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Abstract— The problem of routing of sensor observations
for optimal detection of a Markov random field (MRF) at
a designated fusion center is analyzed. Assuming that the
correlation structure of the MRF is defined by the nearest-
neighbor dependency graph, routing schemes which minimize
the total energy consumption are analyzed. It is shown that
the optimal routing scheme involves data fusion at intermediate
nodes and requires transmissions of two types viz., the raw sensor
data and the aggregates of log-likelihood ratio (LLR). The raw
data is transmitted among the neighbors in the dependency
graph and local contributions to the LLR are computed. These
local contributions are then aggregated and delivered to the
fusion center. A 2-approximation routing algorithm (DFMRF)
is proposed and it has a transmission multidigraph consisting of
the dependency graph and the directed minimum spanning tree,
with the directions toward the fusion center.

Index Terms— Routing, Detection, Markov random fields, Graph
theory.

I. INTRODUCTION

The design of routing is crucial for sensor networks, since
sensors have limited transmission range and are also energy
constrained. With regard to the sensor networks, the notion of
cooperative routing is particularly relevant, since they are de-
signed to accomplish a common set of objectives. For example,
for a detection application, the goal is to minimize the global
error probability. Moreover, for the detection application,
information can be progressively fused along the route; this
is advantageous since energy required for local computations
is typically far less than that required for the transmission of
raw data [1]. In this paper, we focus on the routing scheme
for detection that minimizes the total energy consumption.
This optimization problem is known as the minimum energy
routing [2]. Further, we assume that the schemes achieve an
optimal detection performance at a designated fusion center. If
we do not allow data fusion at any intermediate nodes, then the
minimum energy routing is given by the union of all shortest
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paths to the fusion center. However, this may not be as energy
efficient as the scenario in which data fusion occurs enroute
to the fusion center.

The feasibility of such data fusion, however, depends on the
physical spatial signal being sensed; it is especially influenced
by the correlation structure of the signal. Also, in general,
these spatial random signals are acausal in contrast to the
temporal signals. In the literature, the two are usually dis-
tinguished by referring to the acausal signals as random fields
(RF) and to the causal signals as random processes (RP). Ex-
amples of correlated sensors include temperature and humidity
sensors, and magnetometric sensors tracking a moving vehicle.
Acoustic data is also rich in spatial correlations, due to the
presence of echoes. In this paper, we assume that the statistical
dependence or the correlations of the sensor observations is
represented by a Markov random field (MRF). MRF falls
under the framework of graphical models and the statistical
dependence of data is defined by an undirected graph, known
as the dependency graph.

A. Related work and contributions

In this paper, we use the term data fusion to mean that some
intermediate processing of data occurs at various nodes, before
reaching the fusion center. Data aggregation is defined as the
process of computing functions (e.g., sum, max) satisfying
the condition that multiple incoming values at a node can be
processed to a single value and forwarded to the next node.
We use the term data gathering to mean that raw data is
transmitted without any processing at any of the nodes.

An overview of routing for mobile-wireless networks can
be found [1], [3], [4]. A survey of in-network processing
for computing certain aggregate functions is dealt in [5], [6].
Markov random fields (MRF) are also known as conditional
auto-regressions (CAR), in the seminal work of Besag [7]. For
detailed explanation and examples of MRF, see [8], [9].

In [10]–[20], correlated data gathering and aggregation
schemes have been considered. The works in [10]–[13] along
with ours, are aggregation-driven schemes, in the sense that
the routing paths are designed to benefit from data correlation.
On the other hand, in routing-driven algorithms [14]–[19],
data is routed to the sink through the shortest-path routing



and aggregation occurs opportunistically, whenever the data
streams meet.

A related algorithm employed in the MRF framework is the
belief propagation (BP), also known as the sum-product algo-
rithm [21]. In [22], a dynamic-programming approach to re-
source management for object tracking is proposed. However,
the possibility of data fusion, enroute, is not considered. In
[23], a decision-theoretic approach to inference with single bit
communication is considered. However, the network topology
is predefined by a directed acyclic graph. Application-specific
routing for detection or the so-called Chernoff routing, with a
specific link-metric has been proposed in [24]. However, this
approach assumes the model of an one-dimensional Gauss-
Markov random process, which is not applicable when the
nodes are on a plane.

