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Abstract—Channel estimation is one of the key components
of space-time systems design. The transmission of pilot symbols,
referred to as training, is often used to aid channel acquisition.
In this paper, a class of generalized training schemes that allow
the superposition of training and data symbols is considered.
First, the Cramér–Rao lower bound (CRLB) is derived as a
function of the power allocation matrices that characterize
different training schemes. Then, equivalent training schemes
are obtained, and the behavior of the CRLB is analyzed under
different power constraints. It is shown that for certain training
schemes, superimposing data with training symbols increases
CRLB, and concentrating training power reduces CRLB. On the
other hand, once the channel is acquired, uniformly superimposed
power allocation maximizes the mutual information and, hence,
the capacity.

Index Terms—Channel estimation, Cramér–Rao bound, orthog-
onal designs, pilot symbols, power allocation, space-time codes.

I. INTRODUCTION

A MAJOR challenge in wireless space-time communica-
tions is coping with channel uncertainties. While Shannon

theory does not mandate channel estimation [1], the idea of
acquiring the channel state before decoding, either blindly or
through the use of pilot symbols, is entrenched in practice and
has also been proposed for space-time systems [2]–[6]. The
use of pilot symbols, however, may impose an unacceptable
overhead that limits the effective data throughput. Here, system
designers must consider two contradictory goals. On the one
hand, it is desirable to minimize the number of pilot symbols
in a data packet so that more information-carrying symbols can
be transmitted. On the other hand, more pilot symbols result in
better channel estimation, hence reducing the symbol error rate
and the need for packet retransmissions.

Conventionally, each transmitted symbol is either a pilot or
a data symbol. Furthermore, pilot symbols are clustered so
that training-based techniques that use received samples cor-
responding only to the pilot symbols can be applied. For such
schemes, observations affected by the unknown data are dis-
carded. Although training-based techniques simplify receiver
design, they may carry a substantial penalty in performance for
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two reasons. First, the received samples corresponding to the
unknown data contain valuable information about the channel.
It was first established by de Carvalho and Slock [7] that the
channel estimation errors can be reduced significantly by using
semiblind techniques that utilize all observations for channel
estimation. The second reason comes from the placement
of pilot symbols in clusters suitable only for training-based
techniques. It has been established recently that placing and
designing pilot symbols optimally provides gain in channel ca-
pacity [8]–[10] and reduction of symbol and channel estimation
errors [11]–[14].

A more general form of training that allows the superposition
of pilot and data symbols has attracted attention recently [10],
[15]–[17]. Such schemes, proposed earlier in [18] and [19],
allow us to allocate power to data and training differently,
perhaps in an adaptive fashion. It is hoped that, despite the
additional complexity introduced by the mixing of pilot and
data symbols, some performance gain over the conventional
techniques can be realized. Furthermore, it is also hoped that
the constant presence of pilot symbols in the data stream will
somehow improve the tracking capability of the receiver for
time-varying channels.

In this paper, we consider the channel estimation problem for
multiple-input multiple-output (MIMO) systems that use the or-
thogonal block codes proposed by Tarokhet al. [20]. In addi-
tion to the placement of pilot symbols in time, we must now
take the spatial domain into consideration. Within the frame-
work of semiblind channel estimation that utilizes all observa-
tions for channel estimation, and using the Cramér–Rao lower
bound (CRLB) as the performance measure, we examine gen-
eral training strategies that allow the superposition of pilot and
data symbols. In particular, we consider the effect of number
of training symbols, specific training signal used, and power al-
location of training symbols on CRLB. To this end, we charac-
terize general training schemes by the power allocation matrices
that specify, for each transmitted symbol in the space-time coor-
dinate, the amount of power used for training and data, respec-
tively.

The challenge of finding the optimal (even a good) training
strategy is twofold. First, one needs an expression of CRLB as a
function of the power allocation matrices. Although conceptu-
ally simple, such an expression is, in general, complicated and
not easy to optimize. Fortunately, by exploiting special proper-
ties of the orthogonal codes, we are able to simplify the CRLB
expression to the point that equivalence among certain power al-
location schemes can be established. The second challenge is to
minimize, under a certain power constraint, the CRLB with re-
spect to the power allocation matrices. This is, again, intractable
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in general. For the orthogonal codes presented in [20], how-
ever, we are able to show a convexity property of the CRLB.
This leads to an optimal power allocation strategy under the
per-symbol power constraint among those training schemes that
have one pilot symbol transmitted in each block. It turns out
that superimposing training with data is not optimal for channel
estimation, although with other considerations such as channel
tracking and capacity enhancement, such a technique may be an
appropriate compromise between accuracy in channel estima-
tion and high rate in data transmission. While the optimal power
allocation for the most general case is still unknown, our inves-
tigation reveals power allocation patterns that favor channel es-
timation in the acquisition stage and the optimal allocation once
the channel has been acquired.

