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Abstract—Channel estimation is one of the key components two reasons. First, the received samples corresponding to the
of space-time systems design. The transmission of pilot symbols,unknown data contain valuable information about the channel.
referred to as training, is often used to aid channel acquisition. It was first established by de Carvalho and Slock [7] that the
In this paper, a class of generalized training schemes that allow . . L .
the superposition of training and data symbols is considered. Char!“‘?' estlmatl_on errors car? .be reduced S|gr_1|f|cantly by using
First, the Cramér—Rao lower bound (CRLB) is derived as a Semiblind techniques that utilize all observations for channel
function of the power allocation matrices that characterize estimation. The second reason comes from the placement
different training schemes. Then, equivalent training schemes of pilot symbols in clusters suitable only for training-based
are obtained, and the behavior of the CRLB is analyzed under ocppiques. It has been established recently that placing and

different power constraints. It is shown that for certain training desiani ilot bol timall id inin ch |
schemes, superimposing data with training symbols increases esigning priot symbols optimally provides gain in channel ca-

CRLB, and concentrating training power reduces CRLB. On the Pacity [8]—-[10] and reduction of symbol and channel estimation
other hand, once the channel is acquired, uniformly superimposed errors [11]-[14].
power allocation maximizes the mutual information and, hence, A more general form of training that allows the superposition
the capacity. of pilot and data symbols has attracted attention recently [10],
Index Terms—Channel estimation, Cramér—Rao bound, orthog- [15]-[17]. Such schemes, proposed earlier in [18] and [19],
onal designs, pilot symbols, power allocation, space-time codes. allow us to allocate power to data and training differently,
perhaps in an adaptive fashion. It is hoped that, despite the
I. INTRODUCTION additional complexity introduced by the mixing of pilot and
o . _ data symbols, some performance gain over the conventional
A MAJOR challenge in wireless space-time communicgechniques can be realized. Furthermore, it is also hoped that
tions is coping with channel uncertainties. While Shanngfe constant presence of pilot symbols in the data stream will
theory does not mandate channel estimation [1], the idea Qfmehow improve the tracking capability of the receiver for
acquiring the channel state before decoding, either blindly fine-varying channels.
through the use of pilot symbols, is entrenched in practice andj this paper, we consider the channel estimation problem for
has also been proposed for space-time systems [2]-[6]. Th@tiple-input multiple-output (MIMO) systems that use the or-
use of pilot symbols, however, may impose an unacceptalygonal block codes proposed by Tarakral. [20]. In addi-
overhead that limits the effective data throughput. Here, systejgh to the placement of pilot symbols in time, we must now
designers must consider two contradictory goals. On the opfe the spatial domain into consideration. Within the frame-
hand, it is desirable to minimize the number of pilot symbolgork of semiblind channel estimation that utilizes all observa-
in a data packet so that more information-carrying symbols cggns for channel estimation, and using the Cramér—Rao lower
be transmitted. On the other hand, more pilot symbols resultygnd (CRLB) as the performance measure, we examine gen-
better channel estimation, hence reducing the symbol error ratg| training strategies that allow the superposition of pilot and
and the need for packet retransmissions.  data symbols. In particular, we consider the effect of number
Conventionally, each transmitted symbol is either a pilot Qj training symbols, specific training signal used, and power al-
a data symbol. Furthermore, pilot symbols are clustered gRation of training symbols on CRLB. To this end, we charac-
that training-based techniques that use received samples ¢gfize general training schemes by the power allocation matrices
responding only to the pilot symbols can be applied. For sughat specify, for each transmitted symbol in the space-time coor-
schemes, observations affected by the unknown data are gigrate, the amount of power used for training and data, respec-
carded. Although training-based techniques simplify receiVﬁger
design, they may carry a substantial penalty in performance forrhe challenge of finding the optimal (even a good) training
strategy is twofold. First, one needs an expression of CRLB as a
function of the power allocation matrices. Although conceptu-
Manuscript received October 1, 2001; revised June 10, 2002. Tradly simple, such an expression is, in general, complicated and
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in general. For the orthogonal codes presented in [20], NOW: .. oo g j _______ aan_ Receiver 1
ever, we are able to show a convexity property of the CRLB.

This leads to an optimal power allocation strategy under the
per-symbol power constraint among those training schemes the S(®) = 3_; Xisi(t) - ) Y(t) = AS(t) + N(2)
have one pilot symbol transmitted in each block. It turns out o

Q1 anl
that superimposing training with data is not optimal for channel 1m
estimation, although with other considerations such as channeTransmitter m j*’f ------- Gnam......... 1 Receiver n
tracking and capacity enhancement, such a technique may be an
appropriate compromise between accuracy in channel estima- Fig. 1. m-transmittem-receiver space-time system.

tion and high rate in data transmission. While the optimal power

allocation for the most general case is still unknown, our invegelumn ofS(#) corresponds to the transmitted vector in e
tigation reveals power allocation patterns that favor channel @ymbol interval. The space-time code proposed by Taebldh
timation in the acquisition stage and the optimal allocation on¢20] has the form

the channel has been acquired.

Finally, one must question whether the CRLB is the appro- S(t) = zj\: X;5:(t) (1)
priate measure. The use of CRLB as the performance measure ‘ v
is motivated by the consideration that training placement is a =t
transmitter technique, and its design should not be affectedWhere{s(t), .... sx(¢)} is the block ofV transmitted sym-

the specific technique used at the receiver. Furthermore, thas, and{X; € zZ"*Y},_;  n arethe space-time block code
asymptotic efficiency of the maximum likelihood (ML) tech-(STBC) integer matrices that satisfy
nigue lends support for the use of the CRLB. In this paper, we
have also implemented the ML estimator and found that, for the X.X7T — {
case of using finite data samples, the performance of the ML o
estimator is still close to the CRLB. ]
This paper is organized as follows. In Section II, we presefif'® theory of orthogonal designs also shows that (see
the framework and the assumptions used. The CRLB is cofg0l) for rate one codes and real symbols, the family
puted in Section Ill, and it is followed by the analysis of itd Xi> ¢ = 1, ..., N} exists if and only ifN is 2, 4, or 8. Itis
behavior in Section IV. Numerical results that complement tf&10WN in [21] that usingV single-user detectors in parallel, the
theorems are presented in Section V. We conclude the papef'iQice of the matricegX;, ¢ =1, ..., N}, as above, provides

Section VI. The proofs of the theorems are presented in the A& PeStSNR. _ _ _
pendix. Under thequasistatic flat fadingnodel with coherence time

