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Abstract— This paper investigates the estimation of the number of op-
erating sensors in a wireless sensor network. The basic model considered
is equivalent to an urn model with replacement. For this model, we pro-
pose an estimator based on the Good-Turing non-parametric estimator of
the missing mass. We show how this estimator can be applied to other re-
lated problems like estimation of class histograms. It is also shown that
the estimator proposed is robust to model changes; more exactly its perfor-
mance degradation is small when it is applied to a batch sampling model
that models a receiver with multiple packet reception (MPR) capabilities.
A modified estimation method that takes into account the batch sampling
model is given and its performance is discussed.

I. INTRODUCTION

This paper considers the problem of estimating the number of
operating sensors in a wireless sensor network. Usually, wire-
less sensor networks are made up of a large number of sensors;
after the sensors are deployed the number of operating sensors
can vary in time due to battery consumption and/or external fac-
tors. The network is designed to operate properly only with a
fraction of the deployed nodes as long as this fraction is above a
certain level; knowing the number of operating nodes is impor-
tant for taking decisions like deployment of additional sensors.

A. Network Architecture

The sensor network considered is a sensor network with mo-
bile access points (SENMA), whose architecture was proposed
in [1]. The main feature of SENMA architecture is the presence
of mobile access points which are nodes with high processing
power that act like mobile base stations for the sensor nodes,
see Fig.1. In SENMA, the sensors transmit the collected data
to the mobile access points, which are connected to a control
center by a high rate data link.

It is considered that each sensor transmits the information in
packets and each packet contains the identity (ID) of the trans-
mitting node. The packet transmission is done according to a
slotted ALOHA protocol and the packets are subject to channel
fading.

The essential features of the sensor networks considered are
the energy constraint, the low rate traffic and the large number
of sensors deployed. Thus, there is no attempt to provide a reli-
able link between each sensor and the mobile access point; there
are no acknowledgements (their processing by the sensors will
consume extra power) and there is no packet retransmission at
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Fig. 1. The Sensor Network with Mobile Access Point; the packet structure
contains an ID field and a PL “Power level” field.

the MAC layer. In this approach, a fraction of the transmitted
packets will be lost because of the fading channel and the multi-
ple access. This loss of information is compensated by the large
number of sensors deployed, so that the random field of interest
is oversampled.

The basic model considered in this paper assumes that only
one packet is collected at a time, and each received packet can
come from any of the operating sensors. This model is extended
by considering that the mobile access point has multiple packet
reception (MPR) capabilities.

Besides the number of active sensors, the operator might be
interested in other quantities related to the network, like the dis-
tribution of the energy available to each sensor. In this case,
the data packets will include the quantity of interest, besides the
sensor ID. In Fig.1 each packet has the field “PL” (power level).

B. Estimation of the Number of Operating Sensors

The number of operating sensors will be estimated based only
on the sensor IDs embedded in the received packets. As men-
tioned before, in the network considered, not all transmitted
packets are received. In this case the receiver would need a re-
ally large amount of time to receive at least one packet from
each operating sensor. Moreover, this approach implies a waste
of energy, because the sensing information can be retrieved only
from the information provided by a subset of sensors.

Thus, in our setup it would be useful if the operator was able
to estimate the number of sensors in a network based on as few
samples as possible. Alternatively, the problem can be thought
of as estimating the number of operating nodes that were not
seen by the receiver.

The setup of the problem considers a symmetric system with



i.i.d. sampling, model that is equivalent to an urn model with
replacement. Urn models were investigated for a long time, see
[3] for details.

For the i.i.d. uniform sampling model mentioned we propose
an estimator of the number of operating sensors based on the
Good-Turing nonparametric estimator [2] of the missing mass
(Given a vector of observed sensor IDs (sample), the missing
mass is the probability of receiving a message from a sensor
that was not seen yet.) The approach is easily applicable to class
histogram estimation.

A modified model considered is the batch sampling model,
in which the receiver can receive multiple packets at a time, all
packets received simultaneously being transmitted by different
sensors. It is shown that the estimator given previously can be
applied successfully to this modified model that does not satisfy
the basic i.i.d. assumption.

This estimator choice over the traditional ML estimator is ex-
plained in the next section.

II. MODEL AND MOTIVATION

In this section we present the models considered and the mo-
tivation behind our approach.

Consider a sensor network having N operating sensors, each
of them being identified by an ID that is an element of set N ,
with |N | = N . In this paper N is assumed constant during
the collection time, but unknown. The operator collects n pack-
ets, each packet i containing the ID of the transmitting sensor,

Xi ∈ N . The vector of samples X
∆
= (X1, . . . , Xn) is called

the sample. The collection is done i.i.d. and in each time slot
the received packet can belong to any of the sensors with equal
probability:

∀ x ∈ N : px
∆
= P[Xi = x] =

1

N
.

