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Abstract—The problem of minimum cost in-network fusion of
measurements, collected from distributed sensors via multihop
routing is considered. A designated fusion center performs an
optimal statistical-inference test on the correlated measurements,
drawn from a Markov random field. Conditioned on the delivery
of a sufficient statistic for inference to the fusion center, the
structure of optimal routing and fusion is shown to be a Steiner
tree on a transformed graph. This Steiner-tree reduction pre-
serves the approximation ratio, which implies that any Steiner-
tree heuristic can be employed for minimum cost fusion with the
same approximation ratio. The proposed fusion scheme involves
routing packets of two types viz., raw measurements sent for
local processing, and aggregates obtained on combining these pro-
cessed values. The performance of heuristics for minimum cost
fusion are evaluated through theory and simulations, showing a
significant saving in routing costs, when compared to routing all
the raw measurements to the fusion center.

Index Terms— Sensor networks, in-network processing and

aggregation, statistical inference, cost minimization

I. INTRODUCTION

Classical routing in a general data network aims at de-

livering data from source(s) to destination in some optimal

manner, for example, by minimizing the total routing cost.

Traditionally, the content of a data packet is unchanged en-

route to the destination; in general, packets from different

sources are not combined at intermediate nodes.

A sensor network deployed for specific applications, how-

ever, may not require all the raw data at the destination; some

form of summary statistic may suffice. For example, to detect

the occurrence of certain events, only a sufficient statistic of

the data, based on a statistical model, is needed at the decision

node (the so-called fusion center). Importantly, a sufficient

statistic does not destroy any information about the underlying

phenomenon and often enables a significant reduction of the

data dimension. Therefore, the classical approach of routing

all the raw data to the fusion center is inefficient. Instead, a
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data-centric approach of delivering only a sufficient statistic

to the fusion center could be an economic alternative.

The maximum reduction of data dimension through the

sufficient statistic is when the sensor measurements are sta-

tistically independent (conditioned on the specific physical

phenomenon). In this extreme scenario, the sufficient statistic

(likelihood function) is a sum function over components

involving individual node values. Such a sum function can

be obtained by aggregating the partial sums along a tree.

The other extreme, of course, is when the sufficient statistic

does not permit any dimension reduction and hence, all the

measurements are needed at the fusion center. What then about

the cases between these extremes?

We examine optimal in-network processing strategies for

multihop sensor networks, when the sensor measurements are

drawn from a structured statistical model. In any realistic

scenario, the sensor measurements are spatially correlated,

and our framework takes this into account. Specifically, we

assume that the measurements are drawn from a Markov

random field (MRF), (a detailed description of the model is

given in section III-B). How can such spatial dependence be

exploited for minimum cost fusion? Can the minimum cost

fusion be reduced to a known optimization problem to enable

the characterization of its complexity? Are there heuristics

that are simple and yet have guaranteed performance? How

much saving can one expect over the conventional approach

of forwarding all the raw data to the fusion center?

By optimal data fusion we mean the following. First,

the (minimal) sufficient statistic is delivered to the fusion

center and optimal statistical inference is undertaken at the

fusion center. Second, the cost (e.g. energy) of delivering

the sufficient statistic through multihop routing is minimized.

Departing from the classical-routing paradigm, we allow raw

data at individual sensors to be aggregated into some economic

form as they propagate through the network, contributing

to the sufficient statistic at the fusion center. The idea of

combining data packets at routers to form new economic

representations is of course not new (see a brief review

below); however, doing so while guaranteeing optimality at

the destination is nontrivial and so far an open problem.

II. RELATED WORK

An overview of routing for mobile-wireless networks can be

found [1], [2].Correlated data gathering has been considered
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Fig. 1. Schematic of dependency graph of Markov random field and stages of data aggregation. The cliques of Markov random field arise due to spatial
dependence of data. The set of all links used for aggregation is known as the packet-operation digraph. Its forwarding and aggregation subgraphs consist of
links transporting raw data and aggregated values. The delivery of likelihood function to the fusion center needs to be ensured.

in [3]–[5]. But these schemes focus on compression, with the

aim of routing all the measurements to a designated sink.

Efficient aggregation schemes have been studied in [6]–[10],

but without taking into account the spatial correlation among

the measurements. For example, in [9], it is assumed that

multiple incoming packets at a node can be processed to

a single outgoing packet; this holds only for some special

functions such as sum, maximum etc. A survey of in-network

processing of various functions may be found in [11], [12].

