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Distributed Detection of Multi-hop Information
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Abstract—The problem of detecting multi-hop information
flows subject to communication constraints is considered. In a
distributed detection scheme, eavesdroppers are deployednear
nodes in a network, each able to measure the transmission times-
tamps of a single node. The eavesdroppers must then compress
the information and transmit it to a fusion center, which then
decides whether a sequence of monitored nodes are transmitting
an information flow. A performance measure is defined based on
the maximum fraction of chaff packets under which flows are
still detectable. The performance of a detector becomes a function
of the communication constraints and the number of nodes in
the sequence. Achievability results are obtained by designing
a practical distributed detection scheme, including a new flow
finding algorithm that has vanishing error probabilities fo r a
limited fraction of chaff packets. Converse results are obtained
by characterizing the fraction of chaff packets sufficient for an
information flow to mimic the distributions of independent traffic
under the proposed compression scheme.

Index Terms—Intrusion detection, Traffic analysis, Network
surveillance, Information-theoretic limits

I. I NTRODUCTION

CONSIDER a wireless ad hoc network as illustrated in
Figure 1. We want to analyze traffic in the network

to detect the presence of information flows. If every packet
is reencrypted and padded at each relay node, the only
information we can work with is the timing of transmissions.
The problem, then, is to infer the presence of flows from
correlations among the transmission timing patterns of nodes.
To do this, eavesdroppers may be deployed near several nodes
in the network. No decision can be made by any eavesdropper
since it can only observe the signal from a single node, but
each eavesdropper may communicate with a fusion center
under a rate constraint. The detector at the fusion center,
given the limited data arriving from each eavesdropper, can
then decide whether the observed path contains an information
flow1.
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Fig. 1. In a wireless network, eavesdroppers are deployed tocollect
transmission activities (denotedSi, i = 1, . . . , N ) of N nodes. These
processes are compressed and transmitted to a fusion center, which determines
whether there is a flow from node A through nodes B, C, and D.

There are many challenges in such a distributed traffic
analysis problem. The network can mask information flows
through random timing perturbations, packet shuffling, or
the insertion of extra packets that are not part of the flow.
These extra packets, as well as packets not part of the flow
in question, constitutechaff noise. The rate constraint for
the communications channels poses another challenge; each
eavesdropper must quantize its measurements in a manner that
preserves the detectability of flows at the fusion center.

The problem considered here has applications in network
surveillance and intrusion detection. With the proliferation of
advanced encryption techniques, it can be useful to glean as
much information about data flow in a network as possible,
even if decryption of the data is out of reach. An eavesdropper
may want to monitor a network using several low-cost sensors
that communicate wirelessly with a fusion center; the limited
power of the sensors motivate the rate constraints in this
problem.

A. Related Work

Staniford and Heberlein [2] were the first to consider the
problem of detecting stepping-stone attacks in networks. These
are attacks wherein a malicious user routes data and commands
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through several compromised nodes that do not belong to
him before reaching the the final, targeted node. Solving
this problem involved finding information flows. Staniford
and Heberlein used traffic content to make a decision, as
did Wang et al. [3]. Zhang and Paxson [4] first considered
dealing with encrypted traffic using timing information instead
of content. Donohoet al. [5] considered encrypted traffic
with timing perturbations, and found that it was possible to
exploit a known delay constraint to differentiate a flow from
independent traffic. The authors of [6] showed that similar
results could be obtained if an intruder were known to have
a memory constraint. They later found the first timing-based
detectors with vanishing error probabilities that work even
when the chaff noise grows proportionally to the total traffic
[7]. In [8], the authors showed that as the number of hops in
an information flow grows large, an information flow buried
in chaff noise can no longer be hidden from a detector. This
paper is a followup of [9], where the problem of distributed
detection of2-hop information flows was first considered.
Under a similar formulation as that in [9], we extend the results
of [9] in several aspects. First, we consider general multi-
hop (more than 2) information flows. Second, we propose a
new algorithm. Unlike [9], our algorithm operates directlyon
the quantized processes, rather than first reducing the problem
to an equivalent unquantized problem. The new algorithm is
faster than the old except in cases where the rate constraintis
loose. Third, we present experimental results of our algorithm
applied to actual network traces.

B. Summary of Results and Organization

We consider the distributed detection of multi-hop infor-
mation flows by timing analysis. As in [9], we characterize
the performance of a detector by the largest fraction of chaff
noise under which a flow is still detectable, and we break
the problem down to quantization at local traffic sensors and
detection at the fusion center. In [9], algorithms previously
developed for the unquantized version of the problem were
applied to preprocessed realizations of the quantized processes.
In this paper, a new algorithm is developed that applies directly
to the quantized realizations and provides some speedup when
the rate constraint is not too loose. This algorithm finds the
minimum possible fraction of chaff noise that could have been
mixed with a delay-constrained information flow to gener-
ate the observed, quantized realizations. This value is then
compared to a threshold, yielding detection if the threshold
is not exceeded. Under the assumption that, in the absence
of information flows, nodes transmit according to indepen-
dent Poisson schedules, we provide a characterization of the
threshold. We show that if the flow size is above a certain
level, the miss detection and false alarm probabilities vanish
as the number of packets used in the detection increases. We
then provide an analytical upper bound on the fraction of chaff
noise under which our detector provides a consistent detection.
We compare the performance under various rate constraints
and flow lengths. We then loosen the Poisson assumption and
determine the performance of the distributed detection scheme
when the interarrivals follow the Pareto distribution, which is

said to more closely model packet transmission timestamps
in networks [10]. Finally, we test our algorithm on real data,
demonstrating the performance of the detection scheme on
TCP traces.

