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Abstract—The energy scaling laws of multihop data fusion
networks for distributed inference are considered. The fusion
network consists of randomly located sensors independently
distributed according to a general spatial distribution in an
expanding region. Among the class of data fusion schemes that
enable optimal inference at the fusion center for Markov random
field hypotheses, the minimum per-sensor energy cost is bounded
below by a minimum spanning tree data fusion and above by
a suboptimal scheme referred to as Data Fusion for Markov
Random Field (DFMRF). Scaling laws are derived for the optimal
and suboptimal fusion policies.

Index Terms—Distributed detection, data fusion, graphical
models, scaling laws, and wireless networks.

I. INTRODUCTION

We consider the problem of distributed statistical inference

via a network of randomly located sensors, each taking

measurements and transporting the locally processed data to

a fusion center. The fusion center then makes an inference

about the underlying phenomenon based on data collected

from individual sensors.

For statistical inference using wireless sensor networks, en-

ergy consumption is one of the most important design factors.

The transmission power required for a receiver distance d away

to have a certain signal-to-noise ratio (SNR) scales in the order

of dν where 2 ≤ ν ≤ 6 is the path loss. Therefore, the cost

of moving data from sensor locations to the fusion center

either through direct transmissions or multihop forwarding

significantly affects the lifetime of the network.

A. Scalable data fusion

We investigate the cost of data fusion, and its scaling behav-

ior with the size of the network and the area of deployment.

In particular, for a network of n random sensors located at

Vn = {V1, · · · , Vn}, a fusion policy πn maps Vn to a set of

transmissions. The per-sensor cost (e.g. energy) is given by
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Ē(πn(Vn)) :=
1

n

∑

i∈Vn

Ei(πn(Vn)), (1)

where Ei(πn(Vn)) is the cost at node i under policy πn. The

per-sensor cost above is random, and we are interested in the

energy scalability of such random networks as n→ ∞.

Definition 1 (Scalable Policy): A sequence of policies πn

is scalable on the average if

lim
n→∞

E(Ē(πn(Vn))) = Ē∞(π) <∞

where Ē∞(π) is referred to as the scaling constant. A sequence

of policies πn is weakly scalable if

p lim
n→∞

Ē(π(Vn))) = Ē∞(π) <∞,

where p lim denotes convergence in probability. It is strongly

scalable if the above converges almost surely and L2 (mean

squared) scalable if the convergence is in mean square.

We focus mostly on the L2 scalability of fusion policies,

which implies weak and average scalability. We are interested

in scalable data fusion policies that enable optimal statistical

inference at the fusion center with finite average per-sensor

energy expenditure as the network size increases.

To motivate this study, first consider two simple fusion

policies: the direct transmission policy (DT) in which all

sensors transmit directly to the fusion center and the shortest

path (SP) policy where each node forwards its data to the

fusion center using the shortest path route.

We assume for now that n sensor nodes are uniformly

distributed with fixed density λ > 0 in a convex region having

area n
λ

. It is perhaps not surprising that neither of the two

policies is scalable as n→ ∞. For the DT policy, intuitively,

the average transmission range scales as
√
n, thus Ē(DT(Vn))

scales as n
ν

2 . For the SP policy, on the other hand, the average

transmission distance does not scale with n, but the number

of hops to the fusion center scales in the order of
√
n. Thus

Ē(SP(Vn)) scales as
√
n. Rigorously establishing the scaling

laws for these two non-scalable policies is not crucial at this

point since the same scaling law can be easily established for

regular networks when sensor nodes are on two-dimensional

lattice points. See [2].

Are there scalable policies for data fusion? Among all the

fusion policies not performing aggregation at the intermediate
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nodes, the shortest path policy minimizes the total energy.

Thus no scalable policy exists unless nodes cooperatively com-

bine their information, a process known as data aggregation.

Data aggregation, however, must be considered in conjunction

with performance requirements for specific applications. A

simplistic approach may greatly reduce the amount of data

transported but significantly affect the inference performance

at the fusion center.

