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Abstract—In this correspondence, the problem of distributed Bayesian
estimation is considered in the context of a wireless sensor network. The
Bayesian estimation performance is analyzed in terms of the expected
Fisher information normalized by the transmission rate of the sensors. The
sensors use a communication scheme known as the type-based random
access (TBRA) scheme. Under a constraint on the expected transmission
energy, an optimal spatio–temporal allocation scheme that maximizes the
performance metric is characterized. It is shown that the performance
metric is crucially dependent on the fading parameter known as the
channel coherence index. For channels with low coherence indices, sensor
transmissions tend to cancel each other, and there exists an optimal finite
mean transmission rate that maximizes the performance metric. On the
other hand, for channels with high coherence indices, there should be as
many simultaneous transmissions as allowed by the network. The presence
of a critical coherence index where the change from one behavior to
another occurs is established.

Index Terms—Distributed inference, random-access communications,
sensor networks.

I. INTRODUCTION

In this correspondence, we consider the distributed-estimation
problem in the context of a wireless sensor network, when the number
of reporting sensors is random. This may arise in large scale wireless
sensor networks, where random access may be the preferred medium
access, as it does not require any centralized scheduling. Examples
of random access include the ALOHA scheme, where sensors decide
to transmit based on a simple coin flip. Alternatively, sensors may
undertake a more sophisticated scheme and decide to transmit only
significant data. Another scenario is when the fusion center is a mo-
bile-access point which travels to different geographic locations, with
nodes dispersed according to a point process. In this correspondence,
we focus on the design of energy-optimal random-access schemes for
distributed Bayesian estimation.

We employ the communication scheme known as type-based random
access (TBRA), first proposed for distributed detection in [2] and [3].
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In TBRA, each sensor transmits probabilistically in a data collection,
and the mean transmission rate � (related to the probability of trans-
mission) is the design parameter. The optimal TBRA can thus be ob-
tained by maximizing an estimation performance metric (defined in
Section III-A) with respect to the mean transmission rate, under an en-
ergy constraint. We establish the existence of an optimal mean-trans-
mission rate and its relationship with the channel fading characteristics.

Assuming constant energy for each sensor transmission, a constraint
on the expected energy consumption translates to a constraint on the
expected number of transmissions. Due to the presence of multiaccess
channel, we can have simultaneous sensor transmissions in a data-col-
lection slot. A natural problem to consider is the optimal allocation of
transmissions to spatial and temporal domains with the aim of max-
imizing a performance metric for estimation. Should energy be allo-
cated to simultaneous transmissions, or should one collect more sam-
ples over time? In this correspondence, we illustrate the dependencies
of the optimal TBRA allocation scheme on the channel fading charac-
teristics. Part of this work was presented in [1] and [2].

There is extensive literature on distributed estimation. See [4] for
a survey under the information-theoretic setup. Results on distributed
estimation over multiaccess channels are more recent. The type-based
multiple access (TBMA) scheme was proposed in [5] and [6]. TBMA,
however, is only applicable when the mean of the fading is nonzero. In
contrast, TBRA, originally proposed in [2] and [3] for distributed detec-
tion, mitigates the canceling effects of zero-mean channel by choosing
an optimal number of sensors to transmit and use multiple transmis-
sion slots. It is this crucial step that allows TBRA to provide consistent
estimates, even when the fading channel has zero mean.

II. TYPE-BASED RANDOM ACCESS

Distributed estimation via TBRA is illustrated in Fig. 1, where we
assume that a real random parameter � drawn from probability density
function (PDF) �(�) is to be estimated. The fusion center collects data
in multiple time slots indexed by i. In each collection, there are Ni

sensors involved in the transmission, where Ni is a Poisson random
variable with mean � and probability mass function (PMF) denoted by
g(n; �):= (Ni = n). We assume that the sequenceNi is independent
and identically distributed (i.i.d.).