The rest of the paper is organized as follows. Section II
is the problem formulation. In Section III, we define a per-
formance measure. In Section IV, we define the quantization
scheme. In Section V, we define an algorithm for finding the
minimum fraction of chaff noise. In Section VI, we show that
the value computed by this algorithm converges almost surely
(a.s.) when the sources are Poisson and we define a detector
that takes advantage of this fact. We also derive an analytical
upper bound on performance as well as a lower bound that
is computed numerically. In Section VII, we show the results
of these experiments and interpret them. In Section VIII, we
consider the Pareto interarrival model and compare resultsto
those under the Poisson model. In Section IX, we demonstrate
the performance of the detection scheme on actual TCP traces.
Finally, in Section X we conclude with remarks.

II. PROBLEM FORMULATION

A. Notation

We use the following notation. Uppercase letters denote
random processes; lowercase letters denote their realizations.
Boldface letters represent vectors, and plain letters represent
scalars. We use parentheses to indicate indexing. Script letters
represent sets. ThusS is a point process,s its realization,
S(k) thekth epoch,s(k) the realization of thekth epoch, and
S the set of epochs ins. As in [8] and [9], we define the
superposition operator

⊕
to operate on the realizations of

two point processes such that(ak)∞k=1

⊕
(bk)∞k=1 = (ck)∞k=1,

wherec1 ≤ c2 ≤ . . . and{ak}
∞
k=1

⋃
{bk}

∞
k=1 = {ck}

∞
k=1.

B. Problem Statement

Let Fi, i = 1, . . . , N , be the point processes representing
transmission activities at nodes1 throughN , respectively. We
say thatFi, i = 1, . . . , N , is an information flow if it satisfies
the following definition.

Definition 2.1: A sequence of processes(Fi)
N
i=1 is an in-

formation flow with delay constraint∆ if for every realization
fi, i = 1, . . . , N − 1, there exist bijectionsgi : Fi → Fi+1

such that0 ≤ gi(s) − s ≤ ∆ for everys ∈ Fi.
The lower bound ongi(s) − s is the causality constraint,

because it forbids a relay packet from occuring before its
source packet. The upper bound is thedelay constraint,as it
sets a maximum delay between a source packet and its relay
packet.

In reality, a node may have transmissions that are part of
an information flow as well as other transmissions that are
not part of a flow. We call these extra transmissionschaff
noise.Then we say that a sequence of processes(S1, . . . ,SN )
containsan information flow if each processSi can be de-
composed into an information-carrying processFi satisfying
Definition 2.1 and a chaff processWi so that [8]

Si = Fi

⊕
Wi, i = 1, . . . , N (1)



A. AGASKAR, T. HE, AND L. TONG 3

Delays

Chaff

Bounded

Fig. 2. An example of information flow with bounded delay superposed with
chaff noise forN = 3 nodes. Each packet in a flow is matched to another
packet in the next node with a delay less than∆.

A realization containing an information flow is illustratedin
Figure 2.

We pose the problem of flow detection as a test of the
following hypotheses:

H0 : S1, . . . ,SN are jointly independent,

H1 : (S1, . . . ,SN ) contains an information flow,

Note that, although (1) appears to be the conventional ”signal
plus noise” model, there is a key difference in that we allow the
chaff noise to be arbitrarily correlated with the flow. Note also
that our modeling hypotheses are not complementary — it is
possible that along a sequence ofN monitored nodes, there is
a subset ofN − 1 nodes on which there is an information
flow. Our detector, then, could be part of a scheme that
sequentially searches for information flows on successively
larger subsets of the monitored nodes. We consider lossless
information flows only; if a packet is lost before reaching the
destination, it will be considered chaff (though a detectorof
shorter information flows may detect it as such.)

In the distributed detection scheme, as illustrated in Figure
3, each eavesdropper can perfectly measure the realizationof
the process at a single node. It can then communicate directly
with a fusion center independent of the other eavesdroppers, so
long as it obeys a capacity constraintR. To achieve this, each
eavesdropper applies a quantization functionh

(t)
i (·) to the re-

alization over[0, t), obtainingQ
(t)
i = h

(t)
i (Si), i = 1, . . . , N.

It then encodes the quantized process by choosing a codeword
Ξi from a codebook of sizeetR, and transmits the codeword to
the fusion center. The fusion center decodes the realizations to
obtain estimated quantized realizations,Q̂

(t)
i . This can be done

without error for sufficiently larget so long as1
t
H(Q

(t)
i ) ≤ R,

where H(·) is the joint entropy of a collection of random
variables. We assume that the sensors are synchronized to
some reference timing signal; without such synchronization,
it would be impossible to determine whether a hypothesized
flow satisfies a delay bound.

Given these quantized realizations, the detector
δt((q

(t)
i )N

i=1) chooses a hypothesis. This is a partially
non-parametric hypothesis test, as the correlations among
the processes underH1 is not specified. We require that the
marginal distribution of each node’s process be the same
under each hypothesis; otherwise, each eavesdropper could

S1

S2

SN

h
(t)
1

h
(t)
2

h
(t)
N

p
(t)
1

p
(t)
2

p
(t)
N

...
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δt
θ̂t
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Fig. 3. A distributed detection system. The system consistsof N quantizers
h
(t)
1 , . . . , h

(t)
N

and a detectorδt.

independently test the hypothesis and send its one bit result
to the fusion center [9].

Given a per-node rate constraintR, the problem is to
design the quantizer functionsh(t)

i (·) and the detectorδt(·)
to optimize the overall detection performance.