The schemes we propose in this paper apply for a single
round of sensor observations, which is different from the
block-coding or the flow approach with large number of
samples at every sensor. Moreover, none of the previous works
incorporate the MRF model, which allows us to efficiently fuse
the correlated data. The data-aggregation schemes considered
in the literature (e.g., [6]) are not applicable here, unless the
sensor data are conditionally independent. In a related work
[25], we have derived the closed-form error exponent for
Neyman-Pearson detection of a Gaussian MRF with nearest-
neighbor dependency graph. In this paper, we show that
routing with data fusion requires transmissions of two kinds
viz., the raw sensor data and the aggregates of log-likelihood
ratio (LLR). The raw sensor data are transmitted among the
neighbors in the dependency graph and local contributions
to the LLR are computed. These local contributions are then
aggregated and delivered to the fusion center along the directed
minimum spanning tree, with directions toward the fusion
center.

Our paper is organized as follows. In section I-B, we define
some graph structures. In sections II, III and IV, we provide
the system model, the problem formulation and the routing
algorithm. Section V concludes the paper.

B. Graph structures

Notation: Vectors and matrices are written in boldface.
Random variables are in capital letters, random processes and
random fields in boldface capitals and sets in calligraphic font.
For two sets A and B, let A\B = {i : i ∈ A, i /∈ B}.

An undirected graph G is a tuple G = (V , E), where V is
the vertex set and E = {(i, j), i, j ∈ V , i �= j} is the edge
set. When i and j have an edge between them, i and j are
neighbors, denoted by i ∼ j. The neighborhood function of a
node i is the set of all other nodes having an edge with it,

Ne(i) = {j ∈ V : j �= i, (i, j) ∈ E}. (1)

The number of neighbors of a node i is called its degree,
denoted by Deg(i). Let re denote the Euclidean length of edge
e. The set of nodes of degree one are known as the leaves,
denoted by Lf (G); the set of nodes V\Lf (G) are known as the

internal nodes. Let Prune(G) denote an operation that removes
all the leaves from G i.e.,

Prune(G)∆=(V\Lf (G), E). (2)

For a directed graph G = (V , E), we denote the edges (arcs)
by E = {< i, j >, i, j ∈ V , i �= j}, where the direction of the
edge < i, j > is from i to j. j is said to be a direct successor
of i, and i is said to be a direct predecessor of j.

The nearest-neighbor function of a node i ∈ V on Euclidean
space1 is defined as

nn(i)∆=arg min
j∈V,j �=i

dist(i, j), (3)

where dist(·, ·) is the Euclidean distance. We assume that
the inter-node distances are unique, thereby ensuring that
(3) is well-defined. The nearest-neighbor (undirected) graph
NNG(V) is given by

(i, j) ∈ NNG(V) ⇐⇒ i = nn(j) or j = nn(i). (4)

NNG has a number of important properties [26]. It is acyclic
with a maximum node degree of five, for unique inter-node
distances.

The minimum spanning tree MST(V) over a point set V
in Euclidean space is defined as the tree of minimum total
length that spans all the points in V [27]. Efficient algorithms
for finding the MST have been proposed in [28], [29] and can
be implemented at the nodes in a distributed manner. Also, the
MST is invariant under any monotone transformation of edge
lengths [27]. The directed minimum spanning tree DMST(V)
is defined in this paper, as the MST with directions toward the
fusion center.

The unit disk graph UDG(V) is defined such that there is an
edge between any two nodes in V if their Euclidean distance
is at most one.