In the ith data collection, a sensor involved in the transmission,1 say
sensor k, has quantized measurement Xi;k 2 f1; . . . ; Kg (quantized
to K levels). We assume that the sensor data fXi;kg are conditionally
i.i.d. given �, across time and sensors with PMF p�(j):= [Xi;k =
jj� = �], for j = 1; . . . ; K . In vector notation, the conditional PMF
is given by

Xi;kj� i:i:d� p� = (p�(1); . . . ; p�(K)):

In the ith collection, the transmitter k encodes Xi;k to a certain wave-
form and transmits it over a multiaccess fading channel. As in TBMA,
a set of K orthonormal waveforms f�m(t);m = 1; . . . ; Kg are used,
each corresponding to a specific data value. Specifically, if E is the en-
ergy of one sensor transmission, then the signal transmitted by sensor
k in collection i is Si;k(t) =

pE�X (t):

1Without loss of generality, we will only consider those sensors involved in
the transmission.
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Fig. 1. Distributed Bayesian estimation in multiaccess.

The fading channel coefficients ( ~Hi;k 2 ) are time varying, i.i.d.
across sensors and time. Assuming no intercollection interference,2 the
received complex-baseband signal after l data collections is

Yi(t) =

N

k=1

~Hi;kSi;k(t� �i;k) +Wi(t); i = 1; . . . ; l (1)

where �i;k are the signal delays at the fusion center.
Under the narrowband signal assumption, the flat-fading ap-

proximation which neglects the time dispersion in the signal
is valid. Therefore, the delay is only through the carrier phase
i.e., Si;k(t � �i;k) � Si;k(t) exp (�j2�fc�i;k), where fc
is the carrier frequency. Defining a new fading statistic as
Hi;k:= ~Hi;k exp (�j2�fc�i;k) with mean �H := (Hi;k) and
variance �2H :=Cov(Hi;k), we have the received signal as

Yi(t) =

N

k=1

Hi;kSi;k(t)+Wi(t); i = 1; . . . ; l (2)

where we assume that the coefficients fHi;kg are proper-complex
Gaussian and unknown at the fusion center. The noise Wi(t) is
assumed to be zero-mean and complex white Gaussian with power
density �2. We define the sensor signal-to-noise ratio by SNR:= E

�
.

We assume that the channel-state information (CSI) is not known
at the receiver. For the ith collection, the bank of filters matched to
orthogonal basis f�k(t)g generates

Yi :=
1pE [hYi(�); �1(�)i ; . . . ; hYi(�); �K(�)i]

=

N

k=1

Hi;keX +Wi (3)

where hYi(�); �k(�)i is the output of the matched filter corresponding
to �k(t), ek is the unit vector with nonzero entry at the kth position,
andWi

i:i:d� N 0; 1

SNR
I . DenoteYl:=(Y1; . . . ;Yl). We define the

sufficient statistics as

U
l:=

Yl

p
�3

(4)

2Intercollection interference can be removed by adding sufficient guard time
between consecutive data collections.

where the normalization is needed to study the asymptotic behavior of
the performance metric, defined in Section III-A.

The design of TBRA is crucially dependent on the multiaccess
channel. We quantify this effect of the channel through a parameter
known as the channel-coherence index

 =
j (H)j2
Cov(H)

=
j�H j2
�2H

(5)

where H is the effective fading coefficient between a sensor and the
fusion center.

To see the intuition behind the coherence index  defined in (2), we
write explicitly the mth entry of Yi = [Yi;1; . . . ; Yi;K ]T

Yi;m =

N

k=1

Hi;k1fX =mg +Wi;m (6)

where 1A is the event-indicator function. The extreme case is when the
channel is deterministic with Hi;k � 1 ( = 1). Transmissions from
those sensors observing data valuem add up coherently, and Yi;m is the
number of sensors that observe data level m (plus noise), which gives
rise to the notion of type-based transmission.3 On the other hand, when
 = 0, (�H = 0), the transmissions add up noncoherently, and the
mean of received vector [Yi] contains no information of the model.