B. Summary of results and contributions

In this paper, we allow data aggregation at intermediate

nodes, but require that the fusion center achieves the same in-

ference performance as if all raw observations were collected.

We assume that the underlying hypotheses can be modeled as

Markov random fields and investigate energy scaling laws.

Given sensor locations Vn and possibly correlated sensor

measurements, finding the minimum energy fusion policy is

in general NP-hard and hence, intractable. We will establish

upper and lower bounds on the fusion energy of the optimal

scheme and analyze its scaling behavior. The lower bound is

achieved by a minimum spanning tree fusion scheme, which is

shown to be optimal when observations are statistically inde-

pendent under both hypotheses. The upper bound is established

through a specific suboptimal fusion scheme, referred to as

Data Fusion over Markov Random Field (DFMRF). DFMRF

becomes optimal for conditionally independent observations,

and for certain spatial dependencies between sensor measure-

ments of practical significance (e.g., nearest neighbor graph);

it has an approximation ratio 2, i.e., it costs no more than

twice the cost of the optimal fusion scheme, independent of

the size of the network.

We then proceed to establish a number of asymptotic

properties of DFMRF in Section IV-B, including the scalability

of DFMRF, its performance bounds, and the approximation

ratio with respect to the optimal fusion policy when the

sensor measurements have dependencies described by a k-

nearest neighbor graph or a disk graph (continuum percola-

tion). Applying techniques developed in [3], [4], we provide a

precise characterization of the scaling bounds as a function of

sensor node density and sensor distribution. These asymptotic

bounds for DFMRF, in turn, are also applicable to the optimal

fusion scheme. Hence, we use the DFMRF scheme as a

vehicle to establish scaling laws for optimal fusion. Addition-

ally, we use the expressions for scaling bounds to optimize

the distribution of the sensor placements. For conditionally

independent measurements and for correlated measurements

with k-nearest neighbor dependency graph, we show that the

uniform distribution minimizes the scaling bounds over all i.i.d

placements.

To the best of our knowledge, our results are the first to

establish the scalability of data fusion for certain correlation

structures of the sensor measurements. The use of an energy

scaling law for the design of sensor placement is new and has

direct engineering implications. The heuristic policy DFMRF

first appeared in [5] and is made precise here with detailed

asymptotic analysis using the weak law of large numbers for

stabilizing graph functionals.

II. SYSTEM MODEL

In this paper, we will consider various graphs. Chief among

these are (i) dependency graphs specifying the correlation

structure of sensor measurements, (ii) network graphs denoting

feasible links for communication, and (iii) fusion graphs

denoting the links used by a policy to route and aggregate

data.

A. Stochastic model of sensor locations

We assume that n sensor nodes (including the fusion center)

are placed randomly with sensor i located at Vi ∈ R
2. By

convention, the location of the fusion center is denoted by V1.

We denote the set of locations of the n sensors by Vn. For

our scaling law analysis, we consider a sequence of sensor

populations on an expanding square regions Qn

λ
of area n

λ

centered at the origin where we fix λ as the overall sensor

density and let the number of sensors n→ ∞.

To generate sensor locations Vi, first let Q1 := [− 1
2 ,

1
2 ]2 be

the unit area square centered at the origin, and Xi
i.i.d.∼ κ, 1 ≤

i ≤ n be a set of n independent and identically distributed

(i.i.d.) random variables distributed on Q1 according to κ.

Here, κ is a probability density function (pdf) on Q1 which

is bounded away from zero and infinity. We next generate Vi

by scaling Xi accordingly: Vi =
√

n
λ
Xi ∈ Qn

λ
. A useful

special case is the uniform distribution (κ ≡ 1). Let Pλ be

the homogeneous Poisson distribution on R
2 with density λ.