Finally, one must question whether the CRLB is the appro-
priate measure. The use of CRLB as the performance measure
is motivated by the consideration that training placement is a
transmitter technique, and its design should not be affected by
the specific technique used at the receiver. Furthermore, the
asymptotic efficiency of the maximum likelihood (ML) tech-
nique lends support for the use of the CRLB. In this paper, we
have also implemented the ML estimator and found that, for the
case of using finite data samples, the performance of the ML
estimator is still close to the CRLB.

This paper is organized as follows. In Section II, we present
the framework and the assumptions used. The CRLB is com-
puted in Section III, and it is followed by the analysis of its
behavior in Section IV. Numerical results that complement the
theorems are presented in Section V. We conclude the paper in
Section VI. The proofs of the theorems are presented in the Ap-
pendix.

The notations used in this paper are as follows. Matrices and
vectors are in boldface with matrices usually in capital letters,
the vectors are column vectors, is the Kronecker product,
diag is the vector obtained from the diagonal entries of ma-
trix , diag is the diagonal matrix havingon the diagonal,
tr is the trace of the matrix , is the determinant of

. vec is a vector obtained by stacking the columns of.
denotes the transpose, and and are the real

and imaginary part, respectively.denotes the expectation.is
the identity matrix, and are the vectors that have all the ele-
ments 1 and 0, respectively. cov is the covariance matrix of
the random vector . denotes a Gaussian probability
distribution function (pdf) with mean and covariance matrix

. with and square matrices means that their dif-
ference is positive definite. Similarly, means
that is positive semidefinite. means the element of

with coordinates , and the vector is the th vector of
the standard basis.

II. M ODEL/PROBLEM DESCRIPTION

A. Space-Time Block Codes

Consider a multiple antenna system withtransmitters and
receivers, as shown in Fig. 1. In this paper, we consider only

rate one codes and real symbols, which means that a block of
symbols is transmitted within symbol periods. For block

, denote by the input of the antennas; theth

Fig. 1. m-transmittern-receiver space-time system.

column of corresponds to the transmitted vector in theth
symbol interval. The space-time code proposed by Tarokhet al.
[20] has the form

(1)

where is the block of transmitted sym-
bols, and are the space-time block code
(STBC) integer matrices that satisfy

.
(2)

The theory of orthogonal designs also shows that (see
[20]) for rate one codes and real symbols, the family

exists if and only if is 2, 4, or 8. It is
shown in [21] that using single-user detectors in parallel, the
choice of the matrices , as above, provides
the best SNR.

Under thequasistatic flat fadingmodel with coherence time
of blocks, the received signal matrix for theth block is given
by

(3)

where is the channel matrix, and is the addi-
tive complex Gaussian noise.

In the sequel, we need the received signal and the parameters
represented as column vectors. Denote

vec vec (4)

vec (5)

The received signal in one block can then be written as

(6)

For real symbols and white noise, the structure of the space-time
code does not depend on the number of receiving antennas, and
(6) can be rewritten by separating the real and imaginary parts
of the channel and noise:
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Fig. 2. General power allocation scheme under the power constraint (11).

Thus, a system with receiving antennas and complex channel
coefficients is equivalent to a system with receiving antennas
with Gaussian noise . For simplicity, in the rest
of the paper, we consider the system described by (6) with all
the channel coefficients real and real noise .

B. Generalized Model for Training Symbols

In this section, we introduce a generalized model for
training strategies. To allow superimposed placements, theth
transmitted symbol of block is expressed as a linear
combination of a pilot symbol and a data symbol

(7)

where is the known pilot taking values from , and
is a data symbol drawn independently from a distribution

with zero mean and unit variance. The coefficientsand
specify the power of the training and data symbols, respectively.
Therefore, the placement of pilot symbols within the coherence
time of blocks can be completely specified by the two
power allocation matrices

(8)

(9)

It is necessary to impose constraints on power allocation
schemes. In this paper, we consider two types of constraints.

1) Average Power Constraint (APC): We assume that the av-
erage power per blocks, each transmitting symbols, is

, i.e.,

(10)

2) Per-Symbol Power Constraint (PPC): As a special case of
APC, PPC is a stronger constraint imposed on each symbol

(11)

Power allocation schemes that specify training schemes can
be illustrated graphically. Fig. 2 shows a general power allo-
cation scheme under PPC applied to the transmission of

consecutive blocks with symbols per block. Each
column corresponds to one block of symbols transmitted to-
gether within symbol intervals. Within each square, the
shaded part represents the percentage of power allocated to the
training part. To illustrate the power allocation under APC, a
similar three-dimensional (3-D) bar-diagram may be necessary.