III. PERFORMANCEMEASURE

A measure of performance of a detector must take into
account the detector’s tolerance of chaff noise. To this end,
we need to quantify the chaff noise contained in a process.
We use the concept of thechaff-to-traffic ratio(CTR) defined
in [8] and [9].

Definition 3.1: Given realization of an information flow
(fi)

N
i=1 and chaff noise(wi)

N
i=1, the CTR is defined as

CTR(t) ≡

N∑
i=1

|Wi

⋂
[0, t]|

N∑
i=1

|(Wi

⋃
Fi)

⋂
[0, t]|

,

CTR≡ lim sup
t→∞

CTR(t), (2)

where the operator| · | gives the number of elements in its
argument. So CTR(t) is the fraction of packets that are chaff
before timet, and the CTR is the asymptotic fraction of chaff
packets. The CTR is a function of the realizations, so it is
itself a random variable.

To measure the performance of a detector, we use the
following metric defined in [8], which is derived from the
notion of Chernoff-consistency [11].

Definition 3.2: A sequence of detectors(δt)t>0 is calledr-
consistent(r ∈ [0, 1]) if the false alarm probabilityPF (δt)
and the miss probabilityPM (δt) satisfy

1) lim
t→∞

PF (δt) = 0 for any (Si)
N
i=1 underH0;

2) sup
(Si)N

i=1
∈P

lim
t→∞

PM (δt) = 0, where

P = {(Si)
N
i=1 : (Si)

N
i=1contains an information flow

and CTR≤ r a.s.}

Themeasure of consistencyof a sequence of detectors(δt)t>0

is the supremum ofr such thatδt is r-consistent.
Given a per-node capacity constraintR and a distributed

detection scheme with consistencyr that obeys the constraint,
we have an achievable pair(R, r). We can take the supremum
of achievable consistencies as a function of the rate constraint
to partition the consistency-rate space into achievable and
unachievable pairs. This gives us the following definition.
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Definition 3.3: Given a per-node capacity constraintR, the
consistency-rate function(extended from the consistency-rate
function in [9]) is defined as

α(R) ≡ sup{r ∈ [0, 1] : ∃h
(t)
i (·), i = 1, . . . , N, (δt(·))t>0

s.t. (δt)t>0 is r-consistent and

lim sup
t→∞

1

t
H(Q

(t)
i ) ≤ R, i = 1, . . . , N}, (3)

In this paper we will consider only deterministic quantizers.
By the source-channel separation theorem [12], the constraint
on the entropy of the quantized process in Definition 3.3
is sufficient for lossless transmission over a channel with
capacityR. So for CTR belowα(R), there must be a detection
scheme that satisfies the capacity constraintR and will detect
all flows. In general, asR increases and the rate constraint is
loosened,α should increase monotonically and approach the
non-quantized case (R = ∞). The ultimate goal of this work
is to find the consistency-rate function and design quantizers
and detectors to achieve it.

IV. DATA COMPRESSIONSCHEME

We now find a lower bound on the consistency-rate function
for various numbers of nodes by defining an actual detection
scheme. In particular, we employ a slotted quantizer as in [9]
and originally used to compress Poisson point processes in
[13].

Definition 4.1: Given a point processS, a slotted counter
with slot lengthT is defined asγ(S) ≡ (Z1, Z2, . . .), where
Zj = |S

⋂
[(j − 1)T, jT )| is the number of packets in slotj.

The slotted quantizer so defined gives us a sequence of ran-
dom variables representing the number of epochs in successive
bins of width T . If S is a Poisson process with intensityλ,
then theZk are i.i.d. Poisson random variables with meanλT .
For large block length, we can use a Lempel-Ziv encoder to
transmit theZk with no errors at a rate [12]

R(T ) =
1

T
Hp(λT ), (4)

whereHp(·) is the entropy of a Poisson random variable with
a given mean. As we have already required that the sensors be
synchronized to a timing reference, we also require that their
quantization slots be synchronized. This aids the development
of an algorithm to operate on the quantized vlaues only.

V. THE QUANTIZED BOUNDED DELAY RELAY

ALGORITHM

Given the unquantized observations at the traffic monitors,
algorithms developed in [8], [14] can be used to obtain an
optimal partition (cf. [8, Section V-B]) of the observed point
processes into flow with delay constraints and chaff processes.
Specifically, the Multihop Bounded Delay Relay (MBDR)
algorithm proposed in [8] gives the minimumCTR(t) of a
process generating a given realization with durationt. The
resulting CTR is then used as the test statistic for flow
detection.

We now consider the case when observations at traffic sen-
sors must be quantized using, for example, slotted quantizers

discussed in section IV. As an extension to the detection
algorithm for unquantized observations, the key idea is to
obtain an optimal partition algorithm that finds the minimum
CTR that could have generated the quantized observations.
The first such algorithm was presented in [9], where the
problem was first reduced to an equivalent unquantized case
by performing a worst-case reconstruction of the original
point processes. We present here an alternative algorithm that
operates directly on the slot-quantized values.

This new algorithm is referred to as Quantized Bounded
Delay Relay (QBDR). It operates on the quantized sequences
Qn

i , where n = ⌈ t
T
⌉. Specifically, it decomposes the se-

quences into traffich(Fi) and chaffh(Wi) sequences such
that Si = Fi

⊕
Wi, h(Si) = Qi, placing as few packets as

possible into the chaff process while satisfying the delay and
causality constraints. The algorithm requires the slot width of
each quantizer to be equal, which is why we operate under
equal rate constraints. In practice, one could analyze a system
by assuming that each node has a rate constraint equal to the
tightest one present.