B. Graphical inference model: dependency graphs

The inference problem we consider is the simple binary

hypothesis testing H0 vs. H1 on a pair of Markov random

fields (MRF). The theory of MRF is well established (see e.g.,

[6]). Under regularity conditions [6], an MRF is defined by

its (undirected) dependency graph G and an associated density

function f(·|G) on G.

Under hypothesis Hk, we assume dependency graphs Gk :=
(Vn, Ek) which model the correlation structures of the sensor

observations where Vn = {V1, · · · , Vn} is the set of vertices

corresponding to sensor locations generated according to the

stochastic model in Sec II-A. Note that the vertex sets under

the two hypotheses are identical. Set Ek is the set of links

or edges of the dependency graph Gk and it defines the

correlations of the sensor observations. A precise definition

of the dependency graph involves conditional-independence

relations between the sensor measurements and can be found

in [6].

We restrict our attention to proximity-based dependency

graphs. In particular, we consider two classes of dependency

graphs1, the (undirected) k-nearest neighbor graph (k-NNG)

and the disk graph also known as the continuum percolation

1The k-nearest neighbor graph (k-NNG) has edges (i, j) if i is one of
the top k nearest neighbors of j or viceversa, and ties are arbitrarily broken.
The disk graph has edges between any two points within a certain specified
distance (radius).
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graph. We expect our results to extend to other locally-defined

dependency graphs such as the Delaunay or Voronoi graphs,

the minimal spanning tree, the sphere of influence graph

and the Gabriel graph. An important localization property of

the aforementioned graphs is a certain stabilization property

facilitating asymptotic scaling analysis.

C. Graphical inference model: likelihood functions

We denote the (random) measurements from all the sensors

in set V by YV and YU denotes the vector that contains

observations on vertex subset U ⊂ V. The inference problem

can now be stated as the following hypothesis test:

H0 : YV ∼ f(y|G0,H0) vs. H1 : YV ∼ f(y|G1,H1) (2)

where f(y|Gk,Hk) is the pdf of YV conditioned on the

random graph Gk under hypothesis Hk. Note that sensor

locations have the same distribution under either hypothesis.

Therefore, only the conditional distribution of YV under each

hypothesis is relevant for inference.

The celebrated Hammersley-Clifford theorem states that,

under the positivity conditions [7], the log-likelihood function

can be expressed as

− log f(YV|Gk,Hk) =
∑

c∈Ck

ψk,c(Yc), (3)

where Ck is a collection of (maximal) cliques in Gk, the

functions ψk,c, known as clique potentials, are real valued,

non-negative and not zero everywhere on the support of

Yc. We assume that the normalization constant is already

incorporated in the potential functions.

D. Graphical fusion model and energy consumption

Nodes are capable of adjusting their transmission power and

we assume that the sensor network is connected but not nec-

essarily fully connected. The set of feasible communications

links form the (directed) network graph denoted by Ng(V).
Transmissions on feasible links are assumed perfect and they

do not interfere with each other.

A fusion policy π consists of a transmission schedule

that specifies the transmitter-receiver pairs, the time of trans-

mission, and the aggregation algorithm that allows a node

to combine its own and received values to produce a new

communicating value. We model a fusion policy π by a

directed fusion graph Fπ := (V,
−→
E π) where V is the same set

of vertices corresponding to sensor locations, and
−→
E π contains

directed links. A directed link < i, j > denotes a direct

transmission from i to j and is contained in the network graph

Ng(V). If one node communicates with another node k times,

k direct links will be added between these two nodes. Since

we are only interested in characterizing the overall energy

expenditure, the order of transmissions is not important; we

only need to consider the associated cost with each link in−→
E π and calculate the sum cost for π.

