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Abstract—The energy scaling laws of multihop data fusion
networks for distributed inference are considered. The fusion
network consists of randomly located sensors distributed i.i.d.
according to a general spatial distribution in an expanding
region. Among the class of data fusion schemes that enable
optimal inference at the fusion center for Markov random field
(MRF) hypotheses, the scheme with minimum average energy
consumption is bounded below by average energy of fusion along
the minimum spanning tree, and above by a suboptimal scheme,
referred to as Data Fusion for Markov Random Fields (DFMRF).
Scaling laws are derived for the optimal and suboptimal fusion
policies. It is shown that the average asymptotic energy of the
DFMRF scheme is finite for a class of MRF models.

Index Terms—Distributed detection, graphical models, random
graphs, stochastic geometry and data fusion.

I. INTRODUCTION

WE consider the problem of distributed statistical infer-

ence in a network of randomly located sensors, each

taking a measurement and transporting the locally processed

data to a designated fusion center. The fusion center then

makes an inference about the underlying phenomenon based

on the data collected from all the sensors.

For statistical inference using wireless sensor networks,

energy consumption is an important design parameter. The

transmission power required to reach a receiver distance d

away with a certain signal-to-noise ratio (SNR) scales in

the order of dν , where 2 ≤ ν ≤ 6 is the path loss [3].

Therefore, the cost of moving data from sensor locations to the

fusion center, either through direct transmissions or multihop

forwarding, significantly affects the lifetime of the network.

A. Scalable data fusion

We investigate the cost of data fusion for inference, and

its scaling behavior with the size of the network and the
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Parts of this paper are presented at [1], [2]

area of deployment. In particular, for a network of n random

sensors located at points Vn = {V1, · · · , Vn} in R
2, a fusion

policy πn maps Vn to a set of scheduled transmissions and

computations. The average cost (e.g., energy) of a policy is

given by

Ē(πn(Vn)):=
1

n

∑

i∈Vn

Ei(πn(Vn)), (1)

where Ei(πn(Vn)) is the cost at node i under policy πn. The

above average cost is random, and we are interested in its

scalability in random networks as n→ ∞.

Definition 1 (Scalable Policy): A sequence of policies

π:=(πn)n≥1 is scalable on average if

lim
n→∞

E(Ē(πn(Vn))) = Ē∞(π) <∞

where Ē∞(π) is referred to as the scaling constant. A sequence

of policies πn is weakly scalable if

p lim
n→∞

Ē(π(Vn))) = Ē∞(π) <∞,

where p lim denotes convergence in probability. It is strongly

scalable if the above average energy converges almost surely

and is L2 (mean squared) scalable if the convergence is in

mean square.

We focus mostly on the L2 scalability of the fusion policies,

which implies weak and average scalability. We are interested

in scalable data fusion policies that enable optimal statistical

inference at the fusion center implying finite average energy

expenditure as the network size increases.

To motivate this study, first consider two simple fusion

policies: the direct transmission policy (DT) in which all

sensors transmit directly to the fusion center (single hop), and

the shortest path (SP) policy, where each node forwards its

data to the fusion center using the shortest path route without

any data combination at the intermediate nodes.

We assume, for now, that n sensor nodes are uniformly

distributed in a square having area n. It is perhaps not sur-

prising that neither of the two policies is scalable as n→ ∞.

For the DT policy, intuitively, the average transmission from

the sensors to the fusion center range scales as
√
n, thus

Ē(DT(Vn)) scales as n
ν
2 . On the other hand, we expect the

SP policy to have better scaling since it chooses the best multi-

hop path to forward data from each node to the fusion center.

However, even in this case, there is no finite scaling. Here, the

average number of hops scales in the order of
√
n, and thus,

Ē(SP(Vn)) scales in the order of
√
n. Rigorously establishing
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the scaling laws for these two non-scalable policies is not

crucial at this point since the same scaling laws can be easily

established for regular networks when sensor nodes are on

two-dimensional lattice points. See [4].

Are there scalable policies for data fusion? Among all

the fusion policies not performing data combination at the

intermediate nodes, the shortest path (SP) policy minimizes

the total energy. Thus, no scalable policy exists unless nodes

cooperatively combine their information, a process known

as data aggregation. Data aggregation, however, must be

considered in conjunction with the performance requirements

of specific applications. In this paper, we assume that optimal

inference is made at the fusion center, and this places a

constraint on data aggregation. It rules out sub-sampling of

the sensor field, which is dealt in [5].

B. Summary of results and contributions

In this paper, we allow data aggregation at intermediate

nodes, but require that the fusion center achieves the same

inference performance as if all raw observations were collected

without any data combination. We assume that the underlying

hypotheses can be modeled as Markov random fields (MRF)

and investigate the energy scaling laws.

Given sensor locations Vn and possibly correlated sensor

measurements, finding the minimum energy fusion policy

under the constraint of optimal inference is, in general, NP-

hard [6], and hence, intractable. We will establish upper and

lower bounds on the fusion energy of this optimal scheme

and analyze their scaling behavior. The lower bound is ob-

tained by a scheme conducting fusion along the Euclidean

minimum spanning tree (MST), which is shown to be optimal

when the observations are statistically independent under

both hypotheses. The upper bound on the optimal fusion

scheme is established through a specific suboptimal fusion

scheme, referred to as Data Fusion over Markov Random

Fields (DFMRF). DFMRF becomes optimal for independent

observations where it reduces to fusion along the MST. For

certain spatial dependencies among sensor measurements of

practical significance, such as the Euclidean 1-nearest neighbor

graph, DFMRF has an approximation ratio 2, i.e., it costs

no more than twice the cost of the optimal fusion scheme,

independent of the size and configuration of the network.

We then proceed to establish a number of asymptotic

properties of the DFMRF scheme in Section IV, including

the scalability of DFMRF, its performance bounds, and the

approximation ratio with respect to the optimal fusion policy

when the sensor measurements have dependencies described

by a k-nearest neighbor graph or a disk graph (continuum

percolation). Applying techniques developed in [7]–[9], we

provide a precise characterization of the scaling bounds as a

function of sensor density and sensor placement distribution.

These asymptotic bounds for DFMRF, in turn, imply that

the optimal fusion scheme is also scalable. Hence, we use

the DFMRF scheme as a vehicle to establish scaling laws

for optimal fusion. Additionally, we use the energy scaling

constants to optimize the distribution of the sensor placements.