The model for spatially-correlated data crucially affects

the in-network processing schemes. However, since only few

real systems have been deployed, varying assumptions have

been made in the literature. Joint-Gaussian distributions and

distance-based correlation function have been widely assumed

due to their simplicity [13]–[16]. The model proposed in [17]

is a special case of a Markov random field (MRF). The use

of the MRF model for spatial data in sensor networks is

relatively new (e.g., [18]), although it is widely used in image

processing [19] and geo-statistics [20]. This could be due to

the complexity of the model for arbitrarily-placed nodes.

In this paper, we employ the Markov random field model,

taking into account only its graphical dependency structure and

no parametric function is assumed for spatial correlation. The

use of a Markov random field model leads to the formation of

“clusters” that are based on the statistical dependence, rather

than other considerations such as residual energy [10]. Also,

these clusters in general contain common nodes and there is

the issue of aggregation of the processed values rather than

simple forwarding to the destination. The dependency structure

and model parameters of the Markov random field model

can be estimated by incorporating a training phase. Recently,

learning graphical models from data, specifically for binary

hypothesis testing, has been considered in [21].

Aggregation for inference in resource-constrained sensor

networks are fewer. In [22], sensor collaboration issue in target

tracking is addressed. In [23], the local vote decision fusion

rule fuses binary decisions locally by a majority rule before

transmitting to a fusion center. Chernoff routing, with a link

measure for detection, has been proposed in [24] and assumes

an one-dimensional Gauss-Markov random process, not appli-

cable when the nodes are on a plane. In [25], a dynamic-

programming approach to resource management for object

tracking, based on a graphical model, is proposed. However,

the possibility of aggregation, en-route, is not considered. In

[26], a decision-theoretic approach to inference with single-

bit communication is considered and the network topology is

predefined by a directed acyclic graph. In [27], we analyzed

the optimal sensor density in an energy-constrained random

network, and measurements are i.i.d. Gaussian under the null

hypothesis and under the alternative, form a Gauss-Markov

random field with nearest-neighbor dependency.

A. Our Approach and Contributions

The main contribution of this work is twofold. First, con-

ditioned on the requirement that the sufficient statistic for

statistical inference (i.e., the likelihood function) is delivered

to the fusion center, we obtain the minimum cost routing and

aggregation scheme, when sensor measurements are drawn

from a Markov random field. Such a scheme involves com-

puting the likelihood function consisting of components, each

of which depends on a subset of the measurements. See

Fig.1. These components can be computed independently at

various nodes. Therefore, an aggregation scheme involves the

following considerations, viz., each component is assigned a

computation site or a processor; measurements of the compo-

nent members are then transported to its processor to enable

computation of the component values. These values are then

combined and delivered to the fusion center.

We show that the Steiner tree on an expanded commu-

nication graph minimizes the sum costs of routing for the

above tasks. The specific Steiner-tree reduction preserves

the approximation factor. The approximation factor ρ of

polynomial-time algorithm guarantees that its performance

is no worse than ρ times the optimal value. Hence, our

approximation-factor preserving reduction implies that any

Steiner-tree approximation algorithm can be used for the

problem of optimal fusion with the same approximation ratio.

The expansion of the communication graph involves adding

component-representative nodes, as selectors of the processors

for each component of the likelihood function and connecting

them to the component members through edges incorporating

the local routing costs.

In contrast to the Steiner-tree approach, we propose a

simpler heuristic based on the minimum spanning tree (MST)
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that ensures optimal inference at the fusion center and has an

approximation ratio of two for the special case of the nearest-

neighbor dependency graph. Our simulations show that in-

network processing achieves significant savings compared to

forwarding all the raw data to the fusion center, especially for

sparse spatial dependencies.

The substantial reduction in the routing costs comes from

the exploitation of the Markovian correlation structure, the

use of which is both a contribution and a limitation. To the

best of our knowledge, there has been no study of strategies

that guarantee optimal statistical inference at the fusion center,

while minimizing multihop routing costs. We are able to ad-

dress this fundamental problem analytically by exploiting the

Markov random field structure. On the other hand, the assumed

structure raises the practical issues of accuracy and overhead

in learning the dependency structure. Within the limitations

of our model-based assumptions, we hope to provide insights

applicable to more general structures.

Our paper is organized as follows. The system model and

problem formulation are explained in sections III and IV. The

MST-based heuristic and Steiner-tree reduction for optimal

fusion are in sections V and VI. The experimental results are

in section VII and section VIII concludes the paper.

III. SYSTEM MODEL

A. Notations and Definitions

An undirected graph G is a tuple G = (V,E), where V
is the vertex set and E = {(i, j)}, i, j ∈ V is the edge set.