Nodes communicate in the form of packets. Each packet

contains bits for at most one (quantized) real variable and other

overhead bits independent of the network size. We assume that

all real variables are quantized to K bits, and K is independent

of network size and is sufficiently large that quantization errors

can be ignored. Thus for node i to transmit data to node j

distance Ri,j away, we assume that node i will spend energy2

γRν
i,j . Without loss of generality, we assume γ = 1. Hence,

given a fusion policy Fπ = (V,
−→
E π) of network size n, the

per-node energy consumption is given by

Ē(π(V)) =
1

n

∑

<i,j>∈
−→
E π

Rν
i,j , 2 ≤ ν ≤ 6. (4)

The model specification is now complete.

III. MINIMUM ENERGY DATA FUSION

We present in this section data fusion policies aimed at min-

imizing energy expenditure. The scalability of these optimal

policies is deferred to Section IV.

A. Optimal data fusion: a reformulation

The inference problem defined in (2) involves two different

graphical models, each with its own graph and associated

likelihood function. They do share the same vertex set V,

however, which allows us to join the two graphical models

into one.

Define joint dependency graph G:=(V, E), E:=E0

⋃

E1, as

the union of two dependency graphs. The sufficient statistic is

given by the log-likelihood ratio (LLR). With the substitution

of (3), it is given by

LG(YV) := log
f(YV|G1,H0)

f(YV|G0,H1)

=
∑

a∈C1

ψ1,a(Ya) −
∑

b∈C0

ψ0,b(Yb)

:=
∑

c∈C

φc(Yc), C:=C0

⋃

C1 (5)

Hereafter, we will work with (G, LG(YV)). Note that the

LLR is minimally sufficient [8] implying maximum savings

in routing costs due to fusion.

Given the node set V, we can now reformulate the optimal

data fusion problem as the following optimization

E(π∗(V)) = min
π∈FG

∑

i∈V

Ei(π(V)) (6)

where FG is the set of valid data fusion policies

FG:={π : LG(YV) computable at the fusion center}.

Note that the optimization in (6) is a function of the depen-

dency graph G.

2Since nodes only communicate a finite number of bits, we use energy
instead of power as the cost measure.



4

B. Minimum energy data fusion: a lower bound

The following theorem gives a lower bound on minimum

energy given the joint dependency graph G = (V, E) and

path-loss coefficient ν.

Theorem 1 (Lower bound on minimum energy expenditure):

Let MST(V) be the Euclidean minimum spanning tree with

node set V. Then

1) the energy cost for the optimal fusion policy π∗ satisfies

E(π∗(V)) ≥
∑

e∈MST(V)

|e|ν :=E(MST(V)) (7)

2) the lower bound (7) is achieved (i.e., equality holds)

when the observations are conditionally independent

under both hypotheses. In this case, the optimal data

fusion policy π∗ aggregates data along DMST(V;V1),
the directed minimal spanning tree, with all the edges

directed toward the fusion center V1. Hence, the optimal

fusion graph Fπ∗ is the DMST(V;V1).

Note that the above lower bound is tight in the sense that the

bound is achievable when the measurements are conditionally

independent. It is interesting to note that data correlations in

general increase fusion cost.

Fusion center
V1

V7
V2

V3 V4 V5

V6

q1 q2 = L2(Y2) + q4 + q5

q3 q4 q5

q6

Fig. 1. The optimal fusion graph for conditionally independent observations.

C. Minimum energy data fusion: an upper bound

We now consider the general dependency graph and devise

a suboptimal data fusion scheme which gives an upper bound

on energy cost. The suboptimal scheme, referred to as Data

Fusion on Markov Random Field (DFMRF), is a natural

generalization of the MST aggregation scheme.

Recall the form of the log-likelihood ratio for a general

Markov random field given in (5)

LG(YV) =
∑

c∈C

φc(Yc).

It should be now apparent that aggregation along the

DMST(V;V1) does not deliver the LLR to the fusion center

for a general MRF. This is because each function φc aggregates

raw measurements Yc at a common processor, and this in

general is not possible along the DMST.

We shall use Fig. 2 to illustrate the idea behind DFMRF.