The notations used in this paper are as follows. Matrices afti? Plocks, the received signal matrix for thé block is given

vectors are in boldface with matrices usually in capital IetterQY
the vectors are column vectors, is the Kronecker product

: . . ' : . ' Y(t) = AS(t) + N(¢
diag(A) is the vector obtained from the diagonal entries of ma- ®) (£) + N()

N
trix A, diag a) is the diagonal matrix having on the diagonal, —A Z X;si(t) + N(b), t=1,....B (3
=1

I i=j

XXT i), @)

tr(A) is the trace of the matriA, det(A) is the determinant of
A.vedA) is a vector obtained by stacking the columnsAof
()T denotes the transpose, aRe{-} andZm{-} are the real whereA € C"*™ is the channel matrix, anN(¢) is the addi-

and imaginary part, respectively.denotes the expectatichis  tive complex Gaussian noise.

the identity matrixl ando are the vectors that have all the ele- In the sequel, we need the received signal and the parameters
ments 1 and 0, respectively. g is the covariance matrix of represented as column vectors. Denote

the random vectay. M (i, C) denotes a Gaussian probability A - A -

distribution function (pdf) with meap and covariance matrix y(t) = vec(Y' (t)), n(t) =vec(N'(t)) (4)

C. A > B with A andB square matrices means that their dif- A A

ferenceA — B is positive definite. SimilarlyA > B means a=vec(A), wi= (LoX])a ©)
thatA — B is positive semidefinitg A];; means the element of tq received signal in one block can then be written as
A with coordinategs, j), and the vectoe,, is thekth vector of
the standard basis.

y(t) = Z w;si(t) + n(t). (6)

Il. M ODEL/PROBLEM DESCRIPTION
For real symbols and white noise, the structure of the space-time

code does not depend on the number of receiving antennas, and
Consider a multiple antenna system withtransmitters and (6) can be rewritten by separating the real and imaginary parts

n receivers, as shown in Fig. 1. In this paper, we consider ordy the channel and noise:

rate one codes and real symbols, which means that a block of N

N symbols is transmitted withitV symbol periods. For block Re{Y(t)}} = (Lo} XTsi) [Re{a}} [Re{n}}

t, denote byS(¢) € R™> N the input of then antennas; theth [ Zmi{y(#)} e T [ Im{at | [ Zmdn}

A. Space-Time Block Codes
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$1 1) The horizontal placementas illustrated in Fig. 3(a), is a
$9 scheme that places pilot symbols only in one symbol sub-
sequence, say, without loss of generalityt). The power
allocation matrice§®, I'} satisfy

53
S4

1234567 89101112 t b =0, v =1, Yi=2, ..., N, Vt

Fig. 2. General power allocation scheme under the power constraint (11). Theperiodic horizontal placemeniﬁ a horizontal placement
) o that repeats itself every blocks; see Fig. 3(b). Theniform
Thus, a system with receiving antennas and complex channel  5rizontal placementvhich is shown in Fig. 3(c), refers to
coefficients is equivalent to a system with receiving antennas the case when all pilot symbols in the horizontal placement
with Gaussian nois&/ (0, (¢2/2)I). For simplicity, in the rest have the same magnitude, i.g;; = .
of the paper, we consider the system described by (62) with 34 The vertical [see Fig. 3(d)] andiniform periodic vertical
the channel coefficients real and real naige) ~ A(0, o™I). placements are defined similarly. Theriodic uniform ver-

tical placementhas the pilot symbols placed periodically

) ) ] ) with period N, as shown in Fig. 3(e). It is important to note
In this section, we introduce a generalized model for thatthe uniform schemes are under PPC.

training strategies. To allow superimposed placementsitthe Note that the conventional training-based technique cor-

transmitted symbok;(t) of block ¢ is expressed as a linear  responds to the periodic vertical placement with: 0.
combination of a pilot symbol and a data symbol

5i(t) = v/ ir vi(t) + V/Yir wi(?),

B. Generalized Model for Training Symbols

C. Assumptions

i=1 .. N t=1,.. B @) The following assumptions will be imposed throughout this
paper.
wherew;(t) is the known pilot taking values froffi=1}, and Al) The noisen(t) is i.i.d. Gaussian with zero mean and
u;(t) is a data symbol drawn independently from a distribution covariances>L.

with zero mean and unit variance. The coefficieptsand-y;; A2) The pilot symbols are binany;(¢t) € {£1}.
specify the power of the training and data symbols, respectively A3) The data symbols:;(¢) are i.i.d. (in botht and i)
Therefore, the placement of pilot symbols within the coherence Gaussian with zero mean and unit variance, i.e.,

time of B blocks can be completely specified by the tox B wi(t) KRN0, 1).
power allocation matrices A4) The random variablegu;(t), n(t): Vi, t} are mutually
B B T independent.
e=lp. - ppl. b =[bre o P (8) A5) The code matrix X; satisfies X; = Iy or
I'= [’Ylﬂ L) ’YB]’ Y = [Wlta L) ’yNt]T' (9) Xl = [Irn; Ornx]\f—rn]-

Collecting all observations in a vectoy 2 [y (1),

It is necessary to impose constraints on power aIIocatlon'7 yT(B)]T, under A1)-A4), we have NN([I,, C), where

schemes. In this paper, we consider two types of constraints: "
1) Average Bwer Constraint (APC)We assume that the av-
erage power peB blocks, each transmittiny symbols, is

"
BN, ie. w SE{y()} = > wi/bi vi(t) (12)
=1

n=pi, ..., npl"

B N B N
SO TE{s) =)0 (di+vi) = BN, (10) C =diag[C.y, ..., Cpp]
t=1 i=1 t=1 i=1 N
A
2) Per-Symbol Power Constraint (PPCAs a special case of Cu Zcory(t)} = > wiw! i+ 0’Lix.  (13)
APC, PPC is a stronger constraint imposed on each symbol i=1
E {(3‘@))2} = dir v = 1. (11) The assumption that the pilot symbols are binary is not crit-

ical. The Gaussian assumption on data symbols, however, is es-

Power allocation schemes that specify training schemes aantial for obtaining the CRLB and other results in this paper.
be illustrated graphically. Fig. 2 shows a general power alltn addition to making the problem analytically tractable, this
cation scheme under PPC applied to the transmissidi ef assumption is partially justified because the capacity attaining
12 consecutive blocks wittv' = 4 symbols per block. Each signaling, under the assumption that the channel is known, is
column corresponds to one block of symbols transmitted tGaussian [22]. For unknown and time-invariant channels, the
gether withinN = 4 symbol intervals. Within each square, the&saussian signal is optimal for minimizing outage probability if
shaded part represents the percentage of power allocated tahieechannel estimator used in the decoder is consistent [9]. As-
training part. To illustrate the power allocation under APC, sumption A5 is made without loss of generality since the CRLB
similar three-dimensional (3-D) bar-diagram may be necessaipes not change if columns of all code matrices are permuted