For independent measurements, we show that the uniform

distribution minimizes the average energy consumption over

all i.i.d spatial placements when the path-loss coefficient of

transmission is greater than two (ν > 2). For ν ∈ [0, 2),
we show that the uniform distribution is, in fact, the most

expensive1 node configuration in terms of routing costs. We

further show the optimality of the uniform distribution applies

for both the lower and upper bounds on the average en-

ergy consumption for correlated measurements with k-nearest

neighbor dependency graph or disk dependency graph under

certain conditions.

To the best of our knowledge, our results are the first to

establish the scalability of data fusion for certain correlation

structures of the sensor measurements. The use of energy

scaling laws for the design of efficient sensor placement is

new and has direct engineering implications. The heuristic

policy DFMRF first appeared in [10], and is made precise

here with detailed asymptotic analysis using the weak law of

large numbers for stabilizing graph functionals. One should

not expect that scalable data fusion is always possible, and at

the end of Section IV, we will discuss examples of correlation

structures where scalable data fusion does not exist.

C. Prior and related work

The seminal work of Gupta and Kumar [11] on the ca-

pacity of wireless networks has stimulated extensive studies

covering a broad range of networking problems with different

performance metrics. See also [12]. Here, we restrict ourselves

to related works on energy consumption and data fusion for

statistical inference.

Results on scaling laws for energy consumption are limited.

In [13], energy scaling laws for multihop wireless networks

(without any data fusion) are derived under different routing

strategies. The issue of node placement for desirable energy

scaling has been considered in [14], [15], where it is argued

that uniform node placement, routinely considered in the

literature, has poor energy performance. It is interesting to

note that, for fusion networks, uniform sensor distribution is

in fact optimal among a general class of distributions. See

Section IV-B.

Energy-efficient data fusion has received a great deal of

attention over the past decade. See a few recent surveys in [16],

[17]. It has been recognized that sensor observations tend to be

correlated, and that correlations should be exploited through

data fusion. One line of approach is the use of distributed

compression with the aim of routing all the measurements to

the fusion center. Examples of such approaches can be found

in [18]–[20].

While sending data from all sensors to the fusion center

certainly ensures optimal inference, it is not necessary for

statistical inference. More relevant to our work is the idea of

data aggregation, e.g., [21]–[23]. Finding aggregation policies

for correlated data, however, is nontrivial; it depends on the

specific applications for which the sensor network is designed.

Perhaps a more precise notion of aggregation is in-network

function computation where certain functions are computed by

1The path-loss coefficient for wireless transmissions, in general, satisfies
ν > 2.
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passing intermediate values among nodes [24]–[27]. However,

these works are mostly concerned with computing symmetric

functions such as the sum function.

In the context of statistical inference using wireless sensor

networks, the idea of aggregation and in-network processing

has been explored by several authors. See, e.g., [28]–[34].

Most relevant to our work are [28]–[32] where the Markovian

correlation structures of sensor measurements are exploited

explicitly. These results, however, do not deal with randomly

placed sensors, and energy scaling laws are not established.

The results presented in this paper extend some of our

earlier work in the direction of scaling-law analysis in random

fusion networks. In [6], [10], [35], for fixed network size

and node placement, we analyzed the minimum energy fusion

scheme for optimal inference and showed that it reduces to

a Steiner tree under certain constraints. We also proposed

a heuristic called the DFMRF2. In [36], we analyzed the

optimal sensor density for uniform node placement which

maximizes the inference error exponent under an average

energy constraint, and in [37], [48], we derived the error

exponent for MRF hypotheses. In [5], we analyzed optimal

sensor selection (i.e., sub-sampling) policies for achieving

tradeoff between fusion costs and inference performance.

The energy scaling laws derived in this paper rely heavily

on several results on the law of large numbers on geometric

random graphs. We have extensively borrowed the formula-

tions and techniques of Penrose and Yukich [9], [38]. See

Appendix A for a brief description and [7], [8], [39] for

detailed expositions of these ideas.

II. SYSTEM MODEL

In this paper, we will consider various graphs. Chief among

these are (i) dependency graphs specifying the correlation

structure of sensor measurements, (ii) network graphs denoting

feasible links for communication, and (iii) fusion digraphs

denoting the (directed) links used by a policy to route and

aggregate data.

A. Stochastic model of sensor locations

We assume that n sensor nodes (including the fusion center)

are placed randomly with sensor i located at Vi ∈ R
2.

By convention, the location of the fusion center is denoted

by V1. We denote the set of locations of the n sensors by

Vn:={V1, . . . , Vn}. For our scaling law analysis, we consider

a sequence of sensor populations on expanding square regions

Qn
λ

of area n
λ

and centered at the origin, where we fix λ as the

overall sensor density and let the number of sensors n→ ∞.

To generate sensor locations Vi, first let Q1 := [− 1
2 ,

1
2 ]2

be the unit area square3, and Xi
i.i.d.∼ κ, 1 ≤ i ≤ n, be a set

of n independent and identically distributed (i.i.d.) random

variables distributed on support Q1 according to κ. Here, κ is

a probability density function (pdf) on Q1 which is bounded

away from zero and infinity. We then generate Vi by scaling

Xi accordingly: Vi =
√

n
λ
Xi ∈ Qn

λ
. A useful special case is

2The DFMRF scheme is referred to as AggMST in [6], [35].
3The results in this paper hold for κ defined on any convex unit area.

the uniform distribution (κ ≡ 1). Let Pλ be the homogeneous

Poisson distribution on R
2 with density λ.

B. Graphical inference model: dependency graphs

We consider the inference problem of simple binary hypoth-

esis testing, H0 vs. H1, on a pair of Markov random fields

(MRF). Under regularity conditions [40], a MRF is defined

by its (undirected) dependency graph G and an associated pdf

f(· | G).

Under hypothesis Hk, we assume that the dependency graph

Gk := (Vn, Ek) models the correlation among the sensor

observations, where Vn = {V1, · · · , Vn} is the set of vertices

corresponding to sensor locations, generated according to the

stochastic model in Sec II-A. Note that the vertex sets under

the two hypotheses are identical. Set Ek is the set of edges

of the dependency graph Gk, and it defines the correlations of

the sensor observations, as described in the next section.