Of particular interest are two special classes of power alloca-
tion schemes.

1) The horizontal placement, as illustrated in Fig. 3(a), is a
scheme that places pilot symbols only in one symbol sub-
sequence, say, without loss of generality . The power
allocation matrices satisfy

Theperiodic horizontal placementis a horizontal placement
that repeats itself every blocks; see Fig. 3(b). Theuniform
horizontal placement, which is shown in Fig. 3(c), refers to
the case when all pilot symbols in the horizontal placement
have the same magnitude, i.e., .

2) Thevertical [see Fig. 3(d)] anduniform periodic vertical
placements are defined similarly. Theperiodic uniform ver-
tical placementhas the pilot symbols placed periodically
with period , as shown in Fig. 3(e). It is important to note
that the uniform schemes are under PPC.

Note that the conventional training-based technique cor-
responds to the periodic vertical placement with .

C. Assumptions

The following assumptions will be imposed throughout this
paper.

A1) The noise is i.i.d. Gaussian with zero mean and
covariance .

A2) The pilot symbols are binary .
A3) The data symbols are i.i.d. (in both and )

Gaussian with zero mean and unit variance, i.e.,
.

A4) The random variables are mutually
independent.

A5) The code matrix satisfies or
.

Collecting all observations in a vector
, under A1)–A4), we have , where

(12)

diag

cov (13)

The assumption that the pilot symbols are binary is not crit-
ical. The Gaussian assumption on data symbols, however, is es-
sential for obtaining the CRLB and other results in this paper.
In addition to making the problem analytically tractable, this
assumption is partially justified because the capacity attaining
signaling, under the assumption that the channel is known, is
Gaussian [22]. For unknown and time-invariant channels, the
Gaussian signal is optimal for minimizing outage probability if
the channel estimator used in the decoder is consistent [9]. As-
sumption A5 is made without loss of generality since the CRLB
does not change if columns of all code matrices are permuted
the same way or if one column of all code matrices changes the
sign.
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Fig. 3. Power allocation schemes defined previously. (a) (Nonuniform) horizontal scheme. (b) (Nonuniform) periodic horizontal scheme. (c) Uniform horizontal
scheme. (d) (Nonuniform) vertical. (e) Periodic uniform vertical.

D. Information-Theoretical Perspective

Before we tackle the problem of channel estimation using su-
perimposed training, it is relevant to examine the ultimate gain
of such a scheme. Here, we assume that the transmitter does not
know when and if the receiver has acquired the channel. There-
fore, the pilot symbols are transmitted indefinitely. Let us also
assume that the receiver uses an estimator with strong consis-
tency. Following the same argument as in [9], where it is shown
that the achievable transmission rate is not affected by the use of
a strongly consistent channel estimator at the receiver, we can
then assume that the channel is known at the receiver. We now
ask: What is the placement strategy that maximizes the mutual
information between the transmitter and the receiver?

Theorem 1: The mutual information between the input and
the output ,
does not change under any permutation of the coefficients

. If we constrain the total amount of power that can be
used to transmit pilot signals to , i.e.,

then the uniform scheme with

(14)

maximizes the mutual information between the input and the
output.

Proof: See the Appendix.
Of course, the above theorem tells only what happens if the

channel has already been acquired. Nonetheless, it shows that
if the transmitter always needs to include pilot symbols in its
transmission, the superimposed strategy with a uniform place-
ment of pilot symbols is the best. Next, we look at the other part
of the problem that addresses the issue of channel estimation,
using a different information measure: the Fisher information.

III. FISHER INFORMATION AND CRLB

For our problem, the Fisher information matrix (FIM) is de-
fined as

and the CRLB matrix is given by the inverse
of the FIM. In particular, for any unbiased estimator, we have

In the definition above, we have specified all relevant parame-
ters. In order to simplify the notation in the rest of the paper,
we will write only those parameters of interest. In most cases,
only the power allocation matricesand or some columns of
these matrices are listed. If the power allocation matrices have
a special form and depend only on one parameter, we will use
only that parameter in the argument of FIM or CRLB.