We allow graphs to have multiple or parallel edges, but no

loops. The neighborhood function Nu(i;G) of a node i is the

set of all other nodes having an edge with it in G. The set of

nodes with a single neighbor are known as the leaves, denoted

by Leaf(G), otherwise they are internal. A subgraph induced

by V ′ ⊂ V on G is denoted by G(V ′) and a clique is a

complete subgraph having edges between any two nodes in

V ′. A maximal clique is one that is not contained in any other

clique. Henceforth, a clique will refer to a maximal clique,

unless otherwise mentioned.

For a directed graph (digraph), we denote the edges (arcs)

by < i, j >, where the direction is from i to j, and

j is an immediate successor of i, denoted by Ns(i), and

i an immediate predecessor of j, denoted by Np(j). The

above graph functions f are extended to sets, defined by

f(A):=
⋃

i∈A f(i). For example, (i, A) denotes the set of

edges between i and members of A. For sets A and B, let

A\B = {i : i ∈ A, i /∈ B} and let | · | denote cardinality.

B. Statistical Model for Sensor Data

We assume that the sensor measurements are drawn from a

Markov random field (MRF). The MRF falls under the frame-

work of acausal graphical models and satisfies conditional-

independence properties, based on its dependency graph. A

simple example is the first order auto-regressive process. A

general spatial random field is defined below.

Definition 1 (Markov random field): Let YV = [Yi, i ∈
V ]T denote the random vector of measurements in set V . YV

is a Markov random field with an (undirected) dependency

graph G = (V,E), if ∀ i ∈ V ,

Yi ⊥ YV \{i,Nu(i)}|YNu(i), (1)

where ⊥ denotes conditional independence.

In words, the above definition states that the value at any node,

given the values at its neighbors, is conditionally independent

of the rest of the network.

The Hammersley-Clifford theorem [28] states that for a

MRF YV with dependency graph G = (V,E), the joint PDF

f , under the positivity condition, can be expressed as

− log f(YV ; Υ) =
∑

c∈C

ψc(Yc), (2)

where C is a set of (maximal) cliques in G, the functions ψc,

known as the normalized1 clique potentials, are real valued,

non-negative and not zero everywhere on the support of Y

and the tuple Υ = {G, C, ψ} specifies the MRF in (2).

From (2), we see that the complexity of the likelihood

function is vastly reduced for sparse dependency graphs;

here, the conditional-independence relations in (1) results in

the factorization of the joint likelihood into a product of

components, each of which depends on a small set of variables.

Remark: In (2), C contains only those cliques over which

the potentials are non-zero. For example, for independent

measurements, C is the vertex set; for Besag’s auto-model

[30], generated by exponential-family distributions, C is the

edge set. In this paper, we assume that |C| is polynomial in

the number of nodes. This is satisfied by graph families such

as bounded-degree graphs [31].

C. Network Model

We assume the presence of a medium-access control that

eliminates collisions or interferences among the nodes. All real

numbers are quantized with sufficiently high precision so that

the quantization error can be ignored. All nodes can function

as both sensors and routers. The network is connected via a

communication graph containing set of feasible bidirectional

communication links. Note that this communication graph is

different from the dependency graph of the MRF. We consider

the unicast mode of routing, where a packet from a node is

routed to a single destination and the intermediate nodes do

not perform any processing or store the packet for future use.

D. Cost Model

In our formulation, the processing costs are assumed con-

stant, and thus ignored in the optimization. Usually the routing

costs reflect transmission energy, but it could also represent,

for example, delay, bandwidth, or a combination of these

considerations. We represent the routing of a real number by

a packet. A symmetric routing cost function is assumed, and

is denoted by Ci,j > 0. For a set of communication links G

1For general potentials, finding the normalizing constant (partition function)
is NP-hard, but approximate algorithms have been proposed in [29].
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(some of which may be parallel edges), let C(G) denote the

total cost of routing using these links,

C(G):=
∑

e∈E

Ce, (3)

where Ce is the cost of the link e and E is the edge set of

G. If the cost function is not a metric, we consider its metric

closure2, and denote the metric costs by C̄i,j . There is no

loss of generality, since the edges of the metric closure can

be replaced with the corresponding shortest paths. The metric

closure can also be approximated with localized spanners [33].

IV. PROBLEM FORMULATION

A. Statistical Inference

We consider the distributed-inference setup, where a number

of sensors measure the signal field and the designated fusion

center makes a final decision on the underlying phenomenon.