We restrict our attention to proximity-based dependency

graphs. In particular, we consider two classes of dependency

graphs4: the (undirected) k-nearest neighbor graph (k-NNG)

and the disk graph, also known as continuum percolation.

We expect that our results extend to other locally-defined

dependency structures such as the Delaunay, Voronoi, the min-

imum spanning tree, the sphere of influence and the Gabriel

graphs. An important property of the aforementioned graphs

is a certain stabilization property (discussed in Appendix A)

facilitating asymptotic scaling analysis.

C. Graphical inference model: likelihood functions

We denote the (random) measurements from all the sensors

in a vertex set V by YV, and YU denotes the vector that con-

tains observations on a vertex subset U ⊂ V. The inference

problem can now be stated as the following hypothesis test:

H0 : YV∼ f(y | G0,H0) vs. H1 : YV∼ f(y | G1,H1), (2)

where f(y | Gk,Hk) is the pdf of YV conditioned on the

dependency graph Gk under hypothesis Hk. Note that the

sensor locations Vn have the same distribution under either

hypothesis. Therefore, only the conditional distribution of YV

under each hypothesis is relevant for inference.

Under each hypothesis, the dependency graph involves

conditional-independence relations between the measurements

[40]

Yi ⊥⊥ YV\N (i;Gk) | {YN (i;Gk),V}, under Hk, (3)

where N (i;Gk) is the set of neighbors of i in Gk, and ⊥⊥
denotes conditional independence. In words, given the node

locations and the measurements at neighbors of a node in the

dependency graph, the measurement at a node is conditionally

independent of the rest of the network.

4The k-nearest neighbor graph (k-NNG) has edges (i, j) if i is one of the
k nearest neighbors of j or viceversa, and ties are arbitrarily broken. The disk
graph has edges between any two points within a certain specified distance
(radius).
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The celebrated Hammersley-Clifford theorem states that,

under the positivity condition [41], the log-likelihood function

of a MRF with dependency graph Gk can be expressed as

− log f(yV | Gk,Hk) =
∑

c∈Ck

ψk,c(yc), k = 0, 1, (4)

where Ck is a collection of (maximal) cliques in Gk, the

functions ψk,c, known as clique potentials, are real valued,

non-negative and not zero everywhere on the support of

distribution of yc. We assume that the normalization constant

is already incorporated in the potential functions to ensure that

(4) indeed describes a pdf. In general, it is NP-hard to evaluate

the normalization constant given arbitrary potential functions

[42], but can be carried out at the fusion center without any

need for communication of sensor measurements.

D. Graphical fusion model and energy consumption

The set of feasible communications links form the (directed)

network graph denoted by Ng(V). We assume that it is

connected but not necessarily fully connected, and that it

contains the Euclidean minimum spanning tree over the node

set Vn and directed towards the fusion center V1, denoted

by DMST(Vn;V1). Transmissions are scheduled so as to not

interfere with one other. Nodes are capable of adjusting their

transmission power depending on the location of the receiver.

A fusion policy π consists of a transmission schedule with

the transmitter-receiver pairs, the time of transmission, and

the aggregation algorithm that allows a node to combine its

own and received values to produce a new communicating

value. We model a fusion policy π by a directed fusion

graph, Fπ := (V,
−→
E π), where V is the same set of vertices

corresponding to sensor locations, and
−→
E π contains directed

links. A directed5 link < i, j > denotes a direct transmission

from i to j and is required to be contained in the network

graph Ng(V) for the transmissions to be feasible. If one node

communicates with another node k times, k direct links will

be added between these two nodes in the edge set
−→
E π of the

fusion policy π. Since we are only interested in characterizing

the overall energy expenditure, the order of transmissions is

not important; we only need to consider the associated cost

with each link in
−→
E π and calculate the sum cost for π.

Nodes communicate in the form of packets. Each packet

contains bits for at most one (quantized) real variable and other

overhead bits independent of the network size. We assume

that all real variables6 are quantized to K bits, and K is

independent of network size and is sufficiently large that

quantization errors can be ignored. Thus, for node i to transmit

data to node j distance |i, j| away, we assume that node i

spends energy7 γ|i, j|ν . Without loss of generality, we assume

γ = 1. Hence, given a fusion policy Fπ = (V,
−→
E π) of network

5We denote a directed link by < i, j > and an undirected link by (i, j).
6In principle, the raw and aggregated data may require different amount

of energy for communication, and this can be easily incorporated into our
framework.

7Since nodes only communicate a finite number of bits, we use energy
instead of power as the cost measure.

size n, the average energy consumption is given by

Ē(π(V)) =
1

n
E(π(V)) =

1

n

∑

<i,j>∈
−→
E π

|i, j|ν , 2 ≤ ν ≤ 6.

(5)

The model specification is now complete.

III. MINIMUM ENERGY DATA FUSION

In this section, we present data fusion policies aimed at

minimizing energy expenditure under the constraint of optimal

inference at the fusion center. The scalability of these policies

is deferred to Section IV.

A. Optimal data fusion: a reformulation

The inference problem, defined in (2), involves two different

graphical models, each with its own dependency graph and

associated likelihood function. They do share the same vertex

set V which allows us to join the two graphical models into

one.

Define the joint dependency graph G:=(V, E), where

E:=E0

⋃

E1, as the union of the two dependency graphs G0

and G1. The minimal sufficient statistic8 is given by the log-

likelihood ratio (LLR) [43]. With the substitution of (4), it is

given by

LG(YV) := log
f(YV | G0,H0)

f(YV | G1,H1)

=
∑

a∈C1

ψ1,a(Ya) −
∑

b∈C0

ψ0,b(Yb)

:=
∑

c∈C

φc(Yc), C:=C0

⋃

C1, (6)

where the effective potential functions φc are given by

φc(Yc):=
∑

a∈C1,a⊂c

ψ1,a(Ya)−
∑

b∈C0,b⊂c

ψ0,b(Yb), ∀ c ∈ C. (7)

Hereafter, we will work with (G, LG(YV)). Note that the

LLR is minimally sufficient (i.e., maximum dimensionality

reduction) implying maximum possible savings in routing

costs under the constraint of optimal inference.

Given the node set V, we can now reformulate the optimal

data fusion problem as the following optimization

E(π∗(V)) = inf
π∈FG

∑

i∈V

Ei(π(V)), (8)

where FG is the set of valid data fusion policies

FG:={π : LG(YV) computable at the fusion center}.