The i.i.d. assumptions on noise and data make the FIM addi-
tive. Specifically

(15)

where is the FIM defined for block . Under the
Gaussian assumption [A1) and A3)], the FIM has a well-known
special form given by [23]

tr

where is the th component of vector.
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TABLE I
NOTATIONS IN THE CRLB EXPRESSIONS

A. FIM and CRLB Expressions

We now present the expressions of FIM and CRLB on which
the derivation of further properties and optimizations is based.
The first expression is for the general case followed by a more
compact expression for the horizontal placement. Necessary no-
tations are listed in Table I.

Theorem 2: Consider one block (of index) of a power allo-
cation scheme under APC. The FIM for estimating the channel
from the received vector is given by

(16)

where is the part corresponding to the mean

tr (17)

and to the covariance

tr tr tr

tr tr

tr tr

tr tr

tr (18)

Proof: The proof of this theorem involves a direct evalua-
tion of FIM under the condition of code orthogonality (2), which
implies that are orthogonal vectors. Key steps are given in
the Appendix with detailed derivation in [24].

The formula in (18) is for the most general placement scheme
and is difficult to analyze. However, in the special case of the
horizontal placement, the FIM has a compact form.

Theorem 3: Consider one block (of index) of a horizontal
power allocation scheme under APC, where ,
with power allocation vectors and

. The FIM is given by

(19)

tr tr (20)

tr tr

tr (21)

(22)

where

(23)

Proof: See the Appendix.
Observe that for a (nonuniform) horizontal scheme with

blocks, we have

(24)

where

It can be observed that the formula of the FIM for the horizontal
placement scheme does not depend on the training symbols.
Since the analysis that follows is about horizontal placement
schemes, the influence of the training sequence is not consid-
ered.

One might ask why the theorem above does not hold for
. The proof of the theorem is based on the key prop-

erty of the family of code matrices that is stated in Lemma 1,
which is not true for . This property can be interpreted
as the connection between the STBC families of matrices for

and the complex numbers and quaternionic num-
bers, respectively.

Due to the orthogonality property of the vectors , the
inverse of the FIM can be easily computed if . This
leads to the following corollary.

Corollary 1: For a horizontal placement scheme with
, the CRLB is given by

(25)

where

(26)

The trace of the CRLB matrix is given by

tr (27)

It is especially interesting to note that if , the eigen-
values of the FIM depend only on the norm of the channel
and not on the specific channel parameters. The same observa-
tion is valid for the trace of the CRLB matrix.

IV. BEHAVIOR OF FIM AND CRLB

A. Equivalent Power Allocation Schemes

We present two theorems that reveal some equivalent power
allocation schemes.



2520 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 10, OCTOBER 2002

Fig. 4. Equivalent power allocation schemes in Theorem 4. The positions
shaded by light gray are where power allocations can be arbitrary.

Fig. 5. Power allocation schemes in Theorems 4 and 5. (a) Periodic scheme
that contains one training symbol in each block, where all training symbols
have equal power. (b) Uniform horizontal scheme. (c) Uniform periodic vertical
scheme.

Theorem 4: Consider a power allocation scheme under APC.
For , if there is one symbol block that contains a
single pilot, i.e., for some block index

(28)

the position of that pilot symbol does not affect the FIM. See
Fig. 4.

Proof: See the Appendix.
An immediate consequence of the above theorem is that if

only one pilot symbol is transmitted within each block, it can
be superimposed onto any data symbol [Fig. 5(a) and (b)]. Not
so obvious is that this is not true in general for and if
more than one pilot symbol is transmitted within each block. In
those cases, it is possible that inserting pilot symbols in different
substreams gives different CRLBs.

The next theorem gives an equivalence between the uniform
periodic horizontal and uniform periodic vertical placements, as
shown in Fig. 5(b) and (c).

Theorem 5: If or , the FIM is the same for
the uniform horizontal and uniform periodic vertical placement
with blocks each and equal parameter.

Proof: See the Appendix.
The equivalence of these two schemes does not seem to be

obvious. Indeed, if there is no noise and each symbol is either
a pilot or a data symbol, one block that containstraining
symbols is sufficient for the identification of the channel ma-
trix. For the uniform horizontal placement, however, unknown
data symbols are always present in the observation. Nonethe-
less, it can be shown that the uniform horizontal placement of

blocks with full training symbols also leads to the identifica-
tion of . This result is a consequence of the special properties
of the orthogonal block codes considered, and it appears that
these special codes provide a symmetry in space and time; if
we transpose the matrix of transmitted symbols, the estimate of
the channel does not change. Again, in general, this result does

not hold for or if the placement is not uniform. A di-
rect consequence of the theorem stated previously is that for the
uniform vertical placement scheme, the FIM does not depend
on the training symbols used.

B. Convexity of FIM for Horizontal Placements

We now restrict ourselves to the horizontal placement with
. The convexity result is best illustrated in Fig. 6.

