assume that and , , are two random
sequences with values from the set , while is
some event associated with them. If for any , , ,

(63)

(64)

then

(65)

This lemma says that the stability of implies the stability
of . The properties listed in the lemma are commonly no-
tated as stochastically dominates [39]–[41]. Given the
random sequence , the key is to identify a sequence that
stochastically dominates and whose stability is easy to
analyze. As in [23], we define a one-dimensional Markov chain

which is the fully loaded version of . That is, is a
Markov chain and

(66)

In order to use stochastic dominance to analyze , we need
to first show that the random sequence defined above satisfies
the properties listed in Lemma 1.

Lemma 2: The Markov chain stochastically dominates
.

Proof: Refer to Appendix II.

For the fully loaded system, an application of Pakes’ lemma
[42], which gives a sufficient condition on drift

can be used to obtain a sufficient condition for stability. For the
sake of completeness, we state Pakes’ lemma as follows.

Lemma 3: Suppose that the drift for all , and that
for some scalar and integer we have , for
all . Then the Markov chain has a stationary distribution.

It is easy to see that the drift for the fully loaded system
is independent of and is given by

(67)

(68)

The second equality follows from the symmetry of the reception
model that was assumed in Section II. The above equation gives
a sufficient condition for the stability of , which due to
Lemma 2 is also a sufficient condition for the stability of .

We obtain necessary conditions for stability in a straightfor-
ward way by following the arguments in [23]. We now state a
key result that is proved in [23] in a slightly more general form.

Lemma 4: Let Markov chain defined over possess
the following property of bounded homogeneity with respect to
its states: for any and , such that for every ,
either or and for any , we
have

(69)

Then for ,
implies that as with probability for all .

It is easy to see that the bounded homogeneity property holds
for the Markov chain under consideration. Thus, Lemma 4 im-
plies that the following condition is necessary for stability:

(70)

Thus, the theorem about maximum stable throughput follows.
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APPENDIX II
PROOF OF LEMMA 2

We need that for all , , , and

In other words, the probability that the buffer goes above a cer-
tain level in slot is larger if the queue has more packets in
slot . It is obvious that this is indeed the case. The other prop-
erty to be shown is

where . In other words, the tendency of the
buffer of the fully loaded system to exceed a level is higher
than that of the original system. In order to show this, we first
observe that the evolution of the th buffer in the original system
and the fully loaded system is given by

(71)

Hence, in order to show (71), it is only necessary that we show
that the probability of success is higher in the original system,
or

(72)

If is the number of nodes competing with node to send
packets in time slot (the nodes with nonempty queues), we note
that

(73)

whereas

(74)

We show that the probability of success is a decreasing func-
tion of which will then imply (72) because of (73) and (74).
We have the following formula for :

where

(75)

Equivalently, is the coefficient of in

(76)

where and

(77)

Therefore, is the coefficient of in

(78)

(79)

The difference is a function of the coefficients of
in , which we will show are all

positive. The coefficient of is given by

Due to the condition (4) on the reception functions , the
coefficients of for are greater than zero
which implies that . Hence, the Markov chain
stochastically dominates .

APPENDIX III
PROOF OF THEOREM 2

Let be defined as

(80)
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For , we have

(81)

We note that . This leads to the following
upper bound on the maximum stable throughput:

.
(82)

If , maximizing the upper bound by varying between
and , we find that for all

(83)

Hence, choosing the transmission control as

(84)

achieves the maximum and is hence optimal. If , then
the preceding choice is not valid since . If ,
we find that the upper bound is maximized at and

(85)

Hence, for , choosing the optimal choice for the trans-
mission control is given by

.
(86)

APPENDIX IV
PROOF OF PROPOSITION 4

For convenience, we define the function as

(87)

We assume that given a distribution function that is dom-
inated by , the sequence of transmission controls is chosen
as , where

(88)

We claim that for this choice of transmission control sequence

(89)

Due to assumption A1, we have

(90)

which implies that for all , such that

(91)

Therefore, for , we have

(92)

(93)

(94)

(95)

The second inequality follows because for all

(96)

Hence,

(97)

For each we have

(98)

Since for all , we have using monotone
convergence theorem

(99)

(100)
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Similarly, we also have

(101)

Define as

(102)

We know that

(103)

In fact, for any , the sequence of functions con-
verges uniformly to over the range . This implies that
if the sequence , where , then

(104)

Hence, taking the limit of (98), we have

(105)

Therefore,

(106)

APPENDIX V
PROOF OF PROPOSITION 5

If , it is easy to see that

(107)

We obtain an upper bound on the inner probability using
Chernoff’s bound as follows. Given an , we have

(108)

We let and define as the characteristic function

(109)

Therefore,

(110)

We now show that there exists such that

(111)

which will imply that there exists such that implies

(112)

We have

The inequality follows because

(113)

Using the monotone convergence theorem, we have

(114)

We therefore have

(115)

The first integral goes to zero as , since as
which implies that there exists an such that for
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implies . The second integral can be
shown to go to zero by dominated convergence theorem since
for large enough

(116)

and

(117)

We therefore have that

(118)

APPENDIX VI
PROOF OF PROPOSITION 6

The proof of this proposition is similar to the previous one.
Let and . If is the transmis-
sion control used then f

(119)

(120)

We obtain an upper bound on the inner probability using
Chernoff’s bound as follows. Given an , we have

(121)

We let and define as the characteristic function

(122)

As before, we show below that there exists such that

(123)

which will imply that there exists such that implies

(124)

We have

The inequality follows because

(125)