The algorithm starts at the beginning of the sequences and
progresses through candidate flow paths, eliminating as much
traffic as possible. Whatever remains is classified as chaff.
The candidate flow path is represented by a set of pointers,
one per node, to a slot in that node’s sequence. These pointers
are initialized to the beginning of each sequence. Four steps
are performed repeatedly until the end of any process is
reached. First, any possible flows along the candidate path
are eliminated by subtracting the minimum value of any slot
in the path from all slots in the path. Second, any pointer
to a slot with no packets remaining is incremented. Third, the
causality constraint is enforced by incrementing any pointer to
a slot earlier than its source node’s pointer. Fourth, the delay
constraint is enforced by incrementing any pointer that is not
within D = ⌈∆

T
⌉ slots of its destination node’s pointer. The

algorithm is detailed in Table I with a specific example given
in Table II.

Like its predecessor MBDR in the non-quantized case,
QBDR is the optimal flow-finding algorithm in the quantized
case, as stated in the following proposition.

Proposition 5.1:For any realization(qn
1 , . . . ,qn

N ), QBDR
finds the minimum CTR of an information flow with bounded
delay∆.

Proof: It was shown in [8] that an algorithm that greedily
finds the earliest possiblerelay sequences, or sequences con-
taining one epoch from each point process, will find the most
possible relay sequences. The proof, which is omitted here,
shows that there exists a largest set of order-preserving relay
sequences (since packets can be shuffled without breaking
the constraints to ensure that relay sequences don’t cross).
Next, if this largest set is not the one found through the
greedy algorithm, then there exists a way to find a relay
sequence not in the largest set. As this is a contradiction,
the assertion is proved. Here, it remains to be shown that
QBDR finds the earliest possible relay sequence at each step.
We use an inductive argument. First note that the maximum
delay bound in number of bins isD = ⌈∆

T
⌉, defined on

line 3 of Table I. We define the “path” at each step as the
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Quantized-Bounded-Delay-Relay(qn
1 , . . . , qn

N
, ∆, T )

1: P ←
PN

k=1

Pn
i=1 qk(i) // Count total number of packets

2:
3: D ← ⌈∆

T
⌉

4: for k = 1 : N do
5: xk ← 1 // Initialize bin pointers
6: end for
7:
8: while eachxi < n do // Iteratively eliminate flows
9: m← mink qk(xk)

10: for k = 1 : N do
11: qk(xk)← qk(xk)−m
12: end for
13:
14: while ∃k such thatqk(xk) = 0 do
15: increment all suchxk // Search for traffic
16: end while
17:
18: while ∃k such thatxk < xk−1 do
19: increment all suchxk // Enforce causality
20: end while
21:
22: while ∃k such thatxk < xk+1 −D do
23: increment all suchxk // Enforce delay constraint
24: end while
25: end while
26: C ←

P

k=1:N

P

i=1:n qk(i) // Count remaining packets
27: dCTR← C

P

TABLE I
THE QBDR ALGORITHM

sequence of quantized values specified by the slot pointersxk,
or (q1(x1), . . . , qN (xN )). The slot pointers are represented by
underlines in Table II. Each row in the demo represents a node
in the flow, and has a single slot pointer.

1) On lines 4-6, we initialize our slot pointers to 1. Clearly
the earliest possible relay sequence is along this path,
computed on line 9. The maximum number of relay
sequences is the minimum count along the path. We
subtract this number from each slot in the path (lines 10-
12) so that there are no more possible relay sequences.

2) At step l, suppose that the relay sequences have been
removed from the path so that we must update it to find
the earliest possible relay sequences. Clearly an active
path cannot contain a slot with count0, so we increase
any pointer that points to a slot with count0 (lines
14-16). Then we enforce the causality constraint by
increasing each pointer that is earlier than its predecessor
until all satisfy the constraint (lines 18-20). Note that
each pointer can only be affected by its predecessors.
Next we enforce the delay bound by increasing each
pointer that is not withinD of its successor until all
satisfy the bound (lines 22-24). Note that each pointer
can only be affected by its successors. This means that
enforcing the delay bound can in no way undo the
enforcement of the causality constraint. So we have the
(l + 1)th path that contains the earliest possible relay
sequence.

The end condition is clear. When our path takes us outside
the domain of any of the quantizer sequences, we can find no
more flows. Since QBDR finds the earliest possible relay se-
quence at each step, it finds the most possible relay sequences,

QBDR operates onN sequences of random variables, representing the
output ofN slot quantizers. The following example demonstrates the
operation of the algorithm whenN = 3. In the first step, each row
represents the output of a node. Each column is a time slot. The values
are stored and modified in the steps that follow.

Initialization (lines 4-6):
All slot pointers (represented by
underlines) are initialized to slot
1. For this example, supposeD = 1.

2 2 5 3 0
4 1 0 5 4
2 3 4 1 0

Eliminate flows (lines 9-12):
The minimum value pointed to
is 2. Subtract 2 from each value.

0 2 5 3 0
2 1 0 5 4
0 3 4 1 0

Find non-empty slots (lines 14-16):
Increment every pointer whose
slot contains 0.

0 2 5 3 0
2 1 0 5 4
0 3 4 1 0

Enforce causality (lines 18-20):
Increment every pointer that is
earlier than its predecessor’s pointer.

0 2 5 3 0
2 1 0 5 4
0 3 4 1 0

Enforce delay (lines 22-24):
No action necessary.

0 2 5 3 0
2 1 0 5 4
0 3 4 1 0

Eliminate flows (lines 9-12):
The minimum value pointed to
is 1. Subtract 1 from each value.