The fusion graph of DFMRF policy is made of two phases

corresponding to the union of two graphs: data forwarding

graph (FG(V)) and data aggregation graph (AG(V)). See

Fig 2 for an illustration.

1) In the data forwarding phase, for each c in the set

of maximal cliques C, a processor Proc(c) is chosen

randomly amongst the members of clique c. Each node

in clique c then forwards its raw data to Proc(c) and

Proc(c) computes the clique potential φc(Yc).
2) In the data aggregation phase, processors aggregate their

clique potentials along DMST(V;V1), the directed MST

towards the fusion center.

For conditionally independent measurements, the maximum

clique set is V and the DFMRF reduces to the DMST(V;V1),
which is optimal for conditionally independent observations.

In general, DFMRF is not optimal. For the nearest-neighbor

dependency graph, DFMRF has a constant approximation ratio

of 2 with respect to the optimal data fusion scheme [5].

IV. ENERGY SCALING LAWS

We now establish the scaling laws for optimal and subopti-

mal fusion policies. From the expression of per-sensor energy

cost, we see that the scaling laws will rely on the law of large

numbers (LLN) for stabilizing graph functionals.

A. Energy scaling for optimal fusion: independent case

We first provide the scaling result for the case when the

measurements are independent conditioned on either hypoth-

esis. From Theorem 1, the optimal fusion scheme minimizing

total energy consumption is given by summation along the

directed minimal spanning tree. Hence, the energy scaling is

obtained by the analysis of the MST.

We recall some notations and definitions used in this and

the subsequent sections. Xi
i.i.d.∼ κ, where κ is defined on

Q1, the unit square centered at the origin. The node set is

Vn:=
√

n
λ
(Xi)i=1,...,n and the limit is obtained by letting n→

∞ with fixed λ > 0.

For each node set Vn, the average energy consumption of

the optimal fusion scheme for independent measurements is

Ē(π∗(Vn)) = Ē(MST(Vn)) =
1

n

∑

e∈MST(Vn)

|e|ν . (8)

Let ζ(ν; MST) be the constant arising in the asymptotic

analysis of the MST edge lengths,

ζ(ν; MST):=E

[

∑

e∈E(0;MST(P1∪{0}))

1

2
|e|ν

]

, (9)

where Pτ is the homogeneous Poisson process of intensity

τ . The above constant is half the expectation of the power-

weighted edges belonging to the origin in the minimal span-

ning tree over a homogeneous unit intensity Poisson process.

We now provide the scaling result for the conditionally

independent case based on the LLN for the MST obtained

in [4, Thm 2.3(ii)].

Theorem 2 (Scaling for independent case [4]): When the

sensor measurements are independent conditioned on each

hypothesis, the limit of the average (per-node) energy con-

sumption of the optimal fusion scheme in (8) is given by
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(a) Maximal cliques of depen-
dency graph

(b) Forwarding subgraph com-
putes clique potentials

+

(c) Aggregation subgraph adds
computed potentials

Forwarding subgraph (FG)

Dependency graph

Aggregation tree (AG)

Processor

Fusion center

(d) Legend

Fig. 2. Schematic of dependency graph of Markov random field and stages of data fusion.

lim
n→∞

Ē(π∗(Vn))
L2

= λ−
ν

2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν

2 dx. (10)

Hence, asymptotically the average energy consumption of

optimal fusion is a constant for independent measurements. In

contrast, forwarding all the raw data to the fusion center has

an unbounded average energy.

The scaling constant in (10) brings out the influence of

several factors on energy consumption. The node density λ is

inversely proportional to the limiting average energy. This is

intuitive since placing the nodes with a higher density (smaller

area) decreases the energy consumption. Although the constant

ζ(ν; MST) is not available in closed form, we evaluate it

through simulations in Section V.

The node-placement pdf κ influences the limiting energy

through the term
∫

Q1

κ(x)1−
ν

2 dx.

When the placement is uniform (κ ≡ 1), the above term eval-

uates to unity. Hence, the scaling limit for uniform placement

equals

λ−
ν

2 ζ(ν; MST).