Note that the optimization in (8) is a function of the depen-

dency graph G, and that the optimal solution is attained by

some policy.

8A sufficient statistic is a well-behaved function of the data, which is as
informative as the raw data for inference. It is minimal if it is a function of
every other sufficient statistic.
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B. Minimum energy data fusion: a lower bound

The following theorem gives a lower bound on minimum

energy in (8), given the joint dependency graph G and the

path-loss coefficient ν.

Theorem 1 (Lower bound on minimum energy expenditure):

Let MST(V) be the Euclidean minimum spanning tree over

node set V. Then,

1) the energy cost for the optimal fusion policy π∗ in (8)

satisfies

E(π∗(V)) ≥
∑

e∈MST(V)

|e|ν :=E(MST(V)), (9)

2) the lower bound (9) is achieved (i.e., equality holds)

when the observations are independent under both hy-

potheses. In this case, the optimal fusion policy π∗

aggregates data along DMST(V;V1), the directed min-

imum spanning tree, with all the edges directed toward

the fusion center V1. Hence, the optimal fusion digraph

Fπ∗ is the DMST(V;V1).

Proof: We will first prove part 2), for which we consider

the case when observations are independent, and the log-

likelihood ratio is given by

LG(YV) =
∑

i∈V

Li(Yi), Li(Yi):= log
f1,i(Yi)

f0,i(Yi)
.

Consider MST(V), whose links minimize the sum of the

power weighted edges
∑

e∈Tree(V)

|e|ν . It is easy to check

that at the fusion center, the log-likelihood ratio can be

computed using the following aggregation scheme along the

DMST(V;V1) as illustrated in (1): each node i computes the

aggregated variable qi(YV) from its predecessor and sends

it to its immediate successor. The variable qi is given by the

summation

qi(YV):=
∑

j∈Np(i)

qj(YV) + Li(Yi), (10)

where Np(i) is the set of immediate predecessors of i in

DMST(V;V1).
To show part 1), we note that any data fusion policy must

have each node transmit at least once and the transmission

must ultimately reach the fusion center. This implies that the

fusion digraph must be connected with the fusion center and

the DMST with edge-weight |e|ν minimizes the total energy

under the above constraints. Hence, we have (9). 2

Note that the above lower bound is tight in the sense that the

bound is achievable when the measurements are independent

under both hypotheses. It is interesting to note that data

correlations, in general, increase the fusion cost under the

constraint of optimal inference performance.

C. Minimum energy data fusion: an upper bound

We now consider the general case of correlated measure-

ments and devise a suboptimal data fusion scheme which gives

an upper bound on the optimal energy in (8). The suboptimal

scheme, referred to as Data Fusion on Markov Random Fields

Fusion center

V1

V7
V2

V3 V4
V5

V6

q1 q2 = L2(Y2) + q4 + q5

q3 q4 q5

q6

Fig. 1. The optimal fusion graph DMST for independent observations.

(DFMRF), is a natural generalization of the MST aggregation

scheme described in Theorem 1.

Recall the form of the log-likelihood ratio for hypothesis

testing of Markov random fields, given in (6)

LG(YV) =
∑

c∈C

φc(Yc).

We shall use Fig. 2 to illustrate the idea behind DFMRF. It

is made of two phases:

1) In the data forwarding phase, for each clique c in the set

of maximal cliques C, a processor, denoted by Proc(c),
is chosen randomly amongst the members of clique

c. Each node in clique c then forwards its raw data

to Proc(c) and Proc(c) computes the clique potential

φc(Yc).
2) In the data aggregation phase, processors compute the

sum of the clique potentials along DMST(V;V1), the

directed MST towards the fusion center.

Hence, the fusion digraph for the DFMRF scheme is the

union of the two graphs in the above stages, viz., forwarding

subgraph (FG(V)) and aggregation subgraph (AG(V)). The

total energy consumption of DFMRF is given by

E(DFMRF(V)) =
∑

c∈C(V)

∑

i⊂c

ESP(i,Proc(c);Ng)

+ E(MST(V)), (11)

where ESP(i, j;Ng) denotes the energy consumption for the

shortest path between i and j using the links in the network

graph Ng(V) (set of feasible links for direct transmission).

For independent measurements, the maximal clique set is

trivially the set of vertices V and hence, DFMRF reduces

to aggregation along the DMST(V;V1), which is optimal for

independent observations. However, in general, DFMRF is

not optimal. For the 1-nearest neighbor dependency graph,

DFMRF has a constant approximation ratio with respect to

the optimal data fusion scheme π∗ in (8).

Theorem 2 (Approximation under 1-NNG dependency [10]):

DFMRF is a 2-approximation algorithm when the dependency

graph G is the 1-nearest neighbor graph
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(a) Maximal cliques of depen-
dency graph

(b) Forwarding subgraph com-
putes clique potentials

+

(c) Aggregation subgraph adds
computed potentials

Forwarding subgraph (FG)

Dependency graph

Aggregation graph (AG)

Processor

Fusion center

(d) Legend

Fig. 2. Schematic of dependency graph of Markov random field and stages of data fusion.

E(DFMRF(V))

E(π∗(V))
≤ 2, (12)

over all node sets V in R
2.

Proof: Sine 1-NNG is acyclic, the maximum clique size is

2. Hence, for DFMRF, the forwarding subgraph (FG) is the

1-NNG with arbitrary directions on the edges. We have

E(FG(V)) = E(1-NNG(V)) ≤ E(MST(V)).

Thus,

E(DFMRF(V)) = E(FG(V)) + E(AG(V)), (13)

≤ 2 E(MST(V)) ≤ 2E(π∗(V)), (14)

where the last inequality comes from Theorem 1. 2

Note that the above result does not extend to general k-NNG

dependency graphs (k > 1) for finite network size. However,

as the network size goes to infinity, we will show in Section

IV-B that a constant-factor approximation ratio is achieved.

IV. ENERGY SCALING LAWS

We now establish the scaling laws for optimal and subop-

timal fusion policies. From the expression of average energy

cost in (5), we see that the scaling laws will rely on the law

of large numbers (LLN) for stabilizing graph functionals. An

overview of the LLN is provided in Appendix A.

We recall some notations and definitions used in this section.

Xi
i.i.d.∼ κ, where κ is defined on Q1, the unit square centered

at the origin. The node set is Vn:=
√

n
λ
(Xi)

n
i=1 and the limit

is obtained by letting n→ ∞ with fixed λ > 0.