0 1 5 3 0
2 0 0 5 4
0 2 4 1 0

Find non-empty slots (lines 14-16):
Pointer 2 is incremented twice to
get to the first nonzero value.

0 1 5 3 0
2 0 0 5 4
0 2 4 1 0

Enforce causality (lines 18-20):
Pointer 3 is incremented until it no
longer occurs before pointer 2.

0 1 5 3 0
2 0 0 5 4
0 2 4 1 0

Enforce delay (lines 22-24):
Pointer 1 is incremented until it is
within D of pointer 2.

0 1 5 3 0
2 0 0 5 4
0 2 4 1 0

This process continues until all flows are found. All leftover packets are
deemed chaff.

TABLE II
QBDR DEMONSTRATION

so it finds the minimum possible chaff.

QBDR’s advantage over the previous method (constructing
a worst-case point process and running MBDR) is that it is
able to eliminate multiple flows in one step. On the other hand,
if the average number of packets per slot is low, QBDR wastes
time cycling through empty slots before finding an occupied
one to search for a flow. Empirical results usingMATLAB
implementations show that QBDR performs better when more
than one in four slots on average have at least one packet. This
corresponds, for intensities ofλ = 1, to a rate constraint less
than 2-3 nats. For low rates, the improvement can be several
orders of magnitude.
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VI. A T HRESHOLDDETECTOR AND ITSPERFORMANCE

Algorithm QBDR returnsĈTR(t), which we can use as a
statistic for our detector, which we define as follows.

δt(q
n
1 , . . . ,qn

N ; τn) =

{
1 if ĈTR(t) ≤ τn

0 otherwise.
(5)

To determine the detector thresholdτn we use the following
proposition:

Proposition 6.1: If the ̂CTR(t) obtained from QBDR con-
verges almost surely toc under H0 as t → ∞, then the
measure of consistency (c.f. Definition 3.2) of the detector
given in (5) isc.

Proof: Suppose that for large enought, the estimated
CTR from QBDR underH0 converges to some valuec with
probability one. Then we can fix anyτn = τ < c for the
threshold detector and be sure that the false alarm probability
will go to zero. Meanwhile, underH1, ĈTR(t) < CTR,
whereCTR is the true CTR of the process (this follows from
Proposition 5.1.) So long asCTR < τ , ĈTR < τ , and we
will have detection with probability 1. So as long asτ < c,
our detector isτ -consistent, so the measure of consistency for
this detector isc.

We can show that under independent Poisson processes, the
estimated CTR from QBDR does converge, as stated in the
following proposition.

Proposition 6.2:The minimum CTR of a process that pro-
duces the quantized realizationsqn

i , i = 1, . . . , N underH0

with Poisson marginals converges a.s. to a constantC.
Proof: First considerT ≥ ∆ for simplicity; the argument

can be extended to the other cases. As QBDR’s slot pointers
move along the process, they modify the value in each slot by
selectively removing packets corresponding to flows. Define
Cd

k (j) as the number of packets remaining in slotj of process
k when the pointer to the first processx1 first transitions from
j − d to j − d + 1 (before the packet removal for that stage.)

Because of causality,C0
k(j) = Ck(j), the final number

of chaff packets remaining in slotj of processk. Once the
process1 pointer has passed a particular slot, there can be no
more flow packets in that slot for any process. Because of the
delay constraint, a flow can only move forwardk − 1 slots
from process1 to processk. So Ck

k (j) = Qk(j).
Now consider the following collection of random variables,

illustrated in Figure 4:

G(j) ≡

((
C

l−j+1
k (l)

)N

k=l−j+1

)j+N−1

l=j

(6)

In other words, when the pointerx1 jumps from j − 1 to
j, G(j) has the number of remaining packets in processes1
throughN in slot j, processes2 throughN in slot j + 1, and
processesk throughN in slot j + k − 1 for k up to N .

For theN = 2 case,G(j) containsC1
1 (j) = Q1(j), C1

2 (j),
andC2

2 (j + 1) = Q2(j + 1). Given these variables

C1
2 (j + 1) =

max(min(Q2(j + 1) − Q1(j) + C1
2 (j), Q2(j + 1)), 0).

In addition,C1
1 (j+1) = Q1(j+1), andC2

2 (j+2) = Q2(j+1),
and we have a complete formula forG(j + 1) given G(j).

C1
1 (j) . . . . . . . . . . . .

C1
2 (j) C2

2 (j + 1) . . . . . . . . .

C1
3 (j) C2

3 (j + 1) C3
3 (j + 2) . . . . . .

C1
4 (j) C2

4 (j + 1) C3
4 (j + 2) C4

4 (j + 3) . . .

Fig. 4. The Markov chainG(j) consists of the values that will be used by
QBDR after the slot pointerx1 jumps fromj − 1 to j. Shown here are the
locations and random variables corresponding to the valuesin the Markov
chain forN = 4.

In general,G(j) contains every possible slot that a flow
starting in slotj of process1 can pass through. So obtaining
G(j + 1) involves running QBDR onG(j) until x1 jumps
from j to j + 1, then copying over the top diagonal from
(Q1(j + 1), Q2(j + 2), . . .). SoG is a Markov process.

ProcessG is aperiodic and irreducible. The realization of
G is bounded by the number of packets in each slot, which
is a collection of independent Poisson random variables. The
return time for the 0-state of this collection (where each
element is zero) is finite, so the return time for the 0-state
of G is finite. So G is positive recurrent. This property,
combined with its aperiodicity and irreducibility, means that
G is ergodic. SoG converges to a limiting distribution. The
amount of chaff in slotj, C(j), is the number of packets
remaining in slotj after QBDR is applied toG(j). Because

G converges to a limiting distribution,1
n

n∑
j=1

C(j) converges

a.s. to a constant (that we callC) by ergodicity. The CTR,
then, converges a.s. toC

NλT
.