The next theorem shows that the energy under uniform node

placement provides a lower bound on the limit for any general

κ.

Theorem 3 (Minimum energy placement: independent case):

For any pdf κ on the unit square Q1, we have

∫

Q1

κ(x)1−
ν

2 dx ≥ 1, ∀ ν ≥ 2. (11)

Proof: Using the convexity of the function g(x) = x1− ν

2 for

ν ≥ 2 over the range of κ we obtain via Jensen’s inequality

∫

Q1

(κ(x))1−
ν

2 dx ≥
(

∫

Q1

κ(x)dx
)1− ν

2

= 1.

2

The above result implies that, in the context of i.i.d. node

placements, from an energy point of view it is asymptotically

optimal to place the nodes uniformly.

B. Energy scaling for optimal fusion: MRF case

We now evaluate the scaling laws for energy consumption

of the DFMRF scheme for a general Markov random field

dependency between sensor measurements. The total energy

consumption of DFMRF is given by

E(DFMRF(V)) =
∑

c∈C(V)

∑

i⊂c

ESP(i,Proc(c);Ng)

+ E(MST(V)), (12)

whereESP(i, j;Ng) denotes the energy consumption for the

shortest path between i and j using the links in Ng(V). We

now assume that the network graph Ng(V) (set of feasible

links) is a u-energy spanner [9], for some constant u > 0
called its energy stretch factor, and hence, satisfies

max
i,j∈V

ESP(i, j;Ng)

ESP(i, j;Cg)
≤ u, (13)

where Cg(V) denotes the complete graph. Examples of energy

spanners include the Gabriel graph (with stretch factor u = 1),

the Yao graph, and its variations [9]. From (13), we have

E(FG(V)) ≤ u
∑

c∈C(V)

∑

i⊂c

ESP(i,Proc(c);Cg),

≤ u
∑

c∈C(V)

∑

i⊂c

Rν
i,Proc(c). (14)

Recall that the processors are local: Proc(c) ⊂ c. Hence, in

(14), only the edges of the processors of all the cliques are

included in the summation. This is upper bounded by the

sum of all the power-weighted edges of the dependency graph

G(V). Hence, we have

E(FG(V)) ≤ u
∑

e∈G(V)

|e|ν . (15)

Hence, for the total energy consumption of the DFMRF

scheme, we have the bound,

E(DFMRF(V)) ≤ u
∑

e∈G(V)

|e|ν + E(MST(V)). (16)
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The DFMRF aggregation scheme involves cliques of the

dependency graph which arise from correlation between sensor

measurements. Nonetheless, by (16) the total cost of this

scheme E(DFMRF) is upper bounded by the sum of powers

of edge lengths of the dependency graph, allowing us to draw

upon the general methods of [4], [10].

By Theorem 3, the DFMRF scheme will scale whenever the

right-hand side of (15) scales. We will establish that the LLN

is applicable to the first term in (16) when the dependency

graph is either the k-nearest neighbor or the disk graph.

We now prove scaling laws governing the energy consump-

tion of DFMRF and we also establish its approximation ratio

with respect to the optimal fusion scheme. This in turn also

establishes the scaling behavior of the optimal scheme.

Theorem 4 (Scaling of DFMRF Scheme): When the de-

pendency graph G is either the k-nearest neighbor or the disk

graph, the average energy of DFMRF scheme satisfies the

upper bound

lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

=
u

2

∫

Q1

E

[

∑

j:(0,j)∈G(Pλκ(x)∪{0})

Rν
0,j

]

κ(x)dx

+λ−
ν

2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν

2 dx. (17)

Hence, the above result establishes scalability of the

DFMRF scheme. Below, we use this result to prove the scal-

ability of the optimal fusion scheme and establish asymptotic

upper and lower bounds on its average energy.