A. Energy scaling for optimal fusion: independent case

We first provide the scaling result for the case when

the measurements are independent under either hypothesis.

From Theorem 1, the optimal fusion scheme minimizing total

energy consumption is given by summation along the directed

minimum spanning tree. Hence, the energy scaling is obtained

by the analysis of the MST.

For node set Vn, the average energy consumption of the

optimal fusion scheme for independent measurements is

Ē(π∗(Vn)) = Ē(MST(Vn)) =
1

n

∑

e∈MST(Vn)

|e|ν . (15)

Let ζ(ν; MST) be the constant arising in the asymptotic

analysis of the MST edge lengths, that is

ζ(ν; MST):=E

[

∑

e∈E(0;MST(P1∪{0}))

1

2
|e|ν

]

, (16)

where 0 is a point at the origin of R
2, Pτ is the homogeneous

Poisson process of intensity τ , and E(0; MST(P1 ∪{0})) de-

notes the set of edges incident to the origin in MST(P1∪{0}).
The above constant is half the expectation of the power-

weighted edges incident to the origin in the minimum spanning

tree over a homogeneous unit intensity Poisson process, and is

discussed in Appendix A in (41). Although ζ(ν; MST) is not

available in closed form, we evaluate it through simulations

in Section V.

We now provide the scaling result for the optimal fusion

scheme when the measurements are independent based on the

LLN for the MST obtained in [9, Thm 2.3(ii)].

Theorem 3 (Scaling for independent data [9]): When the

sensor measurements are independent under each hypothesis,

the limit of the average energy consumption of the optimal

fusion scheme in (15) is given by

lim
n→∞

Ē(π∗(Vn))
L2

= λ−
ν
2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν
2 dx. (17)

Hence, asymptotically the average energy consumption of

optimal fusion is a constant in the mean square sense for

independent measurements. In contrast, forwarding all the raw

data to the fusion center according to the shortest-path (SP)

policy has an unbounded average energy growing in the order

of
√
n.

The scaling constant for average energy in (17) brings out

the influence of several factors on energy consumption. It is

inversely proportional to the node density λ. This is intuitive

since placing the nodes with a higher density (smaller area)

decreases the average inter-node distances and hence, also the

energy consumption.

The node-placement pdf κ influences the asymptotic energy

consumption through the term
∫

Q1

κ(x)1−
ν
2 dx.

When the placement is uniform (κ ≡ 1), the above term

evaluates to unity. Hence, the scaling constant in (17) for
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Fig. 3. Ratio of energy consumption under node placement distribution κ
and uniform distribution as a function of path-loss ν. See (18) and (19).

uniform placement simplifies to

λ−
ν
2 ζ(ν; MST).

The next theorem shows that the energy under uniform node

placement (κ ≡ 1) optimizes the scaling limit in (17) when

the path loss ν > 2. Also, see Fig.3.

Theorem 4 (Minimum energy placement: independent case):

For any pdf κ supported on the unit square Q1, we have

∫

Q1

κ(x)1−
ν
2 dx ≥ 1, ∀ ν > 2, (18)

∫

Q1

κ(x)1−
ν
2 dx ≤ 1, ∀ ν ∈ [0, 2). (19)

Proof: We have the Hölder inequality

‖f1f2‖1≤‖f1‖p‖f2‖q, ∀p > 1, q =
p

p− 1
, (20)

where for any positive function f ,

‖f‖p :=
(

∫

Q1

f(x)pdx
)p

.

When ν > 2, in (20), substitute f1(x) with κ(x)
1
p , f2(x) with

κ(x)−
1
p , and p with ν

ν−2 ≥ 1 which ensures that p > 1, to

obtain (18).

For ν ∈ (0, 2), in (20), substitute f1(x) with κ(x)
1
p , f2(x)

with 1, p = 2
2−ν

> 1 to obtain (19). 2

The above result implies that, in the context of i.i.d. node

placements, it is asymptotically energy-optimal to place the

nodes uniformly when the path-loss coefficient ν > 2. The

intuitive reason is as follows: without loss of generality,

consider a clustered distribution in the unit square, where

nodes are more likely to be placed near the origin. The MST

over such a point set has many short edges, but a few very long

edges, since some nodes are likely to occur near the boundary.

On the other hand, for uniform point sets, the edges of the

MST are more likely to be of similar lengths. Since for energy

consumption, we have a power law on edge lengths with path

loss ν > 2, long edges are penalized harshly, leading to the

result that the uniform distribution is optimal.

B. Energy scaling for optimal fusion: MRF case

We now evaluate the scaling laws for energy consumption of

the DFMRF scheme for a general Markov random field depen-

dency among sensor measurements. The DFMRF aggregation

scheme involves cliques of the dependency graph which arise

from correlation between sensor measurements. Recall that the

total energy consumption of DFMRF in (11) is given by

E(DFMRF(V)) =
∑

c∈C(V)

∑

i⊂c

ESP(i,Proc(c);Ng)

+ E(MST(V)), (21)

where ESP(i, j;Ng) denotes the energy consumption for the

shortest path between i and j using the links in the network

graph Ng(V) (set of feasible links for direct transmission).

We now assume that the network graph Ng(V) is a local u-

energy spanner. In the literature [44], a graph Ng(V) is called

a u-energy spanner, for some constant u > 0 called its energy

stretch factor, when it satisfies

max
i,j∈V

ESP(i, j;Ng)

ESP(i, j;Cg)
≤ u, (22)

where Cg(V) denotes the complete graph. In other words,

the energy consumption between any two nodes is no worse

than u-times the optimal value. Examples of energy spanners

include the Gabriel graph9 (with stretch factor u = 1 when

the path-loss ν ≥ 2), the Yao graph, and its variations [44].

In this paper, we only require a weaker version10 of the above

property that there is at most u-energy stretch between the

neighbors in the dependency graph

max
(i,j)∈G

ESP(i, j;Ng)

ESP(i, j;Cg)
≤ u. (23)

From (23), we have

E(FG(V)) ≤ u
∑

c∈C(V)

∑

i⊂c

ESP(i,Proc(c);Cg),

≤ u
∑

c∈C(V)

∑

i⊂c

|i,Proc(c)|ν . (24)

Recall that the processors are local within the clique, i.e.,

Proc(c) ⊂ c, for each clique c in the dependency graph. Hence,

in (24), only the edges of the processors of all the cliques

are included in the summation. This is upper bounded by the

sum of all the power-weighted edges of the dependency graph

G(V). Hence, we have

E(FG(V)) ≤ u
∑

e∈G(V)

|e|ν . (25)

9The longest edge in Gabriel graph is O(
√

log n), the same order as that
of the MST [45]. Hence, the maximum power at a node needed to ensure u-
energy spanning property is of the same order as that needed for connectivity.