Note that if the effective (or residual) channel phases arg(Hi;k) are
uniformly distributed, the channel is noncoherent ( = 0). However,
some degree of synchronization between the sensors and the fusion
center is needed to attain a positive coherence index ( > 0). In prac-
tice, it is not possible to attain perfect coherence ( = 1) and the
coherence index is finite.

III. RESULTS ON OPTIMAL TBRA

A. Bayesian Cramér–Rao Bound

We define the performance metric for estimation as the normalized
Bayesian Cramér–Rao lower bound (BCRB) [9]. Given expected
number of transmissions � and mean transmission rate � per data
collection, let �̂ be a Bayesian estimator. Under some regularity
conditions [9, p. 72], we have

(�̂��)2 � 1
�

�
[I�(�)] + A�

(7)

with equality iff conditional PDF of U, fU (�jul), is Gaussian; and
I�(�) is the Fisher information of a single data collection of the suf-
ficient statistic U, for a given � and A� only depends on the PDF of
�, i.e., �(�). To obtain design guidelines, we define the normalized ex-
pected Fisher information, given by

M�:=
[I�(�)]

�
(8)

where the expectation is taken over �. Maximizing the normalized
Bayesian information with respect to � gives the least BCRB. In gen-
eral, the BCRB is not achieved by the minimum mean square error
(MMSE) estimator. Note if we instead formulate � as a deterministic
parameter, then the optimal TBRA scheme would depend on �. In addi-
tion to the regularity conditions for the existence of BCRB, we assume
that the PDF fU (uj�; �) is differentiable up to second-order ( 2) in
y, �, and �.

3GivenX = x ,N = n , and the observationY = y , in the absence
of noise, the type of x is y [7], [8].
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Fig. 2. Performance metric M as a function of � for different channel-coher-
ence indices  [see (5)].

B. Optimal Transmission Rate

Having defined the performance metric, the design of optimal TBRA
now reduces to finding an optimal transmission rate, with mean number
of transmissions � fixed

��:= arg sup
�2<

M�: (9)

Although the performance metricM� can be evaluated numerically for
a given statistical model, it is of theoretical and practical significance
to establish that �� is finite. This is because if �� is bounded, we need
to design optimal sleeping strategies to limit interference. On the other
hand, if �� is unbounded, the sensors simply need to transmit simulta-
neously to maximize performance.

The nature of �� is determined by the nature of interference between
the simultaneous transmissions, quantified by the channel coherence
index  in (2). In the following theorem, we establish the general shape
of M� as shown in Fig. 2, for extreme values  = 0 (noncoherent
channels) and  = 1 (perfectly coherent channels). Note that the
role of  in M� is embedded through joint PDF fU (u; �;�), which
we assume is a continuous function of . We therefore can infer the
behavior of M� for very small and very large .

Theorem 1 (Existence of ��): Given the mean number of transmit-
ting sensors �, let fU (u; �;�) be the joint probability density functions
(pdfs) of the sufficient statistic U and �.

1) If the channel has zero-mean fading, i.e.,  = 0, and if p�(k) > 0
and @

@�
p�(k) < 1, a.e, for each k = 1; . . . ; K , then

lim
�!0

M� = lim
�!1

M� = 0 (10)

which implies that there exists 0 < �� < 1 such that

sup
�

M� =
1

��
[I� (�)]: (11)

2) If channel is deterministic, i.e., �2H = 0 or  =1, there does not
exist an optimizing � that maximizes M� and

M� = 
(�) (12)

as �!1, where the notation 
 means that � is an exponentially
tight bound.4

Proof: See the Appendix.

4
(a(�)) = fb(�) : 0 � c a(�) � b(�) � c a(�); 8� > � g for some
c ; c ; � > 0.