We specify the class of inference problems addressed in

this paper. We consider binary hypothesis testing, with null

hypothesis H0 and alternative hypothesis H1. Let f(YV ;Hj)
be the PDF of the measurements YV of sensors in set V under

hypothesis Hj . The optimal decision rule is a threshold test

based on the log-likelihood ratio (LLR),

LLR(YV ):= log
f(YV ;H0)

f(YV ;H1)
. (4)

A minimal sufficient statistic for inference represents the

maximum possible reduction in dimensionality of the sensor

data, without destroying information about the underlying phe-

nomenon [34]. The log-likelihood ratio (LLR) is the minimal

sufficient statistic for hypothesis testing [35].

We assume that the measurement samples are drawn from

distributions specified by distinct Markov random fields,

H0 : Υ0 = {G0(V ), C0, ψ0} vs. H1 : Υ1 = {G1(V ), C1, ψ1}.
(5)

From (2), the LLR is given by

LLR(YV ) =
∑

a∈C1

ψ1,a(Ya)−
∑

b∈C0

ψ0,b(Yb) (6)

It is easily seen that the LLR is expressed as the sum of poten-

tials of an “effective” Markov random field Υ = {GΥ, C, φ}
specified as follows: the effective dependency graph GΥ =
(V,EΥ), with edge set EΥ:=E0∪E1; the effective clique set C
is C:=C0∪C1, with only the resulting maximal cliques retained;

the effective potential functions φc are given by

φc(Yc):=
∑

a∈C1,a⊂c

ψ1(Ya)−
∑

b∈C0,b⊂c

ψ0(Yb), ∀ c ∈ C. (7)

2The metric closure on graph G, is defined as the complete graph where
the cost of each edge is the cost of its shortest path in G. [32, p. 58].

Therefore, the LLR has a succinct form

LLR(YV ; Υ) =
∑

c∈C

φc(Yc). (8)

B. Localized Fusion Schemes

The succinct form of the LLR in (8) consists of clique

potential functions φ and hence, is amenable to localized

processing within the cliques of the Markov random field.

In order to compute a potential function φc of clique c,
access to measurements of all the clique members is needed.

Therefore, each potential function φc is assigned a unique

computation site, known as its processor, denoted by Proc(c).
We assume that the clique potential functions are processed

“locally”, at one of its members, i.e., Proc(c) ⊂ c. In

practice, the information about the potential functions can

be sent to the nodes by the fusion center after empirical

joint-density estimation. Hence, such localized processing can

significantly reduce the overhead involved in communication

and storage of the function parameters. Localized processing

can be especially efficient for proximity graphs, where the

edges are included based on local point configuration [36].

The set of communication links G used by any fusion

scheme fall into two categories, viz., those transporting raw

measurements to the processor to compute the specified po-

tential function, known as the forwarding subgraph FG(G)
and the set of links that transport/aggregate these processed

values, known as the aggregation subgraph AG(G). The tuple

consisting of the forwarding and the aggregation subgraphs

{FG(G),AG(G)} of a fusion scheme is known as the packet-

operation digraph. A schematic of a fusion scheme is shown

in Fig.1.

The aim of any feasible fusion scheme for inference is to de-

liver the LLR in (8) to the designated fusion center v0. Such a

scheme is specified by a processor-assignment mapping Proc,
a packet-operation digraph {FG(G),AG(G)} and a sequence

in which data is transported and processed. Hence, a fusion

scheme is represented by tuple Γ:={Proc,FG(G),AG(G)}.
Let AggV al(i; Γ) be the value at node i at the end of fusion.

Formally, the constraints on any feasible localized fusion

scheme Γ are specified as follows:

• the LLR is delivered to the fusion center,

AggV al(v0; Γ) = LLR(YV ; Υ), (9)

• local processor assignment,

Proc(c; Γ) ⊂ c, ∀ c ∈ C. (10)

C. Cost Minimization

The minimum-energy fusion scheme for inference delivers

the LLR to the fusion center, while minimizing the total cost

of routing. Formally, it is formulated as finding a scheme Γ∗
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with the optimal processor assignment and packet-operation

digraph, such that the total routing cost is minimized

Γ∗:= arg min
Γ

C(G), (11)

subject to the constraints (9) and (10).

A special case of (11) addressed in the literature (e.g., [9])

is when the measurements are conditionally-independent. In

this case, the minimum cost scheme is given by the directed

minimum spanning tree (DMST), with the directions toward

the fusion center, and the sum is calculated hierarchically,

starting at the leaves and ending at the fusion center. This

in fact turns out to be a lower bound for the cost of optimal

fusion.