II. SYSTEM MODEL

A. Network model

We assume the presence of a medium-access control
(MAC), which eliminates collisions or interferences among
the nodes. We assume that all real numbers are quantized
with sufficiently high precision so that we can ignore the
quantization error. We assume that all the nodes function as
both sensors and routers. By proper scaling, we assume that
all the nodes have the same maximum transmission range
equal to one unit and have a disk as the transmission region,
with perfect data reception within this disk. Thus, the unit
disk graph (UDG) represents the set of possible connections
between the nodes. We assume that the UDG is connected;
this implies that communication is feasible, via a multi-hop
route, between any two nodes in the network. We assume that
power control is carried out at the nodes and the transmission

1We assume that the nodes are on a plane.



Fusion center

Figure 1: Routing to the designated fusion center is represented
through a multidigraph contained in unit disk graph. Each arc
represents the transmission of one real number.

powers are adjusted according to their neighbors’ positions.
We assume that a given transmission from a node is to a single
receiver (unicast mode).

B. Energy model

In order to include the energy constraint in our formulation,
we assume that the energy consumed by a node i can be
represented by the sum of a constant processing energy Cp > 0
and the transmission energy2 [30]. It is assumed that the energy
required for the transmission of any real number from i to
j is the same, and is denoted by Ci,j . Further, we assume
that the processing energy Cp at every node is constant and
independent of the number of transmissions from the node.
The path loss in transmission normally depends on the heights
of the transmit antennas, as well as the transmitter-receiver
separation. In this paper, we assume that all the nodes have
similar antenna heights so that we can focus on the path loss
that is distance-dependent. Therefore, Ci,j is given by

Ci,j = Ct|dist(i, j)|ν , 2 ≤ ν ≤ 4, (5)

where Ct is a constant, dist(i, j) is the inter-node distance and
ν is the channel path-loss exponent.

The set of transmissions from a set of nodes V can be
represented as a multidigraph Gt = (V , Et), defined as a
directed graph with multiple arcs and no loops. See Fig.1.
Let C(Gt) denote the total transmission energy given by

C(Gt)
∆=Ct

∑

e∈Et

rν
e , (6)

where re is the Euclidean edge length. We further require that
Gt ⊂ UDG(V) (when multiple arcs are counted as a single
edge and the directions are ignored), for the transmissions to
be feasible.

C. Data model : Markov random fields

We assume that the sensors collect data from a Markov
random field (MRF). A MRF satisfies special conditional

2We ignore the energy consumed at the receiver.

independence properties based on an underlying graph struc-
ture, known as the dependency graph3. A simple example
is the first-order auto-regressive process, where the notion
of conditional independence is based on an ordering of the
variables. Here, variables can be represented as a linear graph
such that given a variable, the two parts of the graph, obtained
by removing the variable, are conditionally independent. How-
ever, a spatial random field has a richer set of conditional
independencies, requiring a more general definition.

Definition 1 (MRF): Let V = {1, . . . , n} be a set of n
nodes on the plane. The random vector of observation samples
Yn

∆=[Y1, . . . , Yn]T is a Markov random field with an (undi-
rected) dependency graph Gd = (V , Ed) if for a continuous
density f , f(Yn) > 0 (positivity condition) and ∀i ∈ V ,

Yi ⊥ YV\{i,Ne(i)}|YNe(i), (7)

where ⊥ denotes conditional independence.
We now state the famous Hammersley-Clifford theorem

[31], which gives a relationship between the dependency graph
and the joint density of a MRF, by proving the equivalence of
the MRF and the Gibbs random field.

Theorem 1 (Hammersley-Clifford theorem): For a MRF
Yn with dependency graph Gd = (V , Ed), the joint PDF f
can be expressed as

log f(Yn;Gd) = Z +
∑

c∈C
Ψc(Yc), Z

∆=e
− �

Yn

�

c∈C
Ψc(Yc)

, (8)

where C is the set of all cliques in Gd and Ψc are known as
the clique potentials.
Thus, the collection of conditional-independence relations in
(7) results in the factorization of the joint PDF into a product
of functions, each of which depends on a small set of variables.
This significantly reduces the complexity of the problem.