Suppose that we start with a uniform horizontal placement
where every pilot symbol has the same power. Now, let us
make the training power uneven by moving part of the training
power from the second block to the first and the same amount
of data power from the first block to the second. How does the
FIM vary?

Theorem 6: Suppose that only one pilot symbol is trans-
mitted in some block under PPC, i.e.,
and and . Then such that

, the FIM corresponding
to block satisfies

(29)

Proof: See the Appendix.
If we apply this theorem to two blocks, it is then apparent

that one should allocate training power unevenly, as illustrated
in Fig. 6. It is then a direct consequence of the convex property
in Theorem 6 that one should avoid superimposing pilot with
data symbol and that the optimal horizontal scheme is given by
the following corollary.

Corollary 2: Under PPC with total training power , the
optimal horizontal placement is given by making symbols
with full training and allocating the remaining training power

to a single symbol. The rest of the symbols (if there
are such symbols left) will contain only data.

If the average power constraint (APC) is used, it is possible
that one symbol is transmitted with power greater than unity.
In this case, one suspects that FIM can be increased further.
The answer is affirmative, as shown in the next theorem and
illustrated in Fig. 7. In words, if there are two blocks, each with
one pilot symbol, if the training power in one of the blocks is
100% and in the other is not, the FIM increases by concentrating
all the power to one block.

Theorem 7: For , consider two blocks and
of a power allocation scheme under APC, and denote

(30)

(31)

where . Then, such that
, we have

(32)

It follows immediately that

tr

tr (33)

Proof: See the Appendix.
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Fig. 6. Power allocation schemes compared in Theorem 6 forN = 4.

Fig. 7. Power allocation schemes compared in Theorem 7.

Fig. 8. Power allocation schemes compared in Conjecture 1.

Fig. 9. Power allocation schemes compared. Application of convexity theorem.

We note that from the proof of the theorem [see (74) and
(76) and the comment that follows], the FIM (and the CRLB)
does not change if . In other words, combining the energy
of two full training symbols neither decreases nor increases the
CRLB.

From Theorem 7, it follows that the power allocation scheme
that is optimal under PPC can be improved by concentrating the
training power to fewer pilot symbols if one allows supraunitary
power for some symbols. It also shows that superimposed hori-
zontal training cannot be optimal.

In order to find the optimal power allocation for APC con-
straints, one must now look at power allocation for data sym-
bols. Here, unfortunately, we can only conjecture that it is also
preferable to allocate data power unevenly.

Conjecture 1: Consider , , and two
blocks and of a power allocation scheme under APC:

(34)

(35)

(36)

where Then, such that
and , we have

tr
(37)

In the conjecture above, the assumption is important
because this allows us to use (27) of the trace of the CRLB
matrix. The above conjecture can also be stated differently.
Consider two power allocation schemes as in the conjecture
with parameters and ), respectively, where

. These schemes are represented in Fig. 8. Then
tr tr .

C. Summary Scenarios

Fig. 9 summarizes our results graphically. Fig. 9(a) is the uni-
form horizontal scheme that can be improved by Theorem 6 to
Fig. 9(c) via Fig. 9(b). This is the best under PPC. If APC is
used, Fig. 9(c) can then be improved to Fig. 9(d) using The-
orem 7. The same theorem says that the scheme in Fig. 9(e)
and (d) has the same performance. Our conjecture suggests that
Fig. 9(d) and (e) are better than Fig. 9(f) and (g). In Section V,
some numerical evaluations are given.

V. SIMULATIONS AND NUMERICAL RESULTS

A. CRLB Under Superimposed Training

In this section, we want to investigate the effect of the amount
of power allocated to training and the power allocation scheme
on the CRLB. Fig. 10 illustrates the variation of the trace of the
CRLB matrix with the amount of power allocated to training for
a system with that uses a uniform hori-
zontal placement scheme under PPC with blocks. The
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Fig. 10. m = 4,N = 4, andn = 4.

Fig. 11. m = 3,N = 4, andn = 5.

channel parameters have been chosen randomly. As we expect,
the CRLB decreases when the amount of training is modified.
The figure reveals the behavior of the CRLB for the superim-
posed schemes with the SNR. At low SNR, the influence of the
amount of training is low, but it becomes large at high SNR. The
performance of the superimposed schemes is limited by the data
symbols that are unknown.