Lemma 1 (Lower bound on C(G∗)): The total routing cost

for optimal fusion in (11) is no less than that of the minimum

spanning tree (MST), based on the routing cost function, i.e.,

C(MST(V )) ≤ C(G∗(V )). (12)

Proof: The constraints satisfied by an instance in (11)

include the following: there is at least one link going out

of every node other than possibly, the fusion center and

the packet-operation digraph is weakly connected. MST is

the minimum cost graph satisfying these constraints and in

general, it does not deliver the LLR to the fusion center. 2

Under our setup, any scheme delivering the LLR to the

fusion center consists of a processor-assignment mapping and

a packet-operation digraph, consisting of two types of links

viz., forwarding and aggregation links. Given such an input, a

simple algorithm that specifies a sequence of operations and

transmissions to compute the LLR and deliver it to the fusion

center is provided in [37, Appendix A]. It can be easily verified

that all the schemes proposed in this paper deliver the LLR.

V. MST-BASED AGGREGATION

In this section, we propose a simple heuristic (AggMST),

based on the minimum spanning tree. The heuristic is based

on the fact that the LLR in (8) is the sum of potentials, and

these potentials once computed, can be aggregated along the

MST. However, note that unlike the case of independent data,

the potentials depend on the data of a clique and therefore,

additional transmissions are required.

We specify the AggMST scheme in Fig.2. For a clique c, the

processor is assigned arbitrarily to the clique member with the

lowest index (line 5). Other suitable factors such as residual

energy can instead be used for the assignment. The shortest-

path routes from other members of c to the processor are

added to the forwarding subgraph FG (line 7), and the raw data

is routed along these links to enable the computation of the

clique potentials. Note that the construction of the FG can be

implemented in a localized manner whenever the dependency

graph is local (e.g., k nearest-neighbor graph, disk graph).

The aggregation subgraph AG is DMST(V ), the minimum

spanning tree, directed towards the fusion center (line 11) and

potentials are added hierarchically along AG.

Input: V = {v0, . . . , v|V |−1}, v0= Fusion center,

1: C = {c0, . . . , c|C|−1}= maximal clique set of the MRF,

2: DMST(V ) = Minimum spanning tree, direct toward v0
3: SP(i, j)= (Directed) shortest path from i to j
4: for j ← 0, |C| − 1 do

5: Proc(cj)← minvi∈cj
vi // Arbitrary processor assign-

ment

6: if |cj | > 1 then

7: Add SP(cj\Proc(cj), P roc(cj)) to FG

8: end if

9: end for

10: AG← DMST(V ), Γ← {Proc,FG,AG}
11: return Γ

Fig. 2. Heuristic for aggregation in a Markov random field (AggMST).

A. Performance bounds

In this section, we quantify the performance of the AggMST

scheme for a special scenario that allows us to utilize the

lower-bound result of Lemma 1.

Theorem 1 (Approximation): For the case when the routing

costs are Euclidean and the dependency graph is a subgraph

of the Euclidean MST, the AggMST scheme has an approxi-

mation ratio of 2.

Proof: The MST in the lower bound (Lemma 1) is Eu-

clidean, since the transmission costs are Euclidean. Since the

dependency graph is a subgraph of the Euclidean MST, all the

links in AggMST are contained in the Euclidean MST. Hence,

we have the approximation ratio of 2. To show that the bound

is tight, we note that the case of extended equilateral triangles

on the Euclidean plane achieves this bound. 2

An important dependency graph that is a subgraph of the

MST is the nearest-neighbor graph. It is the simplest proximity

graph. We evaluate the performance of AggMST for other

proximity graphs, based on simulations in section VII.

VI. STEINER-TREE REDUCTION FOR GENERAL MRF

In this section, we show that optimal fusion has a Steiner-

tree reduction. We specify the graph transformations required

for such a reduction and obtain the optimal processor assign-

ment and packet-operation digraph. The Steiner minimal tree

on graphs [32, p. 148] is defined as the tree of minimum

total edge weight containing a specified set of vertices, known

as terminals. We first show that a simplified version of

the minimum cost aggregation problem, where the processor

assignment is predetermined, is a Steiner tree.

Lemma 2 (Fixed processor assignment): If the assignment

of the processors computing the clique potential functions is

fixed, prior to cost minimization, then minimum cost aggre-

gation in (11) is given by the packet operation digraph, with

the forwarding subgraph consisting of the shortest-path routes

from the clique members to the corresponding processor and

the aggregation subgraph is the Steiner tree, with the set of

processors and the fusion center as the terminals and the links

directed toward the fusion center.
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Input: V = {v0, . . . , v|V |−1}, v0= Fusion center,

C = {c0, . . . , c|C|−1}= maximal clique set of the MRF,

Gt= Metric closure of comm. graph, C̄ = Link costs in Gt,

ST(G,L) = δ-approx. Steiner tree on G, terminal set L
G′, Vc ←Map(Gt; C̄, C)
DST = ST(G′, Vc ∪ v0) and directed towards v0
Γ← RevMap(DST;Vc, V, C)
return Γ

Fig. 3. δ-approx. min. cost aggregation scheme Γ with processor assignment
and packet-operation digraph via Steiner-tree reduction (AggApprox).