We now make the simplification that there are only pairwise
interactions or 2-clique potentials (Besag’s auto-model [7]).
The expression now simplifies to

log f(Yn;Gd) = Z +
∑

(i,j)∈Ed

Ψi,j(Yi, Yj) +
∑

i∈V
Ψi(Yi). (9)

We assume that local information is available: every node
knows its edge and node potentials of the MRF, and its edge-
lengths.

III. PROBLEM FORMULATION

We now specify the type of inference problems that can
be addressed in our framework. We consider the detection
of binary hypothesis (null hypothesis H0 and alternative
hypothesis H1) of a MRF Yn under the following variations:

1) Detection of dependency graph: H0: Gd,0 = (V , Ed,0)
vs. H1: Gd,1 = (V , Ed,1),

3The dependency graph represents the statistical dependence of the sensor
data and not the communication links.



2) Detection of parameter θ: H0 : Gd, θ = θ0 vs. H1 :
Gd, θ = θ1, where θ is independent of Gd.

For the first category of problems, we define Gd = (V , Ed),
with Ed

∆=Ed,0 ∪ Ed,1.
Let f(Yn|V ;Hj) be the conditional PDF of the observa-

tions given the point set V under hypothesis j. The optimal
decision-rule under both NP and Bayesian formulations is a
threshold test based on the log-likelihood ratio (LLR). For
hypothesis-testing problems that fall into the above-mentioned
categories, from (9), the LLR can be written as

LLR(Yn,Gd)
∆= log

f(Yn|V ;H0)
f(Yn|V ;H1)

, (10)

= Z ′ +
∑

(i,j)∈Ed

Φi,j(Yi, Yj)

+
∑

i∈V
Φi(Yi), (11)

where Z ′ is a constant and the functions Φ are given by the
difference of potentials under the two hypotheses.

A. Nearest-neighbor dependency graph

A common approach to specifying a MRF is through a
neighborhood rule for the dependency graph and then to
specify the potential function between these neighbors. We
assume that the dependency graph Gd is a proximity graph,
where the edges are included, based on the local point config-
uration, according to some specified rule [32]. The simplest
proximity graph is the nearest-neighbor graph (NNG). The
nearest-neighbor relation has been used in the literature in
several areas of applied science, including the social sciences,
geography and ecology, where proximity data is important
(e.g., [33]). In this paper, we assume that the dependency graph
Gd in (11) is the nearest-neighbor graph.

B. Minimum energy routing

The aim of optimal routing for detection is to ensure the
delivery of the LLR, given by (11), to the designated fusion
center v0, while minimizing the total energy consumption.
Since we have assumed a constant processing energy Cp and
that data from all the sensors is fused, this reduces to mini-
mizing the sum of power-weighted edges of the transmission
multidigraph Gt, given by C(Gt) in (6). As mentioned in the
previous section, we further require that Gt ⊂ UDG(V) (when
multiple arcs are counted as a single edge and the directions
ignored), for the transmissions to be feasible. Let l(i;Gt) be
the value at node i at the end of a specified sequence of
transmissions that are in Gt.

Our goal is to find the optimal transmission multidigraph
G∗ such that

G∗(V) = arg min
Gt⊂UDG(V)

C(Gt(V)), (12)

subject to the constraint that there exists a sequence of
transmissions in Gt such that

l(v0;Gt) = LLR(Yn;Gd), (13)

where Gd is the dependency graph of MRF and LLR is given
by (11). We stress that Gt is associated with the transmissions
in contrast to Gd, which is associated with the statistical
dependence of data.

For the special case of conditionally-independent observa-
tions at the nodes (Φi,j ≡ 0), the LLR in (11) is additive in
the sensor data. This is the aggregation problem addressed in
the literature (e.g., [15]). In this case, the minimum energy
aggregation graph is given by the directed minimum spanning
tree (DMST), with the directions toward the fusion center.