In Theorem 1, we established the existence of a bounded optimal
average-transmission rate �� for noncoherent channels ( = 0). The
intuition is that for these channels, sensors transmitting using the same
waveform tend to cancel each other (in the mean), which is the reason
that TBMA schemes involving a single-data collection fail [5], [6]. A
sharp contrast is the extreme case when the channel is perfectly co-
herent ( = 1). We establish that there does not exist an optimizing
��, which means that the optimal strategy is for all sensors to transmit
at the same time, in order to take advantage of channel coherency.

IV. GAUSSIAN APPROXIMATION

A key step in proving Theorem 1 is the investigation of M�, as
� ! 1. The idea is to use the continuity argument coupled with a
version of the central limit theorem (CLT) involving random number
of summands [10] to characterize M� as � ! 1.

We will focus in this section on the single-collection model and eval-
uate the Fisher information for a given � using the limiting conditional
distribution as �!1. For ease of notation, we drop the time index i
in (3) and consider the model

Y =

N

k=1

HkeX +W (13)

where we have a random summandN with mean (N) = �. WhenN
is Poisson, for a given �, the number of sensors transmitting a particular
data level is independently Poisson by the property of marking.

Theorem 2 (Asymptotic Distribution ofY): Assume that the channel
gains fHmg are i.i.d. with mean �H and variance �2H , and the number
of sensors N is Poisson. Then, each entry of vector Y, given �, is
independent and asymptotically Gaussian with

Y (k)� ��Hp�(k)

�H �p�(k)
�

d
! Nc(0; 1) as �!1: (14)

Proof: See the Appendix.

Since Yi is asymptotically Gaussian for a given �, in the large-�
regime, the estimation problem can be approximated as follows: Esti-
mate � from a Gaussian random vector, which, given �, is drawn from

Nc ��Hp�; ��
2

H Diag (p�) +
�2

E
I : (15)

We define the Gaussian metric as

~M�:=
[~I�(�)]

�
(16)

where ~I� is the Gaussian Fisher information. We now give the closed-
form expression for ~M� and specialize the results for coherent and
noncoherent channels.

Lemma 1 (Gaussian Metric): Let �2H be the channel variance,  be
the channel-coherence index, and SNR = E

�
be the SNR per sensor.

Denote p0�(k):=
@

@�
p�(k): The Gaussian metric ~M� is given by

~M� = 2�SNR�2H

K

k=1

p0�(k)
2

��2
H
SNRp�(k) + 1

+

K

k=1

�2HSNRp
0
�(k)

2

(��2
H
SNRp�(k) + 1)

2
: (17)

Proof: By substituting in the expression for Fisher information
of Gaussian distribution for a given �, and then taking the expectation,
we obtain (17).
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We now provide expression for M� as � ! 1. We use this result
to draw conclusions on the existence of optimal ��.

Theorem 3 (Limiting Properties): The Fisher information ~I�;(�),
given �, is a monotonically increasing function of coherence index ,
average transmission rate �, and sensor SNR. Assume that p�(k) > 0
and p0�(k) < 1, a.e, for each k = 1; . . . ; K . For a fixed , the actual
performance metric M� in (8) and the Gaussian metric ~M� in (17)
converge to the same finite limit, proportional to coherence index , as
� ! 1, given by

lim
�!1

M� = lim
�!1

~M� = 2

K

k=1

p0�(k)
2

p�(k)
: (18)

We now investigate the case when the channel is perfectly coherent:
�H = 1 and �H ! 0 implying  ! 1.

Theorem 4 (Perfectly Coherent Channels): In the absence of fading

lim
� !0

~M� = 2�SNR

K

k=1

[p0�(k)
2]: (19)

Proof: Substituting �H = 0, we derive the expression by finding
the Fisher information of Nc(�p�; �

2), given �.