Proof: Once the processor assignment is fixed, in order

to compute the potential functions, measurements from other

nodes are routed to the corresponding processors through

shortest-path routing. Now, the sum of the potential functions

at the processors has to be delivered at the fusion center and

is done optimally by aggregating along the Steiner tree. 2

Such a fixed processor assignment could be due to differ-

ent processing capabilities or considerations such as residual

energy. Alternatively, one of the clique members can be

randomly selected as a processor. We compare this scheme

with optimal fusion through simulations in section VII.

The goal of this paper is to find the optimal processor

assignment, since it affects the total cost of aggregation. In

Lemma 3, we consider a simpler version of the problem

and ignore the routing costs incurred in transporting the raw

measurements to a processor and show a group Steiner tree

reduction. A group Steiner tree is defined as the tree with

minimum total edge weight, such that it includes at least one

vertex from each specified group [38].

Lemma 3 (Minimum aggregation subgraph): If the routing

costs of the forwarding subgraph or any other considerations

for processor assignment are ignored, then the minimum cost

aggregation subgraph is given by the group Steiner tree, with

the cliques of the MRF as the groups.

Proof: At least one member of every clique of the MRF

has to be in the aggregation subgraph, since its potential

function needs to be processed locally. Since all the clique

members have equal weights prior to selection, the optimal

set of the processors are those that minimize the total cost of

the aggregation subgraph, given by the group Steiner tree. 2

In general, the processor assignment is not only dependent

on the cost of the aggregation subgraph, but also on costs

of forwarding subgraph. In Fig.4, we define a graph transfor-

mation Map(Gt) on the metric communication graph Gt to

incorporate these raw-data routing costs. After constructing a

feasible (not necessarily the optimal) solution to the Steiner

tree on the transformed graph Map(Gt), we map it back to a

feasible fusion scheme using the operation RevMap in Fig.5.

The complete procedure is summarized in Fig.3 (AggApprox).

The Map(Gt) in Fig.4 operation involves adding new

clique-representative nodes for each non-trivial clique (size

greater than one) and connecting it to all its corresponding

clique members (line 6). In line 9, the edge cost from a repre-

1: function Map(Gt(V ); C̄, C)

2: Nu(v;G) = Neighborhood of v in undirected G
3: Initialize G′ ← Gt, Vc ← ∅, n← |V |
4: for j ← 0, |C| − 1 do// Let V and C be ordered

5: if |cj | > 1 then

6: Vc ← vn−1+j , Add new node vn−1+j to G′,

7: for each vi ⊂ cj do

8: Add node vi to Nu(vn−1+j ;G
′)

9: C̄(vn−1+j , vi;G
′) ←

∑
vk⊂cj ,k 6=i

C̄(vi, vk;Gt)

10: end for

11: else

12: Vc ← vi, for vi ⊂ cj // For trivial cliques

13: end if

14: end for

15: return G′, Vc

16: end function

Fig. 4. Map(Gt; C̄, C) adds nodes corresponding to each non-trivial clique
and returns the expanded graph G′ and node set representing cliques Vc.

function RevMap(G′;Vc, V, C)

Ns(v;G), Np(v;G) = Imm. successor, predecessor of v
Initialize G← G′, n← |V |
for each vj ∈ Vc do

if j > n− 1 then

k ← j − n+ 1,

Proc(ck)← Ns(vj ;G
′), for ck ∈ C,

Vj ← ck\Proc(ck), Replace < vj , P roc(ck) >
in G with edges < Vj , P roc(ck) >, mark them

if Np(vj ;G) 6= ∅ then Replace < Np(vj), vj >
in G with edges < Np(vj), P roc(ck) >

end if

else

Proc(cl)← vj , for vj ⊂ cl // For trivial cliques

end if

end for

FG← Marked edges of G, AG← G\FG

Γ← {Proc,FG,AG}
return Γ
end function

Fig. 5. RevMap(G; Vc, V, C) maps tree G′ to fusion scheme Γ with
processor assignment Proc, forwarding and aggregation subgraphs FG, AG.

sentative node to a clique member incorporates the raw-data

routing costs, which is the initial cost incurred in assigning

a member as the processor for the clique potential function.

Note that for the group Steiner problem, such a transformation

would require assigning artificial costs to such edges, whereas

here, they are part of the minimization. We then find a feasible

solution to the Steiner-tree on Map(Gt), with the clique-

representative nodes and the fusion center as the terminals.