Although we do not have an analytical expression forC,
the proof of Proposition 6.1 suggests a numerical procedure:

Given λ andR,

1) Invert (4) to findT (R).
2) Generate epochs ofN independent Poisson processes

with parameterλ over a period of timet, where t is
long so the estimated CTR is near the convergent value.

3) For each R, pass each process through a slot quantizer
with slot lengthT (R).

4) Use QBDR with delay bound∆ to find the minimum
possible CTR to generate the observations.

5) α∗(R) = ĈTR

This gives us an achievable consistency value for each rate.
In [8], it was shown that under certain conditions, a lower

bound on the estimated CTR of independent Poisson traffic
converges to one asN increases. We can use this to obtain a
similar result.

Theorem 6.3:If Si, i = 1, . . . , N are independent Poisson
processes of maximum rateλ, andQi, i = 1, . . . , N are the
slot-quantized versions of theSi with slot lengthT , then

lim
t→∞

ĈTRQBDR(t) ≥ 1 − κ a. s. (7)

where

κ = min

(
(λ∆′)N−2(1 − e−λ∆′

),

N−1∏

i=1

(1 − e−iλ∆′

)

)
,

∆′ = T (⌈
∆

T
⌉ + 1).
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Proof: First consider the meaning of∆′. In QBDR,D =
⌈∆

T
⌉ is the maximum difference in slots for two packets to be

matched. Each packet can be matched to another packet in one
of D+1 different slots. For a packet at the very beginning of a
slot, the maximum delay to the next packet is thusT (D+1) =
∆′.

Since all the processes have the same arrival rate, and a
flow takes one packet from each process, the estimated CTR
tends to1−PN , wherePN is the probability that a packet in
the S1 is matched to packets inS2 throughSN , which each
successive packet satisfying the delay bound. We therefore
wish to upper boundPN . Since the first packet inS1 claims
packets in the remaining processes that become unavailable
to future flows,PN is upper bounded by the probability that
the very first packet inS1 (call its arrival timet) is part of
a flow. This is upper bounded by the probability that each
Si, i = 2, . . . , N has at least one packet somewhere int+ i∆′

(a necessary but not sufficient condition for a flow.) So, since

arrivals are Poisson,PN ≤
N−1∏
i=1

(1− e−iλ∆′

). Using inductive

arguments as in [8], we can also show thatPN ≤ λ∆′PN−1

for N ≥ 3. Substituting our expression forP2, we therefore
have also thatPN ≤ (λ∆′)N−2(1− e−iλ∆′

). SoPN is upper
bounded by the minimum of the two expressions. Thus we
have a lower bound on the CTR.

It is easy to see, then, that ifλ∆′ < 1, then the CTR of
QBDR goes to one exponentially with N. It is also clear that
asT → 0, ∆′ → ∆, meaning that the perfect information case
agrees with the lower bound computed in [8].

Given a quantizing scheme and a null hypothesis, it may be
possible to construct an information flow with chaff embedded
in such a way that it is statistically indistinguishable from
independent traffic. It can be shown [8] in the non-distributed
version of this problem, with a Poisson null hypothesis, that
the fraction of chaff required to do this is no greater than the
consistency of a CTR threshold detector. This is not the case
here because the optimal quantizer is unknown, but we can use
it to find an upper bound on the consistency of our detector:

Theorem 6.4:Under the slot quantization scheme, the con-
sistency obeys

α(R) ≤ 1 −

E

(
min

k=1,...,N
Xk

)

λT
, (8)

whereXk
i.i.d.
∼ Poisson(λT ).

Proof: We use the fact that in a Poisson point process,
conditioned on the number of epochsQ in a slot, the location
of the epochs has the same distribution asQ i.i.d. uniform
random variables over that slot. We consider the following
construction:

1) Generate sequencesXk(j), k = 1, . . . , N ; j = 1, . . . of
i.i.d. Poisson random variables with meanλT .

2) In each slotj, find Xmin(j) = min
k=1,...,N

Xk(j).

3) Generate the point processF1 by choosingXmin(j)
epochs uniformly over[(j − 1)T, jT ) for all j, and let
Fi = F1, i = 2, . . . , N .

4) Generate the point processesWk, k = 1, . . . , N by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1
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α*

 

 

Upper Bound

Achievable

Fig. 7. An upper bound on the consistency-rate function of a scheme using
slot quantization compared to the achievable consistency-rate function found
by simulation. In this case,λ = 0.25, ∆ = 1, andN = 4.

choosing (Xk(j) − Xmin(j)) epochs uniformly over
[(j − 1)T, jT ) for all k ∈ 1, . . . , N andj.

5) Generate the final point processesSk = Fk

⊕
Wk.

Now each Sk is a Poisson process with rateλ, and the
quantized sequences are stillXk, k = 1, . . . , N , which are
i.i.d. Poisson random variables with meanλT . The average

number of flow packets per node will beE

(
min

k=1,...,N
Xk

)
,

whereXk, k = 1, . . . , N are i.i.d. Poisson random variables.
From this we can compute the CTR and state that under slot
quantization,

α(R) ≤ 1 −

E

(
min

k=1,...,N
Xk

)

λT
. (9)

This upper bound holds for all detectors that use the slot
quantization scheme. For largeN , the upper bound is close to
1, and is thus not very instructive. ForN = 2, it is equivalent
to the upper bound derived in [9].