C. Two kinds of transmission

For a general MRF, the LLR in (11) is not a sum function
of the sensor data. In order to compute the edge potentials of
the LLR, of the form Φ(Yi, Yj), access to both observations
Yi and Yj are required. Therefore, there are transmissions of
two types, viz., the raw sensor data and the LLR aggregates.
We formally define the two types of transmissions below.

Definition 2: The data-transmission graph DTG(V) is de-
fined as the transmission subgraph that consists of transmis-
sions of the raw sensor data. The likelihood-aggregation graph
AG(V) is defined as the transmission subgraph that consists
of transmissions of the aggregates of the log-likelihood ratio.
The nodes that process data from other nodes i.e., those in
the likelihood-aggregation graph, are known as the set of
aggregators, denoted by VAG.

The two transmission subgraphs DTG(V) and AG(V) are
not independent, since under the constraint given in (13), mod-
ifying the structure of one influences the other. For example,
if a node has received the observations from all its neighbors
of the dependency graph Gd, then it needs to transmit only
the LLR aggregate and not its own observation. Therefore,
data fusion in MRF is a combination of data gathering and
aggregation.

IV. DATA-FUSION ALGORITHM

In this section, we provide a data fusion scheme for infer-
ence of Markov random field with an approximation bound
of two. See algorithms 1, 2, and Fig. 2. We specify the
data-transmission graph DTG(V) in algorithm 1. The data-
transmission graph DTG(V) needs to ensure that all the
edge potentials of the LLR in (11), of the form Φi,j(Yi, Yj),
are computed on transmitting the raw sensor data along the
edges of DTG(V). Moreover, these edge potentials exist only
between the neighbors in the dependency graph Gd. Therefore,
one possible DTG(V) is Gd itself, with arbitrarily assigned
directions. But, in algorithm 1 (step 4), we specify that
transmissions occur from the leaves to their internal neighbors.
This results in energy savings since the leaves do not need to
participate in the aggregation process. For other nodes (step 5),
however, the assignment of directions are still arbitrary. The
nearest-neighbor dependency graph is sparse and therefore,
raw data from a node needs to be transmitted only to a



NNG

DTG = NNG

AG = Prune(DMST)

Aggregator

Fusion center

Figure 2: Schematic of DFMRF algorithm.

small set of neighbors (at most five). Moreover, unlike the
aggregation graph AG(V), which needs to ensure that the
LLR is available at the fusion center, the construction of the
DTG(V) can be implemented in a localized manner.

In algorithm 2, we specify the complete data fusion mech-
anism. During the data-transmission phase (steps 5-6), trans-
missions of raw data occurs along the DTG(V). At the end of
this phase, every internal node i computes and stores its local
contribution m(i), given by

m(i) = Φi(Yi) +
∑

<j,i>∈DTG(V)

Φi,j(Yi, Yj)

+
∑

<j,i>∈DTG(V),j /∈VAG

Φj(Yj). (14)

This local contribution is then aggregated and delivered to the
fusion center (steps 7-16), along the aggregation graph AG(V),
given by Prune(DMST(V)) i.e., the directed minimum span-
ning tree, with leaves removed. On receiving the aggregates
from all its direct predecessors in AG(V), each node i �= v0

combines them with its local contribution and transmits l(i)
to its direct successor, given by

l(i) =
∑

<j,i>AG(V)

l(j) + m(i). (15)

At the end of the aggregation process, the LLR is available at
the fusion center and is given by l(v0).

Thus, the transmission multidigraph of the DFMRF algo-
rithm is given by the combination of DTG(V) and AG(V),

DFMRF(V)∆=DTG(V) ∪ AG(V). (16)

The total transmission energy is given by

C(DFMRF(V)) = C(NNG(V)) + C(Prune(MST(V))). (17)

The DFMRF algorithm requires a fixed energy and bandwidth
at nodes: every node has at most six transmissions. This is be-
cause every node transmits its own data to its direct successors
in DTG(V), whose number is at most five. Similarly, every
node transmits its aggregate to its unique direct successor in
AG(V).