To contrast the perfectly coherent case, we examine the case when
the channel is noncoherent, i.e., �H = 0 ( = 0). Interestingly, the
dependency of Fisher information on the average transmission rate �,
SNR, and channel variance �2H , given �, can be summarized using a
single parameter—the average receiver SNR for zero-mean fading

�:=��2HSNR: (20)

Theorem 5 (Noncoherent Channels): Assume that p�(k) > 0 and
p0�(k) < 1, a.e, for each k = 1; . . . ; K . For noncoherent channels
(�H = 0), given �, the Fisher information of the limiting distribution
is a function of average receiver SNR � = ��2HSNR and it satisfies
the following properties.

1) ~I�(�) is a monotonically increasing function of �.
2) As � ! 1, ~I�(�) converges to a finite limit.

3) Normalized function
~I

�
(�) has a unique maximum and hence ~M�

has a unique maximum.

The proofs for Theorems 3–5 can be derived by evaluating (17).
From a practical standpoint, the Gaussian approximation via CLT gives
a computationally tractable way to approximateM�, and therefore, the
optimal ��. The accuracy of such an approximation, of course, depends
on the specific distributions, as we will demonstrate in Section V.

A. Critical Coherence Index �

In Theorem 1, we have characterized the behavior of the perfor-
mance metric M�; and thereby the optimal transmission rate ��(),
for extreme values of the coherence index, i.e., ( = 0) and ( =1).
For finite positive , we expect smooth transition between these ex-
treme behaviors, especially for well-behaved distributions. To study the
nature of ��, it is crucial to characterize the slope of M�, since a nega-
tive slope at large-� implies that �� is bounded. However, we can only
numerically evaluate M� for finite �.

If we impose an additional regularity condition that conditional PDF
f�(yj�) is continuously differentiable to second order, then the partial
derivatives up to the second derivative are continuous [11]. Therefore

@

@�
M� !

@

@�
~M� as �!1: (21)

This condition is satisfied by well-behaved distributions. For the
Poisson–Gaussian distribution, we can express the conditional PDF

f�(yj�) as an infinite sum. On evaluating the limits, we find that it
satisfies (21).

Therefore, at large-�, we can reasonably approximate the slope of
the actual metric by the slope of the Gaussian metric i.e.,

@

@�
M� �

@

@�
~M�: (22)

Rewriting the Gaussian performance metric

~M� = 2�SNR�2H

K

k=1

p0�(k)
2

��2HSNRp�(k) + 1

+

K

k=1

�2HSNRp
0
�(k)

2

(��2HSNRp�(k) + 1)
2

(23)

we note that the two terms signify the opposing effects of coherence
and cancellation, respectively. This is because at large values of �, the
first terms approaches a constant, proportional to , whereas the second
term decays to zero. Moreover, for all values of �, the first term is
increasing in � while the second term is decreasing. Hence, if the first
term dominates to such an extent that ~M� is always increasing in �,
then the optimal �� is infinite. If the first term dominates for some
value �, then it dominates for all  > �. In the following theorem,
we establish such a critical coherence index �, signifying the transition
between these opposing effects.

Theorem 6: For the Gaussian metric ~M�; given by (23), suppose
the optimal transmission rate ~��() is given by

~��():= arg sup
�2<

~M�; : (24)

Then, there exists a critical coherence index � such that

~��() =1 8  > �: (25)

Additionally, for  < �, the metric ~M� is unimodal.
The critical coherence index � is given by

� = �
2

HSNR: (26)

Proof: We evaluate the sign of derivative of ~M� with respect to
�. See the Appendix for details.

In Theorem 6, we characterized the nature of optimal �� for finite
positive . For well-behaved distributions, the optimal ��() is a con-
tinuous function of  (Fig. 3). The critical coherence index � divides
the channels into two categories, viz.,

• coherent channels ( > �): the optimal �� is unbounded, which
implies that increasing the number of simultaneous transmissions
always improves the performance metric;

• canceling channels ( < �): �� is bounded and unique, which
implies that increasing the number of simultaneous transmissions
beyond a point degrades the performance metric.