VII. S IMULATIONS

Experimental traces were generated inMATLAB, and the
function α∗(R) was computed according to the procedure
outlined above. We generated new processes for eachR,
and sett = 104 · T (R). This was long enough to produce
consistent behavior between trials, which led us to believethat
the convergent value was being found by the QBDR algorithm.

To assess the relationship between the number of nodes in
the hypothesized flow and the consistency of the detection
scheme, we let the number of nodes vary from 2 to 26, and
for five rates plotted the consistency versus the number of
nodes. The results are shown in Figure 5.

We also found the consistency-rate curves for 2 through
6 nodes, and plotted the curves on the domainR ≤ 1. The
results are shown in Figure 6.
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Fig. 5. The QBDR CTRα∗(R) vs. N , the number of nodes, for various per-node rate constraints. In this case, (a)λ = .25 and (b)λ = 1. ∆ = 1, and
104 slots are used for each experiment to ensure convergence. Slot lengths corresponding to rates are shown. Only in theλ = .25, R = 0.5 andR = 0.6
cases does the lower bound from (7) go to 1 asN →∞.
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Fig. 6. An achievable consistency-rate function for detecting flows of various lengths using slot quantization. In thiscase, (a)λ = 0.25 and (b)λ = 1.
∆ = 1, and104 slots are used for each experiment to ensure convergence.

The upper bounds from (8) were computed by generating
lengthN sequences of Poisson random variables and finding
the average of the minimum value. The upper bound for
a particular case is plotted and compared to the achieved
consistency in Figure 7.

These plots yield several observations. For very low rates,
the consistency does not grow much with the number of hops.
In some cases where the condition for the lower bound is not
met, the consistency still approaches one asN → ∞, but
in other such cases it appears to approach a smaller asymp-
tote. This indicates that the slotted quantization introduces
a fundamental limitation that is not present in the perfect

information case [8], in which the consistency tends to one
as N grows for any arrival rate and delay bound. At high
rates, the consistency should approach that of the unquantized
case. At low rates, it is now clear, the consistency grows
linearly with the rate. In this region,R is proportional tolog T

T
.

Intuitively, this can be understood as transmitting a random
variable with entropy proportional tolog T being transmitted
every period of lengthT . Since T is large in this region,
log T grows much more slowly thanT . Changing the rate,
then, is equivalent to changing the rate at which measurements
are sent. So it is reasonable to expect that doubling this
rate doubles the chaff we can tolerate, as the same chaff is
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now split over twice the measurements. The performance of
our detection scheme deteriorates as the packet arrival rate
increases, because the increase inλ causes an increase in
information entropy and a higher density of packets leads to
more false matches between packets in successive nodes. Asλ

increases, the achievable region shrinks. Figure 7 shows that
except at large rates our detector may be unable to achieve
vanishing error probabilities even if there is a distinction
between the measurable distributions underH0 andH1.

VIII. O THER INTERARRIVAL MODELS

For tractability, we have thus far clung to the Poisson
assumption—that interarrivals fit an exponential distribution.
In actual networks, this assumption is not valid at the packet
level. For example, TELNET packets have been shown [10] to
be better modeled as i.i.d. Pareto distributed2 with the shape
parameterβ ≈ 1.

In [15], we showed that it is more difficult to hide an
information flow in traffic under Pareto interarrival times with
shape parameter within a certain range (which includes, in
particular, the shape parameter used in [10]) than traffic with
exponential interarrival times. An equivalent statement is that it
is easier to detect an information flow under such conditions.
The intuition is that such traffic is “burstier” than Poisson
traffic, and so under the independent hypothesis fewer packets
would be falsely labeled as flow packets.

Because the distribution of the slot quantized values under
Pareto interarrival times is not known analytically, we resort
to simulation to test the performance of our detection scheme
under this hypothesis. In addition, we will not be able to
accurately determine the entropy of the quantized process,and
so will need an upper bound.

The distribution of the slot-quantized sequences will have
meanλT , whereλ is the average rate of the original process
and T is the slot length, and will be over all nonnegative
integers. It can be shown that of all discrete probability
distributions with meanλT and nonnegative integer sup-
port, the one with the maximum entropy is the geomet-
ric distribution. The entropy rate under this distributionis
R = 1

T
((1 + λT ) log(1 + λT ) − λT log(λT )). We will use

this formula to compute the desired slot length, knowing that
the actual entropy rate of the sequence is smaller than the
maximum allowed rate.

A. Consistency Experiment

This experiment was similar to the one described in Section
VII. We simulated two independent renewal sources over a
long period of time with interarrivals obeying Pareto distribu-
tions, performed slot quantization with slot length determined
by the geometric entropy rate, and ran the QBDR algorithm to
find the minimum fraction of chaff. Because the interarrival
process is not memoryless, we cannot assume that the slot
quantized sequences are i.i.d. or even Markov, so we cannot
analytically show convergence of QBDR. Instead, we ran the

2We use for our definition of the Pareto cumulative distribution function
FX(x) = 1− ( x

xm
)β , wherexm is thescale parameterandβ is theshape

parameter.
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Fig. 8. Minimum CTR under independent traffic computed by QBDR after
slot quantization under Pareto and exponential interarrival distributions. An
upper bound on the rate is used for the Pareto distributions,so the estimated
CTR is actually a lower bound for a particular rate. Pareto distributions have
shape parametersβ = 1.5 andβ = 2. The results are closer to the Poisson
case for larger shape parameters. In this experiment,N = 4, ∆ = 1, λ = 0.5
(whereλ is the mean arrival rate),104 slots are used to ensure convergence
under Poisson interarrivals, and five trials with2× 105 slots are used in the
Pareto interarrivals case.

experiment several times with the same parameters and found
that the results do appear to converge to a limiting CTR. We
then compared these results to the results under exponential
interarrivals (the Poisson process.) The results are shownin
Figure 8.