Of particular interest are two special classes of power allodiie same way or if one column of all code matrices changes the
tion schemes. sign.
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S1 S1
S92 52
33 S3
S4 S4
1234567 89101112t 123456;89101112t
(a) (b
S1
S2
S3
54
1234567 89101112t 1234567 89101112t

(¢) (d)

1234567 809101112t
(e)

Fig. 3. Power allocation schemes defined previously. (a) (Nonuniform) horizontal scheme. (b) (Nonuniform) periodic horizontal scheme nid)&izéontal
scheme. (d) (Nonuniform) vertical. (e) Periodic uniform vertical.

D. Information-Theoretical Perspective lll. FISHER INFORMATION AND CRLB

Before we tackle the problem of channel estimation using su-For our problem, the Fisher information matrix (FIM) is de-
perimposed training, it is relevant to examine the ultimate gafined as
of such a scheme. Here, we assume that the transmitter does not
know when and if the receiver has acquired the channel. There- 7(a, & T', v, 0) = —E{V.lnp(y; a, ®,T, v, 0)}
fore, the pilot symbols are transmitted indefinitely. Let us also
assume that the receiver uses an estimator with strong conaisd the CRLB matriR(a, ®, T, v, o) is given by the inverse

tency. Following the same argument as in [9], where it is shovgi the FIM. In particular, for any unbiased estimafomwe have
that the achievable transmission rate is not affected by the use of

a strongly consistent channel estimator at the receiver, we can E(a—a)(a—a)l >F Ya, & T, v,0)
then assume that the channel is known at the receiver. We now
ask: What is the placement strategy that maximizes the mutual

information between the transmitter and the receiver? - o
Theorem 1: The mutual information between the input an(ﬁn the definition above, we have specified all relevant parame-

the oUtPULZ(y; 51(1), .., s (1), .. 51(B), ..., sn(B)) ters. !n or_der to simplify the notation ir_l the rest of the paper,
does not change under any permutation of the coefficiert§ will write only thos_e parameters of interest. In most cases,
{":t}. If we constrain the total amount of power that can b nly the poyveralloc:_itlon matrice andL’ or some C°'””.‘”S of
used to transmit pilot signals ®,., i.e., these matnces are listed. If the power allocation matnces_ have
a special form and depend only on one parameter, we will use

é’R(a, d.T,v,o0).

B N only that parameter in the argument of FIM or CRLB.
Z Z Yt < BN — B, The i.i.d. assumptions on noise and data make the FIM addi-
t=1 k=1 tive. Specifically
then the uniform scheme with 5
b,
me=1l— " Yk=1...N,t=1.-B  (14) F(®,1)=> Fulé, 1) (15)
NB t=1
maximizes the mutual information between the input and the ) )
output. where F,(¢,, v,) is the FIM defined for blockt. Under the
Proof: See the Appendix. g Gaussian assumption [A1) and A3)], the FIM has a well-known

Of course, the above theorem tells only what happens if tRBECial form given by [23]
channel has already been acquired. Nonetheless, it shows that
if the transmitter always needs to include pilot symbols in it (e, v)lis
transmission, the superimposed strategy with a uniform place- Oy T c-! Iy n lt -1 9Cy, c-1 dCy
ment of pilot symbols is the best. Next, we look at the other part | 9a; | day 2 " da; " ay
of the problem that addresses the issue of channel estimation,
using a different information measure: the Fisher informatiomnwhereq; is theith component of vectai.
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TABLE | where
NOTATIONS IN THE CRLB EXPRESSIONS A ~y
J,=10X!I, A2 Aplypey = ————5
A — A ?? K 2 2
p=0"2 vi=[vi (1), .., on (B)]" 7 iq’Ha )
A A /
W:[Wl,...,WN] Fz—gzv [fi1)'~'yfiN] AN é A,y|,y=1 = —m_ (23)
A .. g g
Gi=diag[y1s, .- ., TN¢ Pt_dlag [Véit, .-, VN )
D.2dia A Anil AL I Proof: See the Appendix. O
- Ag ).+ ) 2Nt #~ " o ([lalPrie+0?) Observe that for a (nonuniform) horizontal scheme with
H,=WTF; — q;1 blocks, we have
A. FIM and CRLB Expressions FT. ®)= z_: Filn, 4)
We now present the expressions of FIM and CRLB on which B
the derivation of further properties and optimizations is based. =gol+ g1 I wiwl J1 + g2 Z J'wiwid, (24)
The first expression is for the general case followed by a more k=2

compact expression for the horizontal placement. Necessary {iprere
tations are listed in Table I.
Theorem 2: Consider one block (of inde® of a power allo- A
cation scheme under APC. The FIM for estimating the channel 9i = Z 9i(t)
from the received vectay(¢) is given by

It can be observed that the formula of the FIM for the horizontal
[Fe(e: vy = [Ta(®]ij + [T2(D)]i (16) placement scheme does not depend on the training sympols
Since the analysis that follows is about horizontal placement
schemes, the influence of the training sequence is not consid-
[Tl( )]“ =vVv; Pt( H, + CLZI)Dt(HJ + CLjI)PtVt ered.
ot (P26, (A7) One might ask why the theorem above does not hold for
N = 8. The proof of the theorem is based on the key prop-

whereT, (t) is the part corresponding to the mean

andT»(¢) to the covariance erty of the family of code matrices that is stated in Lemma 1,
[T2(t)];; which is not true forN = &. This property can be interpreted
= wa; (221(D2G2) + 3pgtr(D, G2 24 (G2 as the connection between the STBC families of njatrlces for

i ( 7 ) (D; tQ) + qu ( t2 e+t t)) N = {2, 4} and the complex numbers and quaternionic num-
+6ij (pd” tr(DeGY) + p*q1(GY)) bers, respectively.
+ ¢ tr(DH,G,D,H,G,) — ¢ tr(D,H,GID,H,) Due to the orthogonality property of the vectdre; }, the
+ 2pqtr(D;H;GH,;G,) — pgtr(D,H,;G?H,) inverse of the FIM can be easily computed\f = m. This
+ P’ t(G,H,G, H,). (18) leads to the following corollary.