10In fact, it suffices to have lim sup
n→∞

max
(i,j)∈G(Vn)

ESP(i, j; Ng(Vn))

ESP(i, j; Cg(Vn))
≤ u.
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From (21), for the total energy consumption of the DFMRF

scheme, we have the upper bound,

E(DFMRF(V)) ≤ u
∑

e∈G(V)

|e|ν + E(MST(V)). (26)

By (26), the total cost of this scheme E(DFMRF) is upper

bounded by the sum of powers of edge lengths of the depen-

dency graph, allowing us to draw upon the general methods

of [9], [46].

From (26), the DFMRF scheme will scale whenever the

right-hand side of (25) scales. By Theorem 3, the energy

consumption along the MST scales. Hence, we only need to

establish the scaling behavior of the first term in (25).

We now prove scaling laws governing the energy consump-

tion of DFMRF and we also establish its approximation ratio

with respect to the optimal fusion scheme. This in turn also

establishes the scaling behavior of the optimal scheme.

Theorem 5 (Scaling of DFMRF Scheme): When the de-

pendency graph G is either the k-nearest neighbor or the disk

graph, the average energy of DFMRF scheme satisfies

lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

=
u

2

∫

Q1

E

[

∑

j:(0,j)∈G(Pλκ(x)∪{0})

|0, j|ν
]

κ(x)dx

+λ−
ν
2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν
2 dx. (27)

Proof: See Appendix B. 2

Hence, the above result establishes the scalability of the

DFMRF scheme. In the theorem below, we use this result

to prove the scalability of the optimal fusion scheme and

establish asymptotic upper and lower bounds on its average

energy.

Theorem 6 (Scaling of Optimal Scheme): When the depen-

dency graph G is either the k-nearest neighbor or the disk

graph, the limit of the average energy consumption of the

optimal scheme π∗ satisfies the upper bound

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn)), (28)

where the right-hand side satisfies the upper bound in (27).

Also, π∗ satisfies the lower bound given by the MST

lim inf
n→∞

Ē(DFMRF(Vn))
a.s.

≥ lim inf
n→∞

Ē(π∗(Vn))

a.s.

≥ lim
n→∞

Ē(MST(Vn))
L2

= λ−
ν
2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν
2 dx. (29)

Proof: From (9), the DFMRF and the optimal scheme satisfy

the lower bound given by the MST. 2

Hence, the limiting average energy consumption for both

the DFMRF scheme and the optimal scheme is strictly finite,

and is bounded by (27) and (29). These bounds also establish

that the approximation ratio of the DFMRF scheme is asymp-

totically bounded by a constant, as stated below. Define the

constant ρ := ρ(u, λ, κ, ν), given by

ρ:=1 +

u

∫

Q1

1

2
E

[

∑

j:(0,j)∈G(Pλκ(x)∪{0})

|0, j|ν
]

κ(x)dx

λ−
ν
2 ζ(ν; MST)

∫

Q1

κ(x)1−
ν
2 dx

. (30)

Lemma 1 (Approximation Ratio for DFMRF): The

approximation ratio of DFMRF is given by

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))
a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

= ρ, (31)

where ρ is given by (30).

Proof: Combine Theorem 5 and Theorem 6. 2

We further simplify the above results for the k-nearest

neighbor dependency graph in the corollary below by exploit-

ing its scale invariance. The results are expected to hold for

other scale-invariant stabilizing graphs as well. The edges of

a scale-invariant graph are invariant under a change of scale,

or put differently, G is scale invariant if scalar multiplication

by α induces a graph isomorphism from G(V) to G(αV) for

all node sets V and all α > 0.

Along the lines of (16), let ζ(ν; k-NNG) be the constant

arising in the asymptotic analysis of the k-NNG edge lengths,

that is

ζ(ν; k-NNG):=E

[

∑

j:(0,j)∈k-NNG(P1∪{0})

1

2
|0, j|ν

]

. (32)

Corollary 1 (k-NNG Dependency Graph): We obtain a

simplification of Theorem 5 and 6 for average energy

consumption, namely

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

= λ−
ν
2 [u ζ(ν; k-NNG) + ζ(ν; MST)]

∫

Q1

κ(x)1−
ν
2 dx. (33)

The approximation ratio of DFMRF satisfies

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))

a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

=
(

1 + u
ζ(ν; k-NNG)

ζ(ν; MST)

)

. (34)
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Proof: This follows from [9, Thm 2.2]. 2

Hence, the expressions for scaling bounds and the approxi-

mation ratio are simplified when the dependency graph is the

k-nearest neighbor graph. A special case of this scaling result

for nearest-neighbor dependency under uniform placement was

proven in [36, Thm 2].

It is interesting to note that the approximation factor for

the k-NNG dependency graph in (34) is independent of the

node placement pdf κ and node density λ. Hence, DFMRF

has the same efficiency under different node placements. The

results of Theorem 4 on the optimality of uniform placement

are applicable here, but for the lower and upper bounds on

energy consumption. We formally state it below.

Theorem 7 (Minimum energy bounds for k-NNG):

Uniform node placement minimizes the asymptotic lower

and upper bounds on the average energy consumption in (29)

and (33) for k-NNG dependency graph over all i.i.d. node

placements κ.

Proof: From Theorem 4 and (33). 2

We also prove the optimality of uniform distribution un-

der disk-dependency graphs, but over a limited set of node

placements κ.

Theorem 8 (Minimum energy bound for disk graph):

Uniform node placement minimizes the asymptotic lower and

upper bounds on the average energy consumption in (29) and

(33) for disk dependency graph over all i.i.d. node placements

κ satisfying the lower bound

κ(x) >
1

λ
, ∀x ∈ Q1, (35)

where λ > 1 is the (fixed) node placement density.

Proof: We use the fact that for the disk graph with a fixed

radius, more edges are added as we scale down the area.