Algorithm 1: Data-transmission graph DTG(V)
Input: Node set V
NNG(V) = Nearest-neighbor dependency graph1

MST(V) = Minimum spanning tree2

Lf (G) = Set of leaf nodes of graph G3

if i ∈ Lf (MST) and (i, j) ∈ MST then4

< i, j >∈ DTG(V)
else if i, j /∈ Lf (MST) and (i, j) ∈ NNG, i < j then5

< i, j >∈ DTG(V)
Output: Data-transmission graph DTG(V)

Algorithm 2: Data fusion of Markov random field at a
fusion center v0 (DFMRF)

Input: DTG(V) from algorithm 1
DMST(V) = Minimum spanning tree, directions toward1

fusion center v0

Lf (G) = Set of leaf nodes of graph G2

Prune(G) = Graph obtained by removing leaves of G3

AG(V) = Prune(DMST(V)) is aggregation graph4

foreach < i, j >∈ DTG(V) do Transmit Yi from i to j5

foreach i /∈ Lf (DTG) do Compute m(i) from (14)6

foreach Node i do Initialize Tx(i) = false7

foreach Node i ∈ Lf (AG) do Set l(i) = m(i)8

Transmit l(i) to k :< i, k >∈ AG(V)9

Set Tx(i) = true10

while ∃ Node i �= v0 with Tx(i) = false do11

foreach Node i with Tx(i) = false and12

Tx(j) = true, ∀j :< j, i >∈ AG(V) do Compute
l(i) from equation (15)
Transmit l(i) to k :< i, k >∈ AG(V)13

Set Tx(i) = true14

end15

Compute l(v0) from equation (15)16

return LLR(Yn;V) = l(v0)17

A. Performance bounds

In this section, we quantify the performance of the DFMRF
algorithm. We first provide bounds for the optimal graph G∗.

Lemma 1 (Bounds for G∗): The optimal transmission mul-
tidigraph G∗ in (12) satisfies the following bounds:

C(MST(V)) ≤ C(G∗(V)) ≤ C(DFMRF(V)). (18)

The lower bound is achieved iff. the sensor data are indepen-
dent, conditioned on either hypotheses.
Proof : The lower bound holds since a pure aggregation
scheme is not adequate to deliver the LLR to the fusion center,
unless the LLR is additive in the sensor data. This happens
only in the case of conditionally-independent data. The upper
bound holds since DFMRF(V) satisfies all the constraints:
it ensures the delivery of the LLR to the fusion center and
DFMRF(V) ⊂ UDG(V) (when multiple arcs are counted as
one edge and the directions are ignored). This is due to the fact



that NNG(V) ⊂ MST(V) ⊂ UDG(V), whenever UDG(V) is
connected. �

We now provide the result on the approximation bound for
the DFMRF algorithm.

Theorem 2 (Approximation): DFMRF is a 2-approximation
algorithm i.e.,

C(DFMRF(V))
C(G∗(V))

≤ 2, (19)

over all non-empty V ⊂ 2.
Proof : We have C(NNG(V)), C(Prune(MST(V))) ≤
C(MST(V)). From (17), C(DFMRF(V)) ≤ 2C(MST(V)).
From lemma 1, C(MST(V)) ≤ C(G∗(V)). �

V. CONCLUSION

In this paper, we considered the problem of minimum
energy routing that is optimized for inference of Markov
random fields. We exploited the correlation structure of the
sensor data defined by the nearest-neighbor dependency graph
to efficiently fuse data before delivering it to the fusion center.
We proposed a two-approximation DFMRF algorithm, which
is based on the minimum spanning tree, with attractive features
such as bounded energy and bandwidth at every node, and
single-hop transmission of raw data. Algorithms with better
approximation bounds are currently under investigation.

We have made a number of simplifying assumptions. Pos-
sible extensions include considering probabilistic reception
of data, relaxing the disk assumption for communications,
balancing the energy drain in the network and considering
other dependency graphs. We have also not exploited the
broadcast nature of the wireless medium. We have also not
considered the interplay between the energy and time required
to fuse all the data and the quality of the resulting decision at
the fusion center.
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