Corollary 1: For a horizontal placement scheme with=
Proof: The proof of this theorem involves a direct evaluam, the CRLB is given by

tion of FIM under the condition of code orthogonality (2), which N

implies thatw; are orthogonal vectors. Key steps are given in _ T T

the Appendix with detailed derivation in [24]. O R =dol+diwiwi +d; kz_; WEWE (25)
The formula in (18) is for the most general placement scheme B

and is difficult to analyze. However, in the special case of tHénere

horizontal placement, the FIM has a compact form. goA 1 5 A gi (26)
Theorem 3: Consider one block (of inde® of a horizontal 0 9o’ ’ go(g0 +qgi)

power allocation scheme under APC, whe¥e € {2, 4},
with power allocation vectorsy, = [y, 1,...,1]¥ and The trace of the CRLB matrix is given by
¢, = [#, 0, ..., 0]7. The FIM is given by

’ - tr(R) = Ndy+ Q(dl + (N - 1)d2) 27)

Filv,, =go(HI+ g1 ()T wiwi J . . . . .
10 ) = 90(t) g;,( Wiwiwidy It is especially interesting to note that = m, the eigen-
+ go(?) Z I wld, (19) values of the FIM depend only on the norm of the charfjadi|

and not on the specific channel parameters. The same observa-

N tion is valid for the trace of the CRLB matrix.

90(t) =p¢ + (pg” r(DLGY) + p°qr(GF))  (20)

91 (t) 2 (24 t(D?G?) + 3pqtr(D, G?)
+o7tr(G7)) + ¢A, (1)

k=2

IV. BEHAVIOR OF FIM AND CRLB
A. Equivalent Power Allocation Schemes

R We present two theorems that reveal some equivalent power
92(t) SPpAL +7A1 + (N = 2)A1 + A, (22) allocation schemes.
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not hold for N = 8 or if the placement is not uniform. A di-

S1
so rect consequence of the theorem stated previously is that for the
uniform vertical placement scheme, the FIM does not depend
53 on the training symbols used.
84
1 2 3 4t 1 2 3 4t B. Convexity of FIM for Horizontal Placements
(a) (b) We now restrict ourselves to the horizontal placement with

N € {2, 4}. The convexity result is best illustrated in Fig. 6.
Fig. 4. Equivalent power allocation schemes in Theorem 4. The positioBuppose that we start with a uniform horizontal placement
shaded by light gray are where power allocations can be arbitrary. where every pi|0t symbol has the same power. Now, let us

make the training power uneven by moving part of the training

S1 power from the second block to the first and the same amount
S9 FW of data power from the first block to the second. How does the
53 - FIM vary?
sS4 : Theorem 6: Suppose that only one pilot symbol is trans-
1234t 123 4t 1234t mitted in some block under PPC, i.eqy, = [v, 1, ..., 1]
(a) (b) () andy € (0, 1) andg, = (1 —~)e;. Thenv ¢ € (0, 1) such that

0<v—¢ <v+¢ <1, the FIMF(y) = Fi(vy,) corresponding

Fig. 5. Power allocation schemes in Theorems 4 and 5. (a) Periodic schdi@ddlock ¢ satisfies

that contains one training symbol in each block, where all training symbols L

have equal power. (b) Uniform horizontal scheme. (c) Uniform periodic vertical s (F(y = +F(v+Q) > F(y). (29)
scheme.

Proof. See the Appendix. O
If we apply this theorem to two blocks, it is then apparent
at one should allocate training power unevenly, as illustrated
Fig. 6. Itis then a direct consequence of the convex property
in Theorem 6 that one should avoid superimposing pilot with
b, = dey, 4, =1—(1—7)ex (28) data sympol and that the optimal horizontal scheme is given by
the following corollary.
the position of that pilot symbol does not affect the FIM. See Corollary 2: Under PPC with total training powe?,,., the
Fig. 4. optimal horizontal placement is given by making.,.| symbols
Proof: See the Appendix. U with full training and allocating the remaining training power
An immediate consequence of the above theorem is thatpf — | P,,.] to a single symbol. The rest of the symbols (if there
only one pilot symbol is transmitted within each block, it ca@re such symbols left) will contain only data.
be superimposed onto any data symbol [Fig. 5(a) and (b)]. Notif the average power constraint (APC) is used, it is possible
so obvious is that this is not true in general fér= 8 and if that one symbol is transmitted with power greater than unity.
more than one pilot symbol is transmitted within each block. Im this case, one suspects that FIM can be increased further.
those cases, itis possible that inserting pilot symbols in differenihe answer is affirmative, as shown in the next theorem and
substreams gives different CRLBs. illustrated in Fig. 7. In words, if there are two blocks, each with
The next theorem gives an equivalence between the unifogie pilot symbol, if the training power in one of the blocks is
periodic horizontal and uniform periodic vertical placements, a90% and in the other is not, the FIM increases by concentrating
shown in Fig. 5(b) and (c). all the power to one block.
Theorem 5:If N =2 or N =4, the FIM is the same for  Theorem 7:For N € {2, 4}, consider two blocks; andz,

the uniform horizontal and uniform periodic vertical placemenrsf a power allocation scheme under APC, and denote
with V blocks each and equal parameter

Theorem 4: Consider a power allocation scheme under AP
For N € {2, 4}, if there is one symbol block that contains g
single pilot, i.e., for some block index

A A
Proof: See the Appendix. O ¢, =[1,0,...,0", 7, 2[0,1,...,1]" (30)
The equivalence of these two schemes does not seem to be A T A T
obvious. Indeed, if there is no noise and each symbol is either $> = [1 =€ 0, -, 0%, 7, =, 1, .00, 1] (31)

a pilot or a data symbol, one block that contaiNstraining \where0 < v < ¢ < 1. Then,¥ ¢1, ¢» such tha) < ¢; <
symbols is sufficient for the identification of the channel mag, < 1 _ ¢, we have

trix. For the uniform horizontal placement, however, unknown
data symbols are always present in the observation. Nonetfd?s, > Ve, ¢, + d1e1. ¢y, — ¢re1)
less, it can be shown that the uniform horizontal placement of S F(Veys Vop» s, + D201, Gy, — P2e1). (32)
N blocks with full training symbols also leads to the identifica-
tion of A. This result is a consequence of the special propertiu}
these spcial codes provide a symmetry in space and tme - 4 ¥ 10 s~ hren)

X . . ' >tr(R — . (33
we transpose the matrix of transmitted symbols, the estimate of 2 UR(Ys Yoas oy + G201, b, = P201)). (33)
the channel does not change. Again, in general, this result does Proof. See the Appendix. O

gollows immediately that
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Y2+ ¢

1+¢>2—

Fig. 7. Power allocation schemes compared in Theorem 7.