Hence, for the canceling channels, we need to design sleeping strate-
gies to limit interference. On the other hand, for coherent channels, the
sensors simply need to transmit simultaneously in order to maximize
performance.

V. NUMERICAL RESULTS AND SIMULATIONS

In this section, we resort to numerical and simulation techniques to
validate the theories developed in this paper. The channel fading is
proper complex Gaussian Hi;k

i:i:d
� Nc �H ; �

2

H and number of sen-
sors involved in each transmissionNi is i.i.d. Poisson. � is drawn from
triangular distribution �(0:2; 0:8) with 0:2 and 0:8 as the endpoints.
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Fig. 3. Optimal transmission rate � as a function of coherence index  . Note
the behavior around critical coherence index  .

Fig. 4. Performance metric versus transmission rate. [SNR= �5 dB, � = 1,
� � �(0:2; 0:8).]

We consider the estimation of Bernoulli-distributed data at the sensors
with � as the mean i.e.,

p� = [�; 1��]:

Since CLT is applicable only in large-� regime, to draw conclusions
for finite �, we numerically evaluated the expected Fisher information.
Fig. 4 shows the plot of both true M� (without Gaussian approxima-
tion) and ~M� (Gaussian approximation) for different values of coher-
ence indices. We find that the true M� and ~M� from the Gaussian ap-
proximation have similar shapes and share the same trend with respect
to �, , and SNR. For larger values of , the Gaussian approxima-
tion does not appear to be good and needs large values of � to con-
verge. Fig. 5 shows the accuracy of the Gaussian approximation in
determining the optimal ��() for different values of . We find the
Gaussian estimate to be quite close, especially at low values of , which
are the practical cases of interest.

VI. CONCLUSION

In this correspondence, we focused on the effect of the fading
channel on the Bayesian estimation performance in a wireless sensor
network. Given an energy budget, we provide an optimal spatio–tem-
poral allocation that maximizes the normalized expected Fisher
information. The nature of the optimal transmission rate is crucial for
network design and is determined by the fading coherence index. For
values of coherence index below a critical index, the optimal trans-
mission rate is bounded, whereas for values above it, it is unbounded.
This critical index determines whether a sleeping strategy is needed to
limit interference between the sensor transmissions. From a practical
standpoint, this critical index is a simple expression given by the
product of sensor SNR and channel variance.

Fig. 5. Gaussian-approximated performance metric versus transmission rate
[SNR = 0 dB, � = 1, � � �(0:2;0:8).]

We have left several important problems open. We have not dealt
with the design of the local-quantization rule. A “cross-layer” opti-
mization of the local quantization, communications, and global infer-
ence should be of interest. Another possibility is the extension of the
problem to a sequential setup with optimal-stopping strategies.

APPENDIX

A. Proof of Theorem 1

Let (�) represent a function such that

(�)

�
! 0 as �! 0:

For the PMF of N , g(n; �), applying Taylor’s expansion for � near
zero, we have

(Ni = 1) = �+ (�) and (Ni > 1) = (�):

Define the conditional PDF of the sufficient statisticU, givenN = 0; 1
and �, as

fU (ujN = 0;� = �;�) :=w(u)

fU (ujN = 1;� = �;�) := h�(u)

fU (ujN1;� = �) := c�(u)

where w(�) is the PDF of white-Gaussian noise, independent of �.
Marginalizing over N , for small �, we have the PDF of U given �

as

fU (uj�; �) = (1��� (�))w(y)+(�+ (�))h�(y) + (�)c�(y):

Differentiating with respect to �

@

@�
fU (uj�; �) = (�+ (�))

@

@�
h�(u) + (�)

@

@�
c�(u):

From the definition of Fisher information

I�(�)

�
=

1

�
u

@

@�
log fU (uj�; �)

2

fU (uj�; �)dy:

Since fU (uj�; �) is a differentiable function of � and u, M� is contin-
uous in � [11]. Substituting for fU (uj�; �) and taking the limit

lim
�!0

M� = lim
�!0

I�(�)

�
= 0:

1) Asymptotic Convergence: For the case when � ! 1, a lim-
iting conditional distribution exists, by Theorem 2. LetZ:= Yp

�
. There-
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fore, the sufficient statistic is U = Yp
�

= Z

�
. Let fZ(zj�;�) be the

conditional PDF of Z and �, respectively

M� =
IU� (�)

�

=
IZ� (�)

�2

where IZ� is the Fisher information of Z at a given �. Let
G � Nc(0;����), where ����:=�

2
HDiag(p�). The Gaussian Fisher

information is given by

I
G(�) = tr ����1�

@����

@�
����1�

@����

@�

=

K

i=1

p02� (i)

p2�(i)
:

We define V as

V:=Z� ���� ����:=��Hp�

and let fV (vj�; �) be the PDF ofV. From the local limit theorem for
the densities [12], with the assumption that [Vk] < 1, for some
k � 3, we have

lim
�!1

fV (zj�; �) = fG(zj�):

Under the assumption of double differentiability of fZ with respect to
�, �, and z, the partial derivatives are also continuous

lim
�!1

@

@�
fV (zj�; �) = lim

�!1
lim
h!0

fV (vj� + h;�)� fV (vj�; �)
h

=
@

@�
fG(zj�)

where the limits can be interchanged, since f is assumed to be contin-
uous in both � and �. Since the functions are continuous with respect
to � 2 <, the limits and the expectations can also be interchanged.
Therefore

lim
�!1

I
V
� (�)! I

G(�):

Similarly, the expectation with respect to � is also continuous. Now, in
order to relate the Fisher information of V and Z, we have

@

@�
log fZ(zj�; �) = @

@�
log fV (z� ����j�; �)

=
@

@�
log fV (vj�; �)

v=z��

� @

@v
log fV (vj�; �)

v=z��

@���T�
@�

:

Therefore

I
Z
� (�) =

@

@�
log fZ(Zj�;�)

2

= I
V
� (�) +

@

@v
log fV (Vj�;�) @����

@�

T
2

� 2
@����
@�

@

@v
log fV (Vj�; �) @

@�
log fV (Vj�; �) :

The last term, under regularity conditions, is

@

@v
log fV (Vj�; �) @

@�
log fV (Vj�;�)

=
v

@

@v
log fV (Vj�; �) @

@�
fV (Vj�; �)dv

=
@

@�
v

@

@v
log fV (Vj�; �) fV (Vj�; �)dv

=
@

@�
v

@

@v
fV (Vj�;�)dv

= fV (1)� fV (�1) = 0

where we assume that the density is zero at infinity. For the second
term, we have

lim
�!1

@

@v
log fV (Vj�;�) @����

@�

T
2

=
@

@v
log fG(Vj�) @����

@�

T
2

= 2

k

i=1

V 2
i

��(i)2
@��(i)

@�

2

= 2

k

i=1

1

��(i)

@��(i)

@�

2

:

Therefore

lim
�!1

M� = lim
�!1

IZ� (�)

�2

= lim
�!1

[IG(�)]

�2
+ 2

K

i=1

p0�(i)
2

p�(i)

= 2

K

i=1

p0�(i)
2

p�(i)
:

B. Proof of Theorem 2

Recall the CLT with random number of summands [10, p. 369]. Let
X1; X2; . . . ; be i.i.d. random variables with mean 0 and variance �2,
and Sn = n

i=1Xi. For each positive t, let �t be a random variable
assuming positive integers as values, not necessarily independent of
Xn. Suppose there exist positive constants at and � such that at !1,
�

a

d! � as t ! 1. Then

S�

�
p
�t

d! N (0; 1)
S�

�
p
�at

d! N (0; 1): (27)