Hence, for Poisson processes with intensities λ1 > λ2 > 0,

E

[

∑

j:(0,j)∈G(Pλ1
∪{0})

|0, j|ν
]

≥ E

[

∑

j:(0,j)∈G(Pλ2
∪{0})

|0, j|ν
]

[

λ2

λ1

]
ν
2

,

where the right-hand side is obtained by merely rescaling the

edges present at intensity λ2. Since, new edges are added at

λ1, this is an inequality, unlike the case of k-NNG where the

edge set is invariant under scaling. Substituting λ1 with λκ(x),
and λ2 by 1, we have

∫

Q1

E

[

∑

j:(0,j)∈G(Pλκ(x)∪{0})

|0, j|ν
]

κ(x)dx

≥ λ−
ν
2 E

[

∑

j:(0,j)∈G(P1∪{0})

|0, j|ν
]

∫

Q1

κ(x)1−
ν
2 dx,

≥ λ−
ν
2 E

[

∑

j:(0,j)∈G(P1∪{0})

|0, j|ν
]

, ν > 2.

2

Hence, uniform placement is optimal if we limit to distri-

butions κ satisfying (35). We have so far established the finite

scaling of the average energy when the dependency graph

describing correlations among the sensor observations is either

the k-NNG or the disk graph. However, we cannot expect finite

scaling for any general dependency graph. For instance, for the

the complete graph, the optimal fusion scheme reduces to a

version of the shortest path (SP) routing, where the average

energy consumption grows as
√
n. Since the LLR in (6) is

now function over a single clique containing all the nodes,

the optimal scheme consists of a unique processor chosen

optimally, to which all the other nodes forward their raw data

along shortest paths, and the processor then forwards the value

of the LLR to the fusion center.

V. NUMERICAL ILLUSTRATIONS

As described in Section II-A, n nodes are placed in area
n
λ

and one of them is randomly chosen as the fusion center.

We conduct 500 independent simulation runs and average the

results. We fix node density λ = 1. We plot results for two

cases of dependency graph, viz., the k-nearest neighbor graph

and the disk graph with radius δ.

In Fig.4, we plot the simulation results for k-nearest neigh-

bor dependency and uniform node placement. Corollary 1 es-

tablishes that the average energy consumption of the DFMRF

scheme in (33) is finite and bounded for asymptotic networks

under k-NNG dependency. The results in Fig.4a agree with

theory and we note that the convergence to asymptotic values

is quick, and occurs in networks with as little as 30 nodes.

Moreover, the energy for DFMRF scheme increases with

the number of neighbors k in the dependency graph since

more edges are added. On the other hand, the average energy

under no aggregation (SP policy) increases without bound, as

predicted in Section I-A.

We plot the approximation ratio of the DFMRF scheme for

k-NNG in (34) vs. the number of nodes in Fig.4b and vs. the

path-loss coefficient ν in Fig.4c. As predicted by Corollary

1, the approximation ratio is a constant for large networks,

and find a quick convergence to this value in Fig.4b as we

increase the network size. In Fig.4c, we also find that the

approximation ratio is insensitive with respect to the path loss

ν. Hence, DFMRF scheme has nearly the same efficiency in

the entire range of ν ∈ [2, 6] under the k-NNG dependency.

In Fig.5a, we plot the average energy consumption of

DFMRF in (27) under uniform node placement and disk de-

pendency graph with radius δ. The average energy is bounded,

as predicted by Theorem 5. As in the k-NNG case, on

increasing the network size, there is a quick convergence to the

asymptotic values. Moreover, as expected, energy consumption

increases with δ since more edges are added to the dependency

graph. Note that the energy consumption at δ = 0 and δ = 0.3
are nearly the same, since at δ = 0.3, the disk graph is very

sparse, and hence, energy consumed in the forwarding stage

(FG) of LLR computation is small.

We now study the effect of node placement distribution

on energy consumption. In Fig.5b and 5c, we compare the

uniform node placement with i.i.d. placement according to pdf

κ given by

κ(x) = κ1(x(1))κ1(x(2)), x ∈ R
2, (36)

where, for some a6=0, κ1 is given by the truncated exponential
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Fig. 4. Average energy consumption for DFMRF scheme and shortest-path routing for uniform distribution and k-NNG dependency. See Corollary 1.
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κ1(z) =







ae−a|z|

2(1 − e−
a
2 )
, if z ∈ [− 1

2 ,
1
2 ],

0, o.w. (37)

Note that as a→ 0, we obtain the uniform distribution in

the limit. A positive (negative) a corresponds to clustering

(spreading out) of the points with respect to the origin. In

Fig.6, a sample realization for cases a = ±5 and anda = 0 is

shown.
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Fig. 6. Sample realization of n = 190 points on unit square. See (36), (37).

Intuitively, for shortest-path (SP) policy, if we cluster the

nodes close to one another, the average energy consump-

tion decreases. On the other hand, spreading the nodes out

towards the boundary increases the average energy. Indeed

this behavior is validated by the results in Fig.5b, for kappa

defined above in (36) and (37). However, as we analyzed in

the previous section, optimal node placement for the DFMRF

scheme does not follow this simple intuition.

For i.i.d. data, from Theorem 4, the uniform node placement

minimizes the asymptotic average energy consumption of

the optimal scheme, which is aggregation along the MST,

whenever the path-loss coefficient ν ≥ 2. For ν ∈ [0, 2], the

uniform distribution has the worst-case energy. This is verified

in Fig.5c, where for ν ∈ [1, 3], the uniform distribution initially

has high energy consumption but decreases as we increase

ν. We see that at threshold of around ν = 2.4, the uniform

distribution starts having lower energy than the non-uniform

placements (clustered and spread-out), while according to

Theorem 4, the threshold is ν = 2. Moreover, Theorem 4

also predicts that the clustered and spread-out distributions

will have the same energy consumption since
∫

Q1
κ(x)1−

ν
2 dx

are equal for a = 5 and a = −5 for κ given by (36) and (37),

and this approximately holds in Fig.5c.

VI. CONCLUSION

We analyzed the scaling laws for energy consumption of

data fusion schemes for optimal distributed inference. For-

warding all the raw data without fusion has an unbounded

average energy as we increase the network size, and hence,

is not a feasible strategy. We established finite average energy

scaling for a fusion heuristic known as Data Fusion for Markov

Random Fields (DFMRF) for certain class of spatial corre-

lation models. We analyzed the influence of the correlation

structure, node placement distribution, node density and the

transmission environment on the energy consumption.