Fig. 8. Power allocation schemes compared in Conjecture 1.

() (b) () (d) (¢) (f) (2)

Fig. 9. Power allocation schemes compared. Application of convexity theorem.

We note that from the proof of the theorem [see (74) and In the conjecture above, the assumptior= N is important
(76) and the comment that follows], the FIM (and the CRLBYecause this allows us to use (27) of the trace of the CRLB
does not change i = 0. In other words, combining the energymatrix. The above conjecture can also be stated differently.
of two full training symbols neither decreases nor increases tGensider two power allocation schemes as in the conjecture
CRLB. with parametergy, (1, ¢) and(y, (2, ¢), respectively, where
From Theorem 7, it follows that the power allocation schemg < (5. These schemes are represented in Fig. 8. Then
that is optimal under PPC can be improved by concentrating théR (v, (1, ¢)) > tr(R(v, (2, ¢)).
training power to fewer pilot symbols if one allows supraunitary
power for some symbols. It also shows that superimposed hdgi- Summary Scenarios
zontal training cannot be optimal. Fig. 9 summarizes our results graphically. Fig. 9(a) is the uni-
In order to find the optimal power allocation for APC conform horizontal scheme that can be improved by Theorem 6 to
straints, one must now look at power allocation for data syrwig. 9(c) via Fig. 9(b). This is the best under PPC. If APC is
bols. Here, unfortunately, we can only conjecture that it is al$ged, Fig. 9(c) can then be improved to Fig. 9(d) using The-
preferable to allocate data power unevenly. orem 7. The same theorem says that the scheme in Fig. 9(e)
Conjecture 1: ConsiderN € {2, 4}, m = N, and two and (d) has the same performance. Our conjecture suggests that
blockst; and¢; of a power allocation scheme under APC:  Fig. 9(d) and (e) are better than Fig. 9(f) and (g). In Section V,

¢, =, 0 07 t=1.9 (34) some numerical evaluations are given.
t — » * ’ -
n=h+¢1, .07 (35) V. SIMULATIONS AND NUMERICAL RESULTS
Yo=[y—¢1, ..., 1" (36) A. CRLB Under Superimposed Training
wherey+(+¢ < 1 Then¥ ¢, v, ¢ suchthad < ¢ < 1—y—( In this section, we want to investigate the effect of the amount
and0 < v — ¢ < v+ ¢ < 1, we have - of power allocated to training and the power allocation scheme
- SR on the CRLB. Fig. 10 illustrates the variation of the trace of the
w <0. (37) CRLB matrix with the amount of power allocated to training for
a¢ a system withV. = 4, m = 4, n = 4 that uses a uniform hori-

O zontal placement scheme under PPC with= 32 blocks. The
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CRLB vs noise power CRLB vs noise power
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Fig. 10. m =4, N = 4,andn = 4.

' ) } | ' 1 1 l \
-2 T T T T T %

X 5 10 15 20 25 30 35 40 45 50
: : : : j PS ;M 1/6? [dB)
_,_ ......... ............. ............. .............. ........ —- P08 U Flg 12. COmpariSOn of different placements. For the schemes depicted

in Fig. 9, the plots are, from top to bottom, (&), (b) %, (g) <; (c)—(f)
indistinguishable.

tween these schemes has already been done in Section IV-C; the
schemes have been represented in Fig. 9 from the same subsec-
tion. Note that only one period & = 4 blocks is represented in
the figure. The channel parameters have been chosen randomly.
The variation of the CRLB with the SNR for different alloca-
tion schemes is plotted in Fig. 12. We will refer to an allocation
scheme by its index in Fig. 9.
* vt It can be easily observed from Fig. 12 that the difference be-
Fig.11. m =3, N =4, andn = 5. tween the plots (a) and (b) and the others is really substantial.
This means that modifying the power allocation scheme under
channel parameters have been chosen randomly. As we expgéét conditions of Theorem 6 leads to significant changes in the
the CRLB decreases when the amount of training is modifie@RLB. Thisis due to the fact that the data symbols act as noise in
The figure reveals the behavior of the CRLB for the superinthe case of superimposed training schemes. The modification of
posed schemes with the SNR. At low SNR, the influence of titee scheme that is analyzed in Theorem 7 produces a negligible
amount of training is low, but it becomes large at high SNR. THifect on the CRLB; the performance plots for the schemes in
performance of the superimposed schemes is limited by the dai@. 9(c)—(e) are indistinguishable. It appears that the improve-
symbols that are unknown. mentin the SNR obtained by making the two training-only sym-
Fig. 11 compares the performance of schemes under PP@s supraunitary is compensated almost perfectly by the loss of
with the same amount of power allocated to training but in difrformation from the third symbol. While the scheme in Fig. 9(f)
ferent ways. The system has = 3, N = 4, » = 5, and is similar to the previous ones, the one represented in Fig. 9(g)
B = 32. The channel parameters have been chosen randoriga little bit worse. Thus, the modification of the CRLB under
The uniform horizontal power allocation scheme was compar#te conditions of conjecture is small. One would have expected
with the uniform power allocation scheme given by (14), whicthis since the information about the channel embedded in the
has the same total amount of power allocated to training. \Wata symbols is much less than the information carried by the
chose two values of the parameteof the horizontal schemestraining symbols. It is interesting to see that the fact observed
and then determine the allocation matrix of the uniform schemigs the training symbols (that the power should be concentrated)
such that the two schemes have the same power allocatedafsls for the data part as well. The information derived from the
training. When the total power allocated to training is high{ covariance matrix of the received signal is optimal if we concen-
0.1), then the difference between the two schemes is signiffate the power in the data symbols.
cant, i.e., the horizontal scheme (represented with continuous
line) is much better. When the power allocated to training is lo@w. Comparison Between Semiblind and Training-Based-Only
(v = 0.8), then the performance of the two schemes is simil&stimation Techniques

but (as we expect) lower than in the previous case. In this section, we compare the performance of semiblind and
training-based only estimation schemes. However, such a com-
parison would not be fair for a superimposed scheme because
We compare numerically some horizontal schemes Wite  the data will act like noise in the training-based-only case. Thus,
m =n =4, B =32, and Py 4ining = 2.5. A cOmparison be- we have considered a uniform vertical power allocation scheme

CALB (5]
f
3

1 1
2 4

B. Application of Convexity Theorems
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CRLB vs noise power for semiblind and training-based-only estimators CRLB and variance for different aliocation powers
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Fig. 13. CRLB for semiblind and training-based-only estimators. ~ Fig. 14. CRLB and MSE of the ML estimator fer = 3, N = 4, andn = 5.