Using the monotone convergence theorem, we have

(126)

It is easy to see that .
We therefore have

(127)

The first integral goes to zero as , since as
which implies that there exists an such that for

implies . The second integral can be
shown to go to zero by dominated convergence theorem since
for large enough

(128)

and

(129)

We therefore have that

(130)

APPENDIX VII
PROOF OF PROPOSITION 7

From an extension of the arguments in [37], the asymptotic
MMSE throughput for a distribution of rolloff is given by

(131)

where are points of a homogeneous Poisson process of
rate . We then have

(132)



556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

The second equality follows from a simple substitution. Note
that

(133)

We also have [43] (p. 346) that

(134)

where

(135)

Therefore,

(136)
It is easy to see that

(137)

(138)

(139)

(140)

(141)

where is the number of Poisson points in ,
are independent and uniformly distributed between and , and

is the characteristic function of . The first

and third equalities follow due to the properties of the Poisson
process. The second equality follows due to bounded conver-
gence theorem. We have

(142)

Therefore,

(143)

(144)

Consider the inner integral. It turns out that

(145)

where is a confluent hyper-geometric function [44].
Therefore, the original integral can be written as

(146)

After a simple change of variables, this becomes

(147)

We now consider some properties of the function

(148)

that are crucial for the evaluation of the integral. The above func-
tion can also be written as [44]

(149)

We therefore have

(150)

(151)

(152)

where is a positive constant. The second inequality follows
because . It is also easy to see that the function

for all . Further, the Taylor series expansion of
is given by

(153)

It follows that the function is even. Similarly, the Taylor
series expansion of is given by

(154)

More importantly, we have as . It
can also be seen that the function is odd.
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Let . In order to find , we need to evaluate
the following integrals:

(155)

Even though these integrals are difficult to evaluate, it turns out
that the middle integral contains most of the mass. So let tend
to zero and consider the middle integral which can be written as

(156)

The last equality follows because can be made as small as
possible and hence can be made as close as possible to

. Since , an upper bound on the above integral is

(157)

Since , where , a lower bound on the
integral is

(158)

due to the property of given in (152). We will show that
both these integrals are equal to and thus the required integral
would have been evaluated. Consider

(159)

(160)

where

(161)

The last inequality follows after the substitution .
For convenience, we define the function as

(162)

Since , we can choose small enough such
that the inverse function of is defined. This also implies,
from the inverse function theorem [45], that the function is
continuously differentiable. It is therefore simple to show that

the function as . It is also easy to show
that the function as . Thus,

and . For simplicity, we define
. It is easy to see that . This

implies that the above integral is in fact equal to .
We now consider the lower bound which after interchange of

integrals becomes

(163)
The last inequality follows after the substitution
and the function and are as defined previously. We
know that

(164)

and hence, we consider the difference between the two integrals
and bound the difference. Set and note that by making

small can be made as small as possible. Now

(165)
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(166)

The second equality follows from integration by parts. The
first inequality follows because and

. The second inequality follows because
. The final inequality follows because in

to , is small and hence is close to
.

The rest of the integral is given by

(167)
It is easy to see that this is equal to

(168)

We now show that the integrals can be interchanged due to
Fubini’s theorem. Consider

(169)

(170)

(171)

(172)

The last inequality follows because for large the integral

(173)

increases faster than . Hence, the interchange of integrals is
justified. Due to this, the rest of the integral can now be written
as

(174)

Therefore, we need to evaluate

(175)
This integral can be rewritten with a change of variables as

(176)

It is difficult to evaluate the inner integral and it is bounded as
follows. Due to the properties of delta functions, the limit of the
integral as is given by

(177)

which is equal to . Therefore, we have shown that

(178)

where

(179)

We conjecture that for any finite

(180)

We take the value of hyper-geometric function as . We
have . Making this substitution, we have

(181)

APPENDIX VIII
PROOF OF PROPOSITION 8

Since has rolloff , we have

(182)

where . Let and if has a rolloff
smaller than , this implies

(183)

Therefore,

(184)

But, we also have that

(185)

(186)

(187)

The second inequality follows because and P3.
Equation (187) is clearly in contradiction with (184) which im-
plies that the rolloff of cannot be smaller than .
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If , we show that there exists a transmission control
such that the rolloff of is equal to . Since the rolloff

of is equal to , for all there exists a such that
implies that

(188)

Choose as

. (189)

For large enough, we have

(190)

(191)

(192)

Using (188), the second term can be bounded as

(193)

Therefore, we have

(194)

and

(195)

Hence, the rolloff of is .

APPENDIX IX
PROOF OF PROPOSITION 9

It is easy to see the asymptotic throughput is given by

(196)

APPENDIX X
PROOF OF PROPOSITION 10

Let , then there exists a transmission control
such that and

We therefore have

(197)

The second inequality follows because and the last
equality follows because

(198)

APPENDIX XI
PROOF OF THEOREM 3

If , we have

(199)

(200)

From (109) and (118), we have that for every there exists
a such that implies that

(201)
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It is also easy to see that this does not depend on . This
is because of the interference-limited nature of the system. For

, we use the upper bound on due to the noise
limited nature of the system and for larger we use the upper
bound due to the interference-limited nature of the system.
Therefore,

(202)

(203)

Thus,

(204)

which in turn implies that

(205)

We have a lower bound of on because for any given ,
it is possible to use a control that changes the CSI distribution to
one with a rolloff as close to as possible and achieve an AST
of at least . The upper bound of is easily obtained due
to the reception model for MMSE.
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