Fig. 11 compares the performance of schemes under PPC
with the same amount of power allocated to training but in dif-
ferent ways. The system has , , , and

. The channel parameters have been chosen randomly.
The uniform horizontal power allocation scheme was compared
with the uniform power allocation scheme given by (14), which
has the same total amount of power allocated to training. We
chose two values of the parameterof the horizontal schemes
and then determine the allocation matrix of the uniform schemes
such that the two schemes have the same power allocated to
training. When the total power allocated to training is high (

), then the difference between the two schemes is signifi-
cant, i.e., the horizontal scheme (represented with continuous
line) is much better. When the power allocated to training is low
( ), then the performance of the two schemes is similar
but (as we expect) lower than in the previous case.

B. Application of Convexity Theorems

We compare numerically some horizontal schemes with
, , and . A comparison be-

Fig. 12. Comparison of different placements. For the schemes depicted
in Fig. 9, the plots are, from top to bottom, (a)4, (b) �, (g) /; (c)–(f)
indistinguishable.

tween these schemes has already been done in Section IV-C; the
schemes have been represented in Fig. 9 from the same subsec-
tion. Note that only one period of blocks is represented in
the figure. The channel parameters have been chosen randomly.
The variation of the CRLB with the SNR for different alloca-
tion schemes is plotted in Fig. 12. We will refer to an allocation
scheme by its index in Fig. 9.

It can be easily observed from Fig. 12 that the difference be-
tween the plots (a) and (b) and the others is really substantial.
This means that modifying the power allocation scheme under
the conditions of Theorem 6 leads to significant changes in the
CRLB. This is due to the fact that the data symbols act as noise in
the case of superimposed training schemes. The modification of
the scheme that is analyzed in Theorem 7 produces a negligible
effect on the CRLB; the performance plots for the schemes in
Fig. 9(c)–(e) are indistinguishable. It appears that the improve-
ment in the SNR obtained by making the two training-only sym-
bols supraunitary is compensated almost perfectly by the loss of
information from the third symbol. While the scheme in Fig. 9(f)
is similar to the previous ones, the one represented in Fig. 9(g)
is a little bit worse. Thus, the modification of the CRLB under
the conditions of conjecture is small. One would have expected
this since the information about the channel embedded in the
data symbols is much less than the information carried by the
training symbols. It is interesting to see that the fact observed
for the training symbols (that the power should be concentrated)
holds for the data part as well. The information derived from the
covariance matrix of the received signal is optimal if we concen-
trate the power in the data symbols.

C. Comparison Between Semiblind and Training-Based-Only
Estimation Techniques

In this section, we compare the performance of semiblind and
training-based only estimation schemes. However, such a com-
parison would not be fair for a superimposed scheme because
the data will act like noise in the training-based-only case. Thus,
we have considered a uniform vertical power allocation scheme
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Fig. 13. CRLB for semiblind and training-based-only estimators.

( , blocks, channel chosen randomly)
with (i.e., full training symbols) and compared the per-
formance of the two approaches. From Theorem 5, we know
that if a semiblind algorithm is used, the performance of the
vertical scheme used is the same as the performance of the cor-
responding horizontal scheme. From Fig. 13, it can be observed
that the performance of the semi-blind algorithm is 4 dB better
than the performance of a training-based algorithm. However, it
is easy to see that in order to have reasonable performance with
training-based-only estimation, we need to have blocks that con-
tain only training, i.e., the training-based-only estimation cannot
be applied efficiently if the power allocation scheme used is not
uniform vertical with . More exactly, the performance of a
training-based-only algorithm for a horizontal scheme with full
training symbols cannot exceed the one of an algorithm using
the corresponding vertical scheme..

D. ML Algorithm

The channel estimation algorithm used was a semiblind
maximum likelihood algorithm using the scoring method. The
numerical results that are presented were obtained using the
following setup. The training symbols were binary, , the
parameter values were , and the number
of blocks considered . The channel coefficients were
chosen randomly. We performed 500 Monte Carlo simulations.
We evaluated the sum of the CRLBs for all parameters.

From Fig. 14, it can be observed that the average performance
of the ML channel estimator is close to the CRLB. Similar re-
sults have been obtained using different system setups. This
means that analyzing the CRLB is a good way to predict the be-
havior of the performance of the channel estimation algorithms
when the power allocation scheme is modified.

VI. CONCLUSIONS

This paper deals with channel estimation in communication
systems that use a class of space-time orthogonal block codes.
We have considered a general class of semiblind channel esti-

Fig. 14. CRLB and MSE of the ML estimator form = 3,N = 4, andn = 5.

mation techniques with superimposed data-pilot symbols. We
have derived a closed-form expression for the FIM and further
investigated the behavior of CRLB for different channel estima-
tion schemes.