(N =m =n =4, B = 32 blocks, channel chosen randomly)rTat'og tgchglqu?s W('j”; supenmpos_ed ?atar-]pllot symzc:cls. r\]Ne
with v = 0 (i.e., full training symbols) and compared the per- ave derived a closed-form expression for the FIM an urther
formance of the two approaches. From Theorem 5, we knéwesngated the behavior of CRLB for different channel estima-
that if a semiblind algorithm is used, the performance of trﬂaon schemes. .
vertical scheme used is the same as the performance of the o,’t—. was shown that for. a subclass of codes, the uniform
responding horizontal scheme. From Fig. 13, it can be observ%e\ocf'.zontal scheme prowdes.the same performgnce as the
that the performance of the semi-blind algorithm is 4 dB bett%FrF'cal one. One may quest|on_ the pra_ct|cal validity qf t_he
than the performance of a training-based algorithm. However, | rizontal plac_ement. By allowing c_ontlnuous transmission
is easy to see that in order to have reasonable performance Wi data and p'k.)t symbol_s., the honzonta! placement may
training-based-only estimation, we need to have blocks that et better tracking capab|l!ty for time-varying ghannels and
tain only training, i.e., the training-based-only estimation canngi® robustness to bursty interference. In addition, we have

be applied efficiently if the power allocation scheme used is n E]aracterlzed the behaylor of the CRLB for honzontal schemes
when the power allocation parameters are varied.

uniform vertical withy = 0. More exactly, the performance of a . . ) .
y Y P What has not been achieved in this paper, unfortunately, is to

training-based-only algorithm for a horizontal scheme with full . . :
g yayg h d the optimal placement, which remains an open and chal-

training symbols cannot exceed the one of an algorithm usi e@ . ) .
g sy 9 ging problem. What is clear, though, is that the placement

the corresponding vertical scheme.. that maximizes the mutual information is not the same as one
. that gives maximum Fisher information. To reach a sensible
D. ML Algorithm . . )
compromise, one must reformulate the problem in a different
The channel estimation algorithm used was a semiblirgtting, allowing both channel estimation and detection errors
maximum likelihood algorithm using the scoring method. Thge part of the overall consideration. Along this line, approaches
numerical results that are presented were obtained using fiRe those of Hassibi and Hochwald [25], or Adiredelyal.[8],
following setup. The training symbols were binafy-1}, the  may be considered.
parameter values we€ = 4, m = 3, n = 5, and the number
of blocks considered3 = 32. The channel coefficients were APPENDIX
chosen randomly. We performed 500 Monte Carlo simulations.
We evaluated the sum of the CRLBs for all parameters. Proof of Theorem 1
From Fig. 14, it can be observed that the average performancex the channel is known, for Gaussian input symbols, we have
of the ML channel estimator is close to the CRLB. Similar re-
sults have been obtained using different system setups. This I(y; s) = % log|det(cov(y))| — % log | det(o”T)|
means that analyzing the CRLB is a good way to predict the be- A i
eres = [s1(1), ..., sn(1), ..., 51(B), ..., sn(B)]". Using

havior of the performance of the channel estimation algorithr?’l‘g1 ; ;
when the power allocation scheme is modified. the properties of the space-time block codes, we have

B N
VI. CONCLUSIONS det(cov(y)) = det(C(a)) = *P N T TT (g9 +0%)
t=1 k=1
This paper deals with channel estimation in communication (38)
systems that use a class of space-time orthogonal block codesausery:; + o2 ando? are the eigenvalues &(a), where
We have considered a general class of semiblind channel esfi-has multiplicity B(nN — N). Itis straightforward that under
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the constraint given in the theorem, the determinant and, thusRemark: In Tarokh’s paper [20], the connection between a

the mutual information is maximizedf,; are equal. O family of 4 x 4 STBC matrices and the quaternionic algebra is
mentioned; however, the statement of the lemma does not follow
Properties of the STBC Matrices immediately.
Most of the theorems derived in this paper rely on the spe-Lemma 2: ConsiderN = 4 and{X;, ¢ =1, ..., N} tobe

cial properties of the STBC matrices used (2). In this section 8ffamily ofm x N, m < IV matrices satisfying conditions (2).
the Appendix, we derive some extra properties of some STES in [21, form. 2.7.13, p. 77], denote {¥Z.;, ¢ = 1, ..., N}
families of matrices: properties that will be used in the proof dhe generating family of matrices. Define the following family

theorems. of matrices:
Lemma 1: ConsiderV € {2, 4} and{X;, i = 1,..., N} Z(k, )
to be a family of NV x N matrices satisfying conditions (2) and /
X, = Iy. Construct the familZ, 2 X;X¥, wherek is fixed, Gy 2 : ) k=1,...,N.

and: € {1, ..., N}. Then
vVie{l,...,N}3je{l,..., N}suchthaZ; = £X;.

ZN(]C, :)

Note that by the definition of the familyGy }, X, is made up
Proof: If £ = 1, then the statement is straightforward. of the firstm rows of G,. Consider tha6; = I. Then, for any

If i = 1, thenZ; = XI = —X,, and thus, we just choosefixed k, we have

j =k
If ¢ = k, thenZ; = X; X} = I = X;; therefore, we chooseVic {1,..., N}3jec{l,..., N}

J=1 such thaiX,;Gi G, = +X;. (41)
Thus, the statement follows fé&¥ = 2. For N = 4, we have

to show that We have to observe that if we fix thenj is different for

Vi+#k3je {2, ..., N} such thatk, XL = X, different choices ot. It follows that if we fix j, we have

Without loss of generality, assunie= 2. We have the fol- Yié€ {1,..., N}Jke{l,..., N}

lowing: such thalX;G1 G; = +X;. (42)
X3X3 # +X1; XaXj # +Xo; XX #£X3. (39) Proof: Itis easy to show tha{G, i € {1, ..., N}} sat-
isfies (2).X;G} G, = X;G] are the firstn rows of G;G} .