It is then directed towards the fusion center and denoted

by DST. The reverse mapping RevMap(DST) assigns the

unique immediate successor of every clique-representative

node in DST as the clique processor. The edges from the
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representative nodes in DST are replaced by shortest paths

from other clique members to the processor and added to the

forwarding subgraph of the fusion scheme. All other edges,

not belonging to representative nodes in in DST, are assigned

as the aggregation subgraph. In the theorem below, we prove

that this reduction is approximation-factor preserving.

Theorem 2 (Optimal Fusion): Given a hypothesis-testing

problem with the log-likelihood ratio in (8), whose form has

an effective Markov random field Υ = {GΥ, C, φ}, with

dependency graph GΥ, clique set C of polynomial cardinality,

and potential functions φ over cliques in C, optimal fusion in

(11) can be approximated via AggApprox in Fig.3 and has the

same approximation factor as the Steiner tree on graphs.

Proof: AggApprox results in a feasible fusion and runs

in polynomial time since there are polynomial number of

cliques. For any feasible solution to Steiner tree, replacement

of links in line 9 of RevMap in Fig.5 reduces the sum

cost. In Map(Gt), the clique-representative nodes satisfy

C̄vn−1+k,i, C̄vn−1+k,j ≥ C̄i,j , ∀i, j ⊂ ck ∈ CΥ. Hence,

representative nodes are leaves in the optimal Steiner tree, and

the cost of optimal fusion and Steiner tree are equal. Hence,

by definition [39, A.3.1], the reduction from minimum cost

fusion to Steiner tree preserves the approximation factor. 2

A. Comparison with Shortest-Path Routing

Since the optimal fusion scheme has a constraint of local

processing, the shortest-path routing to the fusion center is

not an instance in the optimization. Hence, it is not always

possible to guarantee if optimal fusion in (11) performs better

than shortest-path routing. For a special class of MRF, such a

guarantee is given in the lemma below.

Lemma 4 (Advantage over Shortest-path Routing): The

cost of optimal fusion is no greater than the cost of shortest-

path routing of all the data to the fusion center, when all the

cliques of the effective MRF of the LLR in (8) contain the

fusion center as a member.

Proof: If all cliques contain the fusion center, then it is a

possible processor for every clique potential function. Since

shortest-path routing assigns the fusion center as the sole

processor, it is one of the candidates in the optimization. 2

Any random field without special properties has a complete

graph as the dependency graph and falls into the above-

mentioned category. Therefore, even without special structure,

savings are possible, since only the LLR is needed at the fusion

center and not the raw data. Optimal fusion involves finding

an efficient processing site for the LLR in this case and then

transporting it to the fusion center. In this special case, the

optimal Steiner tree on the clique-expanded graph Map(Gt)
reduces to the shortest path between the group vertex vc and

the fusion center v0, computable in polynomial time.

VII. EXPERIMENTAL STUDY

The conventional shortest-path routing is independent of the

dependency graph. In this section, for different dependency

graphs, we compare it with the schemes proposed in this paper:

1) AggMST heuristic (Fig.2),

2) Steiner-tree heuristic for optimal fusion (Fig.3),

3) random processor selection (Lemma 2).

We also plot the lower bound for the costs, stated in Lemma 1.

Finding the Steiner tree is NP-hard and there has been ex-

tensive work on finding approximation algorithms. A simple

MST heuristic for Steiner tree approximates the metric Steiner

tree with the minimum spanning tree MST(L) over the set of

terminals L, and has an approximation ratio of 2. The best

known approximation bound for Steiner tree on graphs is 1.55,

derived in [40]. In this section, the MST heuristic is used for

Steiner trees. Note that this is different from the MST over

the set of nodes, since the Steiner tree is over a new graph

with added vertices. For dependency-graph models, we focus

on two classes of proximity graphs: the k-nearest neighbor

graphs and the ρ-constrained disk graphs. In the former, the

number of neighbors is fixed, whereas the latter has a bounded

neighborhood region.

A. Simulation Environment

We assume that the set of feasible direct transmissions

between the nodes is given by a connected disk graph. Power

control is used to adjust the transmission power to a receiver’s

position and the routing cost is given by the minimum energy

required for successful transmission from node i to node j,

given by Ci,j = |dist(i, j)|ν . We find that under different radii

for the set of feasible links and path loss ν, similar trends are

observed. Hence, only the results for the complete graph (i.e.,

for a sufficiently large radius) and ν = 2 are plotted.