There are many issues that are not handled in this paper.

Our fusion scheme DFMRF needs centralized topology infor-

mation, and has to be extended to a distributed scheme, where



11

only local topology information is available. Our model cur-

rently only incorporates i.i.d. node placements. We expect our

results to extend to the correlated node placement according to

a Gibbs point process through the results in [47]. We have not

considered here the scaling behavior of inference performance

with network size, and is a topic of study in [37], [48]. We

have not considered the time required for data fusion, and it

will be interesting to establish bounds in this case. Our current

correlation model assumes a discrete Markov random field. A

more natural but difficult approach is to consider Markov field

over continuous space [49] and then, sample it through node

placements.
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APPENDIX

A. Functionals on random points sets

In [9], [38], [50], Penrose and Yukich introduce the concept

of stabilizing functionals to establish weak laws of large

numbers for functionals on graphs with random vertex sets.

As in this paper, the vertex sets may be marked (sensor

measurements constituting one example of marks), but for

simplicity of exposition we will work with unmarked vertices.

We briefly describe the general weak law of large numbers

after introducing the necessary definitions.

Graph functionals on a vertex set V are often represented

as sums of spatially dependent terms
∑

x∈V

ξ(x,V),

where V ⊂ R
2 is locally finite (contains only finitely many

points in any bounded region), and the measurable function

ξ, defined on all pairs (x,V), with x ∈ V, represents the

interaction of x with other points in V. We see that the

functionals corresponding to energy consumption can be cast

in this framework.

When V is random, the range of spatial dependence of ξ

at node x ∈ V is random, and the purpose of stabilization

is to quantify this range in a way useful for asymptotic

analysis. There are several similar notions of stabilization, but

the essence is captured by the notion of stabilization of ξ

with respect to homogeneous Poisson points on R
2, defined

as follows. Recall that Pτ is a homogeneous Poisson point

process with intensity τ .

We say that ξ is translation invariant if ξ(x,V) = ξ(x +
z,V + z) for all z ∈ R

2. Let 0 denote the origin of R
2 and

let Br(x) denote the Euclidean ball centered at x with radius

r. A translation-invariant ξ is homogeneously stabilizing if for

all intensities τ > 0 there exists almost surely a finite random

variable R := R(τ) such that

ξ(0, (Pτ ∩BR(0)) ∪ A) = ξ(0,Pτ ∩BR(0))

for all locally finite A ⊂ R
2 \BR(0). Thus ξ stabilizes if the

value of ξ at 0 is unaffected by changes in point configurations

outside BR(0).

ξ satisfies the moment condition of order p > 0 if

sup
n∈N

E [ξ(n
1
2X1, n

1
2 {Xi}n

i=1)
p] <∞. (38)

We will use the following weak laws of large numbers

throughout. Recall that Xi are i.i.d. with density κ.

Theorem 9 (WLLN [9], [46]): Put q = 1 or q = 2. Let ξ

be a homogeneously stabilizing translation-invariant functional

satisfying the moment condition (38) for some p > q. Then

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{Xj}n

j=1

)

=

∫

Q1

E [ξ(0,Pλκ(x))]κ(x)dx in Lq. (39)

We interpret the right-hand side of the above equation

as a weighted average of the values of ξ on homogeneous

Poisson point processes Pλκ(x). When ξ satisfies scaling such

as E [ξ(0,Pτ )] = τ−α
E [ξ(0,P1)], then the limit on the right-

hand side of (39) simplifies to

λ−α
E [ξ(0,P1)]

∫

Q1

(κ(x))1−αdx in Lq, (40)

a limit appearing regularly in problems in Euclidean combina-

torial optimization. For uniform node placement (κ(x) ≡ 1),
the expression in (39) reduces to E [ξ(0,Pλ)], and the LLN

result for this instance is pictorially depicted in Fig.7.

For example, if ξ(x,V) is one half the sum of the ν-

power weighted edges incident to x in the MST (or any scale-

invariant stabilizing graph) on V, i.e.,

ξ(x,V):=
1

2

∑

e∈E(x,MST(V))

|e|ν ,

then substituting α with ν
2 in (40),

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{Xi}n

i=1

)

= λ−
ν
2 E [ξ(0,P1)]

∫

Q1

(κ(x))1−
ν
2 dx

= λ−
ν
2 ζ(ν; MST)

∫

Q1

(κ(x))1−
ν
2 dx, (41)

where ζ(ν; MST) is defined in (16).

B. Proof of Theorem 5

The energy consumption of DFMRF satisfies the inequality

in (27). For the MST we have the result in Theorem 3. We

now use stabilizing functionals to show that

1

n

∑

e∈G(Vn)

|e|ν

converges in L2 to a constant. For all locally finite vertex sets

X ⊂ R
2 supporting some dependency graph G(X ) and for all

x ∈ X , define the functional η(x,X ) by
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n → ∞

Origin

Normalized sum of edges Expectation of edges

of origin of Poisson process

1
n

∑

e∈G(Vn)

|e|ν 1
2 λ

− ν
2 E

∑

e∈E(0,G(Pλ∪{0}))

|e|ν

Fig. 7. LLN for sum graph edges on uniform point sets (κ ≡ 1).

η(x,X ):=
∑

y:(x,y)∈G(X )

|x, y|ν . (42)

Notice that
∑

x∈X η(x,X ) = 2
∑

e∈G(X ) |e|ν .

From [9, Thm 2.4], the sum of power-weighted edges of

the k-nearest neighbors graph is a stabilizing functional and

satisfies the bounded-moments condition (38). Hence, the limit

in (39) holds when the dependency graph is the k-NNG.

We now show that the sum of power-weighted edges of the

continuum percolation graph is a stabilizing functional which

satisfies the bounded-moments condition (38), thus implying

that the limit in (39) holds.

It is clear that η stabilizes with respect to Pτ , τ ∈ (0,∞),
since points distant from x by more than the deterministic

disc radius do not modify the value of η(x,Pτ ). Moreover, η

satisfies the bounded moments condition (38) since each |x, y|
is bounded by the deterministic disc radius and the number of

nodes in n
1
2 {Xi}n

i=1 which are joined to n
1
2X1 is a random

variable with moments of all orders.
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