T _
Thus, we must show th&;X; = £X,. Then, (41) follows immediately from Lemma 1. O

; T g
The family {X;, X, X3, X,Xj } satisfies the conditions ) oryma’ 3: Consider the same family of matrices as in

(2). we Wi”_ShOW that_ if the family{X_l, X2, X3, Z} satisfies | oma 2. Then, for any choice of four different indexes
(2), thenZ is determined up to a sign. It follows tha, = ke, ko, ks, ks, We have

+X,X1.
We know that in any of the STBC matrices, each row and X5, XE = +X,, X7
each column has only one nonzero entry. The position of the e e
nonzero entries d are determined by the other three matrices  prgof: Use (42) from 2 to choosk such that
from the orthogonality conditions (2). We assuni¥d = I,
therefore, the diagonal entries of the other three matrices are all Xp, G = +X,,.
0. In addition, becausX; = I, we haveZ = —Z7, and the
two nonzero entries below the main diagonal are determinedpien, by (41) withi = k», we have
the other two nonzero entries.
Denote byZ(k, :) the kth row of Z. FromX,Z? = —ZX7, X, GF = £X,,
it follows that there aré&; andk> such that
because all the other three choices for the right-hand side matrix
Xo(ki, )Z(k, ) = =Z(k1, )Xa(k2, )" #0.  (40) are not possible. The statement follows. O

This corresponds to a nonzero entry&X 7 ; thereforek; #  proof of Theorem 2
ko.

Each row vectorZ(k;, :) and Z(k», :) contains only one
nonzero entry. If the nonzero entries that are contained R
Z(ky, :) and Z(ko, :) are placed symmetrical with respect
to the first diagonal ofZ, thenZ(k., k1) # 0. This implies
Xo(k1, k1) # 0, which is false becausk, = —X1". . . . .

Thus, (40) provides a relation between two element of fi Eine = —Tip Liny 1 by # K2y £ finy = Okii
which are not placed symmetrical with respect to the main di- w7 T

. . ) ) ) F; =H; + o,I, F'W = —H, 4 ;1
agonal. This means tha is determined up to the sign, which ta ta
shows thaiX ;X7 = £X . O H! =-H,.

Using the properties of the STBC matrices (2), the following
Irpperties can be checked:

wliwy =qbi, WIW = I (43)



BUDIANU AND TONG: CHANNEL ESTIMATION FOR SPACE-TIME ORTHOGONAL BLOCK CODES 2525

It is convenient to separate the expression of the elements oProposition 1: For any two diagonal matrices of the form
the FIM in two parts A
Cy. = =diag(cor, Cky - - Ck), ked{l,2} (51)

[Fe(y, ¥)li, s =T1(2) + T2()

. we have
Ti(t) = el c-! o T
L - da; tt aaj tr(ClHiCQHj) = —(60162 + COQCl)hi hj — C1C2 tr(BZB(J)Z)
5
1 _ 80” _ 80”> l:l
T(t)=-tr ( Cit —— Cy' .
(1) 2 < * 9a; Tt aj Proposition 2: We have
In order to obtain the formula of the elements of the FIM in [H;H; ik, = —[H:Hjlx, #, ki # ka. (53)

the theorem, we write the following relations:
Proof: Taking into account thgH;].x = 0, we can write

opy _ _ T 2
Da; =F,P;v;, Cp=WGW- +5°1 (44) [HH, ] 5, = Z [HL 1o ks [H T - (54)
. aC,, ks #k1, k2
-1 _ T - T T
Ci” =WD:W= + L, da; FGW +WGE . v = 2, the statement is clear (both sides are 0).Fot 4,

(45) the sum has only two terms

Plugging the subexpressions above in the formula of the FIMHE:H ]k, = [Hilny ko [Hjlror, + [Hilw kg [Hligr,  (55)

and taking into account the special properties previously listed;ry 11 T ‘ ' ‘

we obtain the formula given in the theorem. (ke = [ e (Bl (i s (B (56)
Here is a sketch of the steps done in order to obtain the expregom Lemmas 1 and 3 and the expression of the elements of

sion of the elements of the FINI: (¢) is quite straightforward. {H,}, we know thatvi € {1, ..., N}

For T>(t), we need to substitute the covariance matrix and its

derivative and then write down all 16 terms. Then, we simplify (H;]r, ks = £[Hi]kakos (H)so = FH ]k ks -

these terms, exchanging the order of the terms under the trace

and using the special properties of the matrices involved. ThBe statement follows. -
next steps are grouping the simplified terms in pairs of identical Proposition 3: We have
terms and substituting (44). Then, we use once more the special P Ty
properties of the matrices involved, and we collect the terms in r(BiB;) = (N = 2)hi by, 7
order to obtain the expression®§(¢) given in the theorem: Proof: For N = 2, this is clear. FotV = 4, express the
left-hand side usingv, andf;x, and then, apply Lemma 1 if
Tr(t) =Tau () + Toa(t) + T23(t) (46) 1, = N or Lemma 3ifm < N. O
Toi(t) = aza, (2q2 tr(D2G2) + 3pqtr(D,G2) Now, we return to the main part of the proof. For the hori-
i 2 tG; o 47 zontal placement scheme, the matri€es D, andP,, with ¢
+o7tr( t)) (47) fixed, which were previously defined for the general case, be-
Toa(t) = 8i; (pg” (D2 GY) + P tr(GY)) (48) come
Tos(t) = ¢* tr(DH,;G,D.H;G,) — ¢* tr(D,H,G!D,H,) G, =diagy, 1, ..., 1); D, =diagA,, A, ..., Ap)
20qtr(D,H,; G, H;G,) — pqtr(D,H,;GIH; .
+ gq (Dy H;Gy) — pgtr(D, 1H;) Pt:d|ag(\/$707...,0).
+ p tr(G:H; G, H;). (49)

Using the special structure of the matrices above and the prop-

The complete proof can be found in the technical report [24dties previously derived, the general formula of the elements of

the FIM can be simplified [24] as
Proof of Theorem 3

First, we will present some properties that allow the simplifi- [FIM];; £T01() + Tia(t) + Tor (t) + Toa(t) + Tas(t)
cation of the FIM formula for the horizontal case. (58)

We will exploit the structure of the matric¢#;} by defining )
the vectordh, } and the matrice§B; } by the following relation T12(t) = ptr(P;)bi; (59)
(h; is the first column of the matrifl;, andB; is the block of Tor () = aia; (2¢° (D2 G?2) + 3pqtr(D,G?)