It was shown that for a subclass of codes, the uniform
horizontal scheme provides the same performance as the
vertical one. One may question the practical validity of the
horizontal placement. By allowing continuous transmission
of data and pilot symbols, the horizontal placement may
offer better tracking capability for time-varying channels and
more robustness to bursty interference. In addition, we have
characterized the behavior of the CRLB for horizontal schemes
when the power allocation parameters are varied.

What has not been achieved in this paper, unfortunately, is to
find the optimal placement, which remains an open and chal-
lenging problem. What is clear, though, is that the placement
that maximizes the mutual information is not the same as one
that gives maximum Fisher information. To reach a sensible
compromise, one must reformulate the problem in a different
setting, allowing both channel estimation and detection errors
be part of the overall consideration. Along this line, approaches
like those of Hassibi and Hochwald [25], or Adireddyet al. [8],
may be considered.

APPENDIX

Proof of Theorem 1

If the channel is known, for Gaussian input symbols, we have

cov

where , , . Using
the properties of the space-time block codes, we have

cov

(38)
because and are the eigenvalues of , where

has multiplicity . It is straightforward that under



2524 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 10, OCTOBER 2002

the constraint given in the theorem, the determinant and, thus,
the mutual information is maximized if are equal.

Properties of the STBC Matrices

Most of the theorems derived in this paper rely on the spe-
cial properties of the STBC matrices used (2). In this section of
the Appendix, we derive some extra properties of some STBC
families of matrices: properties that will be used in the proof of
theorems.

Lemma 1: Consider and
to be a family of matrices satisfying conditions (2) and

. Construct the family , where is fixed,
and . Then

such that

Proof: If , then the statement is straightforward.
If , then , and thus, we just choose

.
If , then ; therefore, we choose

.
Thus, the statement follows for . For , we have

to show that

such that

Without loss of generality, assume . We have the fol-
lowing:

(39)

Thus, we must show that .
The family satisfies the conditions

(2). We will show that if the family satisfies
(2), then is determined up to a sign. It follows that

.
We know that in any of the STBC matrices, each row and

each column has only one nonzero entry. The position of the
nonzero entries of are determined by the other three matrices
from the orthogonality conditions (2). We assumed ;
therefore, the diagonal entries of the other three matrices are all
0. In addition, because , we have , and the
two nonzero entries below the main diagonal are determined by
the other two nonzero entries.

Denote by the th row of . From ,
it follows that there are and such that

(40)

This corresponds to a nonzero entry of ; therefore,
.
Each row vector and contains only one

nonzero entry. If the nonzero entries that are contained in
and are placed symmetrical with respect

to the first diagonal of , then . This implies
, which is false because .

Thus, (40) provides a relation between two elements of,
which are not placed symmetrical with respect to the main di-
agonal. This means that is determined up to the sign, which
shows that .

Remark: In Tarokh’s paper [20], the connection between a
family of 4 4 STBC matrices and the quaternionic algebra is
mentioned; however, the statement of the lemma does not follow
immediately.

Lemma 2: Consider and to be
a family of , matrices satisfying conditions (2).
As in [21, form. 2.7.13, p. 77], denote by
the generating family of matrices. Define the following family
of matrices:

...

Note that by the definition of the family , is made up
of the first rows of . Consider that . Then, for any
fixed , we have

such that (41)

We have to observe that if we fix, then is different for
different choices of . It follows that if we fix , we have

such that (42)

Proof: It is easy to show that sat-
isfies (2). are the first rows of .
Then, (41) follows immediately from Lemma 1.

Lemma 3: Consider the same family of matrices as in
Lemma 2. Then, for any choice of four different indexes

, we have

Proof: Use (42) from 2 to choosesuch that

Then, by (41) with , we have

because all the other three choices for the right-hand side matrix
are not possible. The statement follows.

Proof of Theorem 2

Using the properties of the STBC matrices (2), the following
properties can be checked:

(43)

if
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It is convenient to separate the expression of the elements of
the FIM in two parts

tr

In order to obtain the formula of the elements of the FIM in
the theorem, we write the following relations:

(44)

(45)

Plugging the subexpressions above in the formula of the FIM
and taking into account the special properties previously listed,
we obtain the formula given in the theorem.

Here is a sketch of the steps done in order to obtain the expres-
sion of the elements of the FIM. is quite straightforward.
For , we need to substitute the covariance matrix and its
derivative and then write down all 16 terms. Then, we simplify
these terms, exchanging the order of the terms under the trace
and using the special properties of the matrices involved. The
next steps are grouping the simplified terms in pairs of identical
terms and substituting (44). Then, we use once more the special
properties of the matrices involved, and we collect the terms in
order to obtain the expression of given in the theorem:

(46)

tr tr

tr (47)

tr tr (48)

tr tr

tr tr

tr (49)

The complete proof can be found in the technical report [24].