In our case, parameter at corresponds to � and �t to N . We have N

�

d!
� > 0 and 1p

��
W

d! 0 as � ! 1. When N is Poisson, let N (k)

be the number of sensors transmitting data level k. Since N (k) is a
thinning Poisson process [13, p. 317],N (k) is independent for different
data levels for a given � and

N
(k)j� � Poiss(�p�(k)):

Therefore, the vectorY has independent entries, given �. Applying the
aforementioned CLT for random summands, to each entry of the vector
and extending to complex domain, we obtained the needed result.
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C. Proof of Theorem 6

The sign of the derivative is crucial in determining the bounded na-
ture of optimal ~�. Differentiating (23), we obtain

@ ~M

@�
= 2

K

k=1

�2HSNRp
0

�(k)

(��2HSNRp�(k) + 1)

2

�



�2HSNR
�

��2HSNRp�(k)� 1

��2HSNRp�(k) + 1
:

Therefore, the sign of the function inside the expectation is determined
by



�2HSNR
�

��2HSNRp�(k)� 1

��2HSNRp�(k) + 1
; k = 1; . . . ; K:

The term
�� SNRp (k)�1

�� SNRp (k)+1
is an increasing function of � for � > 0 and

it attains maximum of 1 as � ! 1. The value of  at which the sign
reverses is therefore given by (26). This also implies the unimodality
for  < �.
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Switch-Type Hybrid Hard Decision Decoding Algorithms
for Regular Low-Density Parity-Check Codes

Gong Chen, Liu Qi, Cui Huijuan, and Tang Kun

Abstract—This correspondence presents the switch strategies for
switch-type hybrid hard decision decoding algorithms for regular low-den-
sity parity-check (LDPC) codes. After the piecewise analysis of extrinsic
information transfer functions for Gallager decoding algorithm B (GB), the
normalized switch scheme (NSS), for which the majority-based algorithms
and GB are two examples, is proposed. Then, several other examples of
NSSs are presented and their convergence properties are analyzed based
on the extrinsic information transfer (EXIT) functions. In simulations,
the proposed NSSs show meaningful performance improvements and less
sensitivity to channel parameter underestimations compared with GB for
small and moderate block length codes.

Index Terms—Extrinsic information transfer (EXIT) functions, fi-
nite length codes, Gallager decoding algorithm B (GB), low-density
parity-check (LDPC) codes, optimal switch scheme (OSS).

I. INTRODUCTION

Bit-flipping (BF) algorithms of low-density parity-check (LDPC)
codes [1]–[4] serve as good candidates in future very-high-speed
communications for the simple implementation and fast decoding [5].
Gallager decoding algorithm B (GB), with the optimal switches among
its constituent majority-based (MB) algorithms [5], features larger
threshold and faster convergence than its building blocks [6], [7]. It
is generalized as one example of the gear shift decoding algorithms
[8]. Time-invariant (TI) hybrid hard decision decoding algorithms
[9]–[11], although with slightly smaller threshold than GB, show
performance improvements for finite length codes and less sensitivity
to channel parameter underestimations. The extrinsic information
transfer (EXIT) functions [12] for the average error probability of
traversing messages [1], [13]–[15], originally developed by Gallager
[1], are employed for the performance analysis and irregular code
design [13]–[15]. The probabilistic flipping strategies are proposed in
[16].

This correspondence presents the switch strategies for switch-type
hybrid hard decision decoding algorithms. After the analysis of
switching points, fixed points, and EXIT functions for GB, this
correspondence proposes the normalized switch scheme (NSS) and
one theorem on its convergence. Then, several examples of NSSs are
given and their convergence properties are analyzed. Simulations for
small and moderate length codes show the performance improvements
and less sensitivity to channel underestimations of proposed NSSs
over GB. Compared with the probabilistic flipping strategies [16] with
significant performance improvements for regular codes of variable
node degree 3 yet rapidly decreasing improvements for larger degrees,
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