From the figure, it is clear that at a given arrival rate, the
Pareto interarrival distribution gives a higher CTR underH0

than the Poisson process, with the CTR getting smaller as
the shape parameterβ increases. This means that a detector
designed under the Poisson assumption would also be Chernoff
consistent if the arrival rate is the same but the interarrivals
are Pareto distributed. This fits the intuition of a process
with Pareto interarrivals being more ”bursty” than those with
Poisson interarrivals. Since, in the absence of an information
flow, the processes for different nodes are independent, the
arrivals of bursts are independent as well. The gaps between
the bursts must be relatively long, since we are holding the
mean arrival rate fixed. This makes it less likely that the
packets in a burst can be matched up to packets in all the
remaining processes. Thus, the estimated CTR is higher under
the Pareto interarrivals than the Poisson.

B. ROC Experiment

In this experiment, we compared the receiver operating
characteristics of the QBDR threshold detector under a Poisson
process source with those under a Pareto interarrival source.
For each threshold value between 0 and 1, the false alarm
rate was found by generatingN independent processes with
mean arrival rateλ over 45 seconds (much smaller than the
processes used in the consistency experiments,) quantizing
them with a slot quantizer of slot lengthT (the same length
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was used for both kinds of processes,) and running the QBDR
algorithm. If the estimated CTR was below the threshold, the
trial was counted as a false alarm. 500 trials were used for each
threshold value. To find the probability of detection of flows
with a particular CTRγ, an information flow in chaff had to
be generated. A process with mean arrival rate(1 − γ)λ was
generated, and each packet was delayed by a uniform random
value between 0 and∆ = 1 to generateN processes. Then,
each process was contaminated by superposing independent
noise processes of rateγλ (so that the total rate wasλ.) QBDR
was run, and a trial was ruled a detection if the estimated CTR
was below the threshold. Again, two hundred trials were used.
The shape parameter for the Pareto distribution was 1.2. Figure
9 shows the results. In all tests, the ROC curves under the
Pareto interarrival distribution were slightly better than those
under the Poisson process distribution. Since, underH0, the
estimated CTR is higher with Pareto interarrivals than Poisson,
the false alarm rate is lower at a given threshold. The detection
rate, on the other hand, will be lower under Pareto interarrivals
because less of the chaff packets will be incorrectly considered
as parts of a flow. However, it is clear from the graphs that
the improvement in false alarm probability outweighs the loss
in detection rate at a given threshold. It is also clear that the
detector performance improves with decreasing CTR (which
is to be expected) and with decreasing packet arrival rate.

IX. PERFORMANCE ONNETWORK TRACES

The final step from models to reality involved considering
actual network data. We applied our quantization scheme
followed by the QBDR algorithm on the LBL-PKT-4 trace
generated by Paxson and first used in [10]. This trace is a
record of packet timing and routing information for all wide-
area traffic in and out of the Lawrence Berkeley Laboratory.
It was also used in [8] for an experiment similar to ours.
We extracted 41 traces that appeared upon inspection to be
independent. For each trial, we randomly picked a pair of
traces. We applied the slot quantizer to the pair and performed
QBDR to find the estimated minimum CTR. Then we mea-
sured the average packet rate for the two traces and generated
realizations of Poisson processes of those rates. We applied
the slot quantizer to the Poisson pair and perform QBDR to
find the estimated minimum CTR. The results are shown in
Figure 10. Each point corresponds to a single trial; theY -
coordinate is the CTR of the traces, and theX-coordinate is
the CTR of the corresponding Poisson process pair. In the
experiment shown, 93% of the traces have a higher CTR than
the Poisson processes of the same rate. This indicates that the
false alarm probabilities will be lower for actual network traffic
than our Poisson model, which gives us increased confidence
in the performance of a system designed under the Poisson
assumption.

X. CONCLUSIONS

In this paper we developed a practical distributed detection
scheme for arbitrary-length information flows. As in the cor-
responding problem with perfect information, under certain
conditions the performance of the scheme is near perfect for
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Fig. 10. CTR of actual traces vs. CTR of Poisson processes of the same
rate, found using the QBDR algorithm after quantization. The rate constraint
R = 1, and the delay bound∆ = 1. Forty-one network traces are considered;
for each trial two are selected at random to be processed. Theplot shows the
results for 500 trials. In 463 of them, the CTR for the traces is higher than
the CTR for the Poisson processes.

large N . Simulations show that if these conditions are not
met, it is possible for flows embedded in chaff to remain
undetected even for a large number of hops. Thus, given a
rate constraint, traffic rate, and delay bound, it is possible to
determine whether perfect detection of large information flows
is guaranteed or unlikely. Preliminary results indicate that even
if the detection scheme is designed under the assumption of
exponential interarrivals, actual network traffic will perform
at least as well as predicted under the faulty interarrival
assumption.
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Fig. 9. ROC curves for the QBDR threshold detector. In all cases,∆ = 1, T = 4, the length of each source measurement was 45 s,N = 4, the Pareto
shape parameter was1.2, and 500 trials were used to find eachPF andPD. In (a), CTR = 0.5 andλ = 0.25. In (b), CTR = 0.5 andλ = 1.0. In (c), CTR
= 0.7 andλ = 0.25. In (d), CTR = 0.7 andλ = 1.0. ROC curves are shown for Poisson process and Pareto-interarrival renewal process sources.