Theorem 5 (Scaling of Optimal Scheme): When the depen-

dency graph G is either the k-nearest neighbor or the disk

graph, the limit of the average energy consumption of the

optimal scheme π∗ satisfies the upper bound

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn)), (18)

where the right-hand side satisfies the upper bound in (17).

Also, π∗ satisfies the lower bound given by the MST

lim inf
n→∞

Ē(DFMRF(Vn))
a.s.

≥ lim inf
n→∞

Ē(π∗(Vn))

a.s.

≥ lim
n→∞

Ē(MST(Vn))
L2

= λ−
ν

2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν

2 dx.(19)

Proof: From (7), the DFMRF and the optimal scheme satisfy

the lower bound given by the MST. 2

Hence, the limiting average energy consumption under the

DFMRF scheme and the optimal scheme is strictly finite, and

is bounded by (17) and (19). These bounds also establish

that the approximation ratio of the DFMRF scheme is asymp-

totically bounded by a constant, as stated below. Define the

constant ρ := ρ(u, λ, κ, ν) given by

ρ:=1 +

u
∫

Q1

1
2E

[

∑

j:(0,j)∈G(Pλκ(x)∪{0})

Rν
0,j

]

κ(x)dx

λ−
ν

2 ζ(ν; MST)
∫

Q1

κ(x)1−
ν

2 dx
. (20)

Lemma 1 (Approximation Ratio for DFMRF): The

approximation ratio of DFMRF is given by

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))
a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

= ρ, (21)

where ρ is given by (20).

Proof: Combine Theorem 4 and Theorem 5. 2

We further simplify the above results for the k-nearest

neighbor dependency graph in the corollary below by exploit-

ing its scale invariance. The results are expected to hold for

other scale-invariant stabilizing graphs as well. The edges of

a scale-invariant graph are invariant under a change of scale,

or put differently, G is scale invariant if scalar multiplication

by α induces a graph isomorphism from G(V) to G(αV) for

all node sets V and all α > 0.

Along the lines of (9), let ζ(ν; k-NNG) be the constant

arising in the asymptotic analysis of the k-NNG edge lengths,

ζ(ν; k-NNG):=E

[

∑

j:(0,j)∈k-NNG(P1∪{0})

1

2
Rν

0,j

]

. (22)

Corollary 1 (k-NNG Dependency Graph): We obtain a

simplification of Theorem 4 and 5 for average energy

consumption, namely

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

= λ−
ν

2 [u ζ(ν; k-NNG) + ζ(ν; MST)]

∫

Q1

κ(x)1−
ν

2 dx.(23)

The approximation ratio of DFMRF satisfies

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))

a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

=
(

1 + u
ζ(ν; k-NNG)

ζ(ν; MST)

)

.(24)

Proof: This follows from [4, Thm 2.2]. 2

Hence, the expressions for scaling bounds and the approxi-

mation ratio are simplified when the dependency graph is the
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Fig. 3. Average energy consumption for DFMRF scheme and shortest-path routing for uniform distribution and k-NNG dependency. See Corollary 1.
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Fig. 4. Average energy consumption for DFMRF and shortest path (SPR) scheme. See Theorem 4.

k-nearest neighbor graph. A special case of this scaling result

for nearest-neighbor dependency under uniform placement was

proven in [11, Thm 2].

It is interesting to note that the approximation factor for the

k-NNG dependency graph in (24) is independent of the node

placement pdf κ and node density λ. Indeed the actual energy

consumption is governed by these parameters. The results of

Theorem 3 on the optimality of uniform placement are also

applicable here. We formally state it below.

Theorem 6 (Minimum energy placement for k-NNG):

Uniform node placement minimizes the asymptotic upper

bound 23) for average energy consumption under k-NNG

dependency over all i.i.d. node placements κ.

Proof: This follows from Theorem 3. 2

Hence, we have established the finite scaling of the average

energy when the dependency graph describing the sensor

observations is either the k-NNG or the disk graph.
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Fig. 5. Sample realization of n = 190 points on unit square. See (25), (26).