Proof of Theorem 3

First, we will present some properties that allow the simplifi-
cation of the FIM formula for the horizontal case.

We will exploit the structure of the matrices by defining
the vectors and the matrices by the following relation
( is the first column of the matrix , and is the block of

obtained by deleting the first row and the first column):

(50)

It is easy to observe that the matrices satisfy
.

Proposition 1: For any two diagonal matrices of the form

(51)

we have

tr tr
(52)

Proposition 2: We have

(53)

Proof: Taking into account that , we can write

(54)

For , the statement is clear (both sides are 0). For ,
the sum has only two terms

(55)

(56)

From Lemmas 1 and 3 and the expression of the elements of
, we know that

The statement follows.
Proposition 3: We have

tr (57)

Proof: For , this is clear. For , express the
left-hand side using and , and then, apply Lemma 1 if

or Lemma 3 if .
Now, we return to the main part of the proof. For the hori-

zontal placement scheme, the matrices, , and , with
fixed, which were previously defined for the general case, be-
come

diag diag

diag

Using the special structure of the matrices above and the prop-
erties previously derived, the general formula of the elements of
the FIM can be simplified [24] as

FIM

(58)

tr (59)

tr tr

tr (60)

tr tr (61)

(62)
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The formula in the theorem follows from the following obser-
vations.

We have, by definition

... (63)

which implies

(64)

In addition, since , it is clear that

(65)

The formulas above allow us to express the FIM in closed form
instead of expressing each of its elements.

Proof of Theorem 4

Consider the received signal for one block

(66)

Consider first the case , i.e., the code matrices are
square.

We saw that we can assume w.l.o.g. that . In order to
show that the FIM does not change when we change the symbol
in which the pilot is inserted, we consider the following two
signals:

Observe that

(67)

From Lemma 1, the family is the same
as , up to the sign of matrices. Since the
distribution of is symmetric with respect to zero, the sign does
not affect the FIM of the parameters. In addition, it is easy to
check that the transformation applied preserves the covariance
matrix of the noise. This proves the theorem for .

In the case , using the same arguments as above,
we can consider the matrices , such that

; see Lemma 2. The theorem follows by multiplying
by and applying Lemma 2.

Proof of Theorem 5

The proof of the theorem is based on the formulas derived in
Theorems 2 and 3. In this subsection, the terms that have the
subindex and are for the horizontal and vertical placement
scheme, respectively.

It is easy to observe that , , and
. We need to show that

. This last statement follows if we compute separately each
of the two sides of the relation. We obtain

The details are provided in the technical report [24].

Proof of Theorem 6

Consider first the case for which so that the
formula of the FIM simplifies considerably. We will show that
the eigenvalues of the matrix

are convex functions (of). For each of the functions, we
will separate the terms that are linear in(we will denote the
coefficients with ) and calculate the second derivative of the
nonlinear part.

Introduce the following notation:

(68)

Note that can be interpreted as the average SNR at the receiver.
With this notation, and become

(69)

With the notation above, taking into account that does not
depend on , we obtain

Taking into account the range of the variables for our problem,
it follows that is convex

Usually, even for high noise powers , which makes the
function convex with respect to.
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However, we will show that the eigenvalue is
a convex function in for any value of

It is easy to observe that the denominator of the expression
above is positive for any value of

is clearly convex with respect to; thus, is the same.
If , the relations above hold, but

are not the eigenvalues of the matrix anymore.
Instead, we can write

and then, are the eigenvalues of
. Thus, we have

(70)

Since the matrix is tall and full column rank for any positive
definite matrix , the matrix is also positive definite
(see [26]). The formula in the theorem follows from (70).

The proof of the theorem is complete. Intermediate steps of
the calculations are provided in [24].

Proof of Theorem 7

We need to know how the FIM matrix for the horizontal
power allocation scheme described inthe following varies with

:

(71)

(72)

Like in the proof of Theorem 6, consider first that so
that .

Unlike the previous theorem, here we do not have a symmetry
in ; therefore, we need to analyze the functions

that are the eigenvalues of the FIM for two blocks

(73)

(74)

This term is constant in

(75)

(76)

Thus, is an increasing function of.
It is easy to see that does not depend on.

Thus, any increase of increases one of the eigenvalues of the
FIM, which implies that the CRLB is improved. Observe that

, which implies that this theorem applies only to
the cases in which .

In addition, observe that implies ; thus, the
eigenvalues are constant in this case.

For , the statement in the theorem follows straight-
forward, like in the proof of Theorem 6.
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