Although, the approximation guarantee is valid for any

node configuration, we employ a random placement. In our

setup, n nodes are uniformly distributed in a square of area

n (constant density scaling), since typically, nodes are added

to new regions to enable sensing of new information. For any

other scaling, the plots can be suitably modified. We randomly

fix a node as the fusion center.

B. Besag’s Model with k-Nearest Neighbor Graphs

We employ Besag’s model [30], where the clique set is

limited to set the edges of the dependency graph. Exponential

family of conditional probabilities can generate such pairwise

dependencies. The dependency graph is assumed to be the k-

nearest neighbor graph (k-NNG). It has edges (i, j), whenever

i is one of the k nearest neighbors of j or viceversa. We im-

prove the AggMST heuristic for k-NNG graphs by modifying

the arbitrary processor assignment ( line 5 in Fig.2), to instead

not include the leaves of the aggregation subgraph. This results

in energy savings since the leaves do not participate during the

phase when the potentials are combined.

The results are plotted in Fig.6. Only AggMST is shown,

since all the heuristics performed similarly. In Fig.6a, we

observe that the cost increases with k, but performs better than

shortest-path routing, especially for large networks. In Fig.6b,

we plot the average number of edges of k-NNG. and observe a

correspondence between the two plots: the increase in routing

cost for a larger k is due to more edges in the k-NNG, leading
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Fig. 7. Results for disk dependency graph. 50 nodes with uniform random placement.

to more potential functions to be calculated. Also, note that

the cost of the heuristics and number of edges per node in

the two plots converge to constants. This is due to the law of

large numbers for edge functionals of k-NNG [41].

C. ρ-Constrained Disk Graphs

A disk graph has edges between nodes within a speci-

fied threshold ρ and is used to model short-range spatial

dependence [42]. We assume that all the (maximal) cliques

of the disk graph have non-zero potential functions. Unlike

the previous case with pairwise dependencies, here, both

the number of cliques and their sizes depend on ρ. As the

threshold ρ is increased, the size of the cliques increases;

however, the number of maximal cliques initially increases and

then decreases. We use the clique-enumeration algorithm for

dynamic graphs in [43], to update the clique list for different

values of ρ.

In Fig.7, we plot the routing cost per node and the number

of non-trivial cliques (of size greater than one), as functions of

ρ. Again, there is correspondence between the two plots. For

low values of ρ, both the cost and the number of cliques are

low. The maxima in both the plots occur for similar values of

ρ. We also note the presence of a critical radius below which

there is advantage over shortest-path routing. In this regime,

the different heuristics have similar performance. For large

values of ρ, the dependency graph is complete and hence, by

Lemma 4, the Steiner-tree heuristics have similar performance

as shortest-path routing. But the AggMST heuristic performs

worse since it uses the entire MST to combine the potentials.

D. Implications

We see that savings due to aggregation are considerable

compared to shortest-path routing for k-NNG and ρ-disk

graphs, at low values of k and ρ. These graphs are probably

the best candidates, after the independent-data case, for in-

network processing of the likelihood function. For such sparse

dependencies, the AggMST-heuristic has performance compa-

rable to that of the Steiner-tree approximations. However, its

implementation is much simpler. Also, we observe that there

is direct correspondence between the number of cliques and

the aggregation cost. Hence, the number of cliques is a good

measure for judging the effectiveness in-network processing.

The gap between the heuristics and the lower bound, represents

the overhead arising due to correlation. A dense dependency

graph has high aggregation costs due to the complexity of its

likelihood function. This is unlike the case of compression

with the aim of routing all the raw data to a destination,

where a dense dependency graph (more correlation) implies

redundancy and hence, reduction in routing costs.

VIII. CONCLUSION

We considered data aggregation for an inference application.

Using the Markov random field model, we exploited the

spatial dependencies to specify efficient localized processing

of the data, without loss in global inference performance. We

proposed a simple heuristic, based on the minimum spanning
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tree. We proved a Steiner-tree reduction of optimal fusion

enabling the use of approximation schemes for the Steiner

tree with the same performance guarantee. Simulations show

a significant saving in cost due to in-network processing

for proximity-based sparse dependency graphs, compared to

routing all the data to the fusion center.

We have considered a single round of data aggregation

without explicitly addressing the issue of network lifetime.

However, our approach can be adapted to multiple rounds,

incorporating considerations such as residual energy. We have

made a number of simplifying assumptions in this paper.

Possible extensions are considering probabilistic reception of

data, balancing the routing costs in the network and exploiting

the broadcast nature of the wireless medium. Extension to

other inference problems such as m-ary hypothesis testing and

optimal quantization of correlated measurements would be of

interest. We have also not considered the interplay between the

cost and the time required to fuse all the data and the quality

of the resulting decision at the fusion center.
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