H; obtained by deleting the first row and the first column): +p? tr(Gf)) (60)

H; = [[0, bi]", [-h;, B]]]. (50) Too() =65 (pg” tr(DyG2) + p2qtr(G2)) (61)

It is easy to observe that the matricEB;} satisfy {BY = T11(f) + Tas(t) = ¢Ayaia; + (pA1 +7AL + (N = 2)A
-B;}. + A )hlh;. (62)
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The formula in the theorem follows from the following obserG; = I ; see Lemma 2. The theorem follows by multiplying
vations. Y®(t) by GF¥ G, and applying Lemma 2.
We have, by definition
Proof of Theorem 5

wilie; - - .
The proof of the theorem is based on the formulas derived in

h, = : (63) Theorems 2 and 3. In this subsection, the terms that have the
subindexHd andV are for the horizontal and vertical placement

T
wyJiei scheme, respectively.
which implies It is easy to observe th&@tog = T12v, To1g = 151y, and
Toog = Ty . We need to show thét g + Tosg = T11v +
N T»3y . This last statement follows if we compute separately each
hih; =ef/ I Y wiwiJie;. (64) of the two sides of the relation. We obtain
k=2

Ti1g +Tosg =T11v +Tozv
=N -)Aa;a; + N(N —1)A;hl'h;
aia; = [IFwiwlly], . (65) +NA D h;.

In addition, sincea = J¥'wy, it is clear that

The formulas above allow us to express the FIM in closed form The details are provided in the technical report [24].

instead of expressing each of its elements. Proof of Theorem 6

Proof of Theorem 4 Consider first the casm = N for whichJ; = I so that the
formula of the FIM simplifies considerably. We will show that
the eigenvalueggo, go + ¢ * g1, go + q * g2} of the matrix
: F(~) are convex functions (of). For each of the functions, we
= AZ X;s;(t) + N(¢). (66) Wwill separate the terms that are lineamir(we will denote the

; coefficients withé;) and calculate the second derivative of the

. ) . . nonlinear part.
Consider first the cases = N, i.e., the code matrices are |ntroduce the following notation:

square.
We saw that we can assume w.l.o.g. tat= I. In orderto ¢ 2 i. (68)
show that the FIM does not change when we change the symbol 2

in which the pilot is inserted, we consider the following twa\ote that¢ can be interpreted as the average SNR at the receiver.

Consider the received signal for one block

signals: With this notationA-, andA; become
YO () = AXuso(t) + A D Xiui(t) + N(#) T o gy +o?) Ey+1
‘ 1
Al =A |y = —p°> ——.
1 =A==t Per (69)

Y®() =AXpso(t) + A Y Kiwi(t) + N(1).
i=1, ik With the notation above, taking into account tist does not
depend ony, we obtain

Observe that )

N 902917+90+P2q£7+1
YWOXE =Asg(t) +A Y XiXPui(t) + N(t) 7
i=1, ixk d2go — 2 2
N a2 P e
=AXiso(t)+ A Y XiX{ui(t) + N(1). o _
ik Taking into account the range of the variables for our problem,
(67) it follows that g, is convex
4 3 1—
From Lemma 1, the familyZ; = XiX:,C, i # k}isthe same gL=p < 'S G +1) =3¢ £7+1 +v% - (5 1?)
as{X;, 7€ {2, ..., N}}, upto the sign of matrices. Since the i i i
distribution ofw; is symmetric with respect to zero, the sign does + 0oy + 61
not affect the FIM of the parameters. In addition, it is easy to 42, V(€2 —4E) + 24 ¢
check that the transformation applied preserves the covarlanced > = v+ 1)t

matrix of the noise. This proves the theoremfior=
In the casen < N, using the same arguments as abovéJsually, even for high noise poweés> 4, which makes the
we can consider the matricd§;, : € {1, ..., N} such that functiong; convex with respect tg.



BUDIANU AND TONG: CHANNEL ESTIMATION FOR SPACE-TIME ORTHOGONAL BLOCK CODES

However, we will show that the eigenvaliig = gg + qg1 IS
a convex function iny for any value of¢

2527

Thus, ¢, is an increasing function af.
Itis easy to see that = g2(1) +g2(2) does not depend af

d2hy  d2g 4?2
d,y; =q dj; drygf FIM,
—9,? o V(€& —48) +2+¢ 2 1
i v+ 1) NGESIE
_ge2 ME -3 +3+¢
v+

It is easy to observe that the denominator of the expression
above is positive for any value af € [0, 1]

go I(N— 1)A1 +A,y

1
Qg _ 5 2% .
dr? €y +1)* 2]
g2 is clearly convex with respect tg thus, s, is the same.
If m < N, the relations above hold, b{igo, go+qg*g1, go+
q * g} are not the eigenvalues of the matiiX~) anymore. 3]
Instead, we can write
F(y) = ITF(7)d 4]
and then{go, go + ¢ * g1, go + q * g2} are the eigenvalues of
F(v). Thus, we have [5]
0 <F(y =) +F(y +¢) - 2F(7). (70)
Since the matri¥, is tall and full column rank for any positive  [6]

definite matrixU, the matrixJ¥UJ; is also positive definite

(see [26]). The formula in the theorem follows from (70). 7l
The proof of the theorem is complete. Intermediate steps ot[

the calculations are provided in [24].

Proof of Theorem 7 (8]

We need to know how the FIM matrix for the horizontal
power allocation scheme described inthe following varies with g

@
¢ =[1+¢,0,...
¢2 [1_C_¢v0a"

Like in the proof of Theorem 6, consider first that= N so
thatJ; = L.

Unlike the previous theorem, here we do not have a symmetrMZ]
in ¢; therefore, we need to analyze the functigns= gx(1) +
gx(2) that are the eigenvalues of the FIM for two blocks

>

A
N A L RETE (RN ¢ R

12

A
SO0 =21, 1) (72)

[13]

go=90(1)+90(2) = p(l+o+1-9p—-Q+0 (73)
dgo _ [14]

15 =0 (74)
This term is constant irb [15]
g1 =01(1)+a1(2) = 1+ ¢)A|,=0 [16]

+(1-¢-C+0)A,

=(1-9¢—-C+0)A, (75) 7

dov _ A (76)

Thus, any increase @f increases one of the eigenvalues of the

which implies that the CRLB is improved. Observe that

1— ¢ — ¢ > 0, which implies that this theorem applies only to
the cases in which < ¢ < 1.

In addition, observe that = 0 implies A, = 0; thus, the
eigenvalues are constant in this case.

Form < kN, the statement in the theorem follows straight-
forward, like in the proof of Theorem 6.
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