V. NUMERICAL ILLUSTRATIONS

As described in Section II-A, n nodes are placed in area
n
λ

and one of them is randomly chosen as the fusion center.

We conduct 500 independent simulation runs and average the

results. Of the n nodes, we uniformly pick one of them as the

fusion center. We fix node density λ = 1. We plot results for

two cases of dependency graph, the k-nearest neighbor graph

and the disk graph with radius δ.

In Fig.3, we plot the simulation results for k-nearest neigh-

bor dependency and uniform node placement. In Fig.3a, the

average energy consumption of DFMRF scheme converges

quickly as the network size increases. On the other hand,

the average energy under no aggregation increases without

bound. Also, the energy for DFMRF scheme increases with

the number of neighbors k in the dependency graph since more

edges are added.

We plot the approximation ratio of the DFMRF scheme vs.

the number of nodes in Fig.3b and vs. the path-loss coefficient

ν in Fig.3c. We find that it is insensitive with respect to ν.

Hence, DFMRF scheme is efficient for the entire range of

ν ∈ [2, 6] under the k-NNG dependency.

In Fig.4a, we plot the average energy consumption of

DFMRF under uniform node placement and disk dependency

graph with radius δ. As expected, energy consumption in-

creases with δ. As in the k-NNG case, on increasing the

network size, there is a quick convergence.

We compare the i.i.d. uniform node placement with i.i.d.
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placement according to pdf κ given by

κ(x) = κ1(x(1))κ1(x(2)), x ∈ R
2, (25)

where for some a 6= 0, κ1 is given by the truncated exponential

κ1(z) =







ae−a|z|

2(1 − e−
a

2 )
, if z ∈ [− 1

2 ,
1
2 ],

0, o.w. (26)

Note that as a → 0, we obtain the uniform distribution

in the limit. A positive(negative) a corresponds to cluster-

ing(spreading out) of the points with respect to the origin.

In Fig.5, a sample realization for cases a = ±5 is shown.

Intuitively, for shortest-path routing (SPR), if we cluster

the nodes close to one another, the total energy consumption

decreases. On the other hand, spreading the nodes out towards

the boundary increases the total energy. Indeed this behavior

is validated by the results in Fig.4b.

The behavior of the DFMRF scheme under different node

placements, is however, not so straightforward. Recall that

the asymptotic bound for average energy of DFMRF in (17)

comprises two terms, one corresponding to edges of the

dependency graph, and the other, to the edges of the MST.

They may behave differently for different placement pdfs κ

depending on the dependency graph model and path loss ν.

For the k-NNG dependency graph, from Theorem 6, uni-

form node placement minimizes the asymptotic bound on

average energy. In Fig.4c, for the k-NNG dependency graph,

we plot the ratio of energy of DFMRF under non-uniform

placement with respect to the energy under uniform placement.

We also plot the theoretical value of this ratio, given by

Corollary 1 as
∫

Q1

κ(x)1−
ν

2 dx.

for κ given by (25) and (26), and find that the above expression

is equal for a = 5 and a = −5. We observe that the simulation

results are close to the theoretically predicted value.

VI. CONCLUSION

We analyzed the scaling laws for energy consumption of

data fusion schemes for optimal distributed inference. For-

warding all the raw data without fusion has an unbounded

average energy, and hence, is not a feasible strategy. We

established constant average energy scaling for a fusion heuris-

tic known as the Data Fusion for Markov Random Fields

(DFMRF) for certain class of spatial correlation models.

We analyzed the influence of the correlation structure, node

placement distribution, node density and the transmission

environment on the energy consumption.

There are many issues that are not handled in this paper.

Our model currently only incorporates i.i.d. node placements.

The behavior of the inference performance, along the lines of

our preliminary results in [12] and its scaling laws is currently

under investigation. We have not considered the time required

for data fusion, and it will be interesting to establish its bounds.
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