This model identical to an urn model with replacement.
Since the sample can contain multiple packets from the same

sensor, we introduce the set S ( script font ) of received labels

S
∆
= {x ∈ N : ∃k ∈ {1, . . . , n}, Xk = x};

its size S = |S| represents the total number of ( different ) sen-
sors that appear in the sample.

With the notations given before, S0
∆
= N − S represents the

number of operating sensors that do not appear in the current
sample. The problem is to estimate N using the received sample
X. Since S is observed, this is equivalent to estimating S0, the
number of sensors that are hidden to the operator.

A slightly more complicated model is the class partition
model. Consider that the set of sensors is partitioned into classes
and each sensor transmits in each packet its class index besides
its ID. An example of class partition is the battery energy level
distribution, where each class corresponds to an interval for the
energy available to a sensor.

Let C denote the total number of classes and c(x) the class
of sensor x. Denote by N(c) the number of sensors that belong
to class c. For each class c, we define X(c) as a vector made
of those elements of X that have class c, and the corresponding

S(c), S(c)

S(c)
∆
= {x ∈ N : ∃k ∈ {1, . . . , n} Xk = x, c(k) = c}

S(c)
∆
= |S(c)|.

We make the extra assumption that C � min(n,N) so that
the min(S(c), N(c)) � 1. This says that all the classes appear
in the current sample so that we don’t need to consider the es-
timation of the total number of existent classes. In this setup,
the problem is to estimate how many sensors are in each class,
i.e., the histogram vector N = (N(1), . . . , N(C)). A possible
power profile histogram is shown in Fig. 2. In each bar, the
lower part represents the observed part and the upper one is the
hidden part.
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Fig. 2. The histogram of energy available to each sensor. The sensors that are
not operating are considered to have 0 energy available ( the first bar).

The ML parametric estimator based on the unordered sample
X is given by

N̂ = arg max
N≥S

N !

Nn (N − S)!
. (1)

In the case of histogram estimation, the ML solution is given
by

N̂ML = arg max
N

1

Nn

C
∏

c=1

N(c)!

(N(c) − S(c))!
.

This problem requires a C-dimensional search, which is con-
siderable harder than the optimization problem of the first case.
However, in both cases, besides the difficulty associated with
numerical evaluation, the ML solutions give little insight into
the problem itself, since the analysis is hard, if not impossible.
Also, the robustness and/or portability to model changes is un-
known.

The estimator proposed in this paper has a simple expression,
thus it is easy to implement and it can be analyzed. Also, being
based on the non-parametric Good-Turing estimator, it is quite
robust to model changes.



III. ESTIMATION OF THE NUMBER OF OPERATING

SENSORS AND CLASS HISTOGRAMS

A. Background - the Good-Turing estimator

Consider a finite or countable set N , a probability distribution
P on this set, and a sample X = (X1, . . . , Xn), where Xi ∈ N
are i.i.d random variables with distribution P . As before, for
x ∈ N , denote px

∆
= P[Xi = x] the probability of class x. Note

that a uniform distribution is not required, besides the fact that
N can be an infinite set.

For the observed sample X, define the function t : N → N,
where t(x) gives the number of samples in X equal to x. Using
the multiplicity function t, we group the classes that appear the
same number of times into sets :

Sk
∆
= {x ∈ N : t(x) = k} .

Note that the function t and the sets Sk are function of the ob-
served sample X, thus they are random variables. We use the

notation Sk
∆
= |Sk|. Now we define Pk to be the probability that

a new sample, drawn (i.i.d.) with distribution P , belongs to set
Sk

Pk
∆
=

∑

x∈Sk

px.

For k = 0, P0 is the probability that if a new item is observed,
it belongs to a new class. The probability P0 is called the miss-
ing mass and 1 − P0 is called the coverage of sample X. The
probabilities Pk depend on the sample X, and thus are random
variables.

The following estimator for the missing mass, known as
Good-Turing estimator was proposed in [2]

P̂0 =
S1

n
. (2)

This estimator estimated the missing mass using the number of
classes that appear in the sample exactly once.

In [4] it is shown that if all classes are equally likely, the
Good-Turing non-parametric estimator has an asymptotic effi-
ciency very close to the one of the best estimator derived under
the assumption mentioned. This suggests that if the classes are
equally likely, the Good-Turing estimator can be used to derive
an estimator of the total number of sensors with “good” asymp-
totic properties.

In this section we used the term “class” in a general way;
the reader should not confuse this with the class partition model
described previously. When the Good-Turing estimator will be
applied to the basic problem, each sensor ID will correspond to
one class.

B. Estimation of the Number of Operating Sensors

We propose the following estimation method for the number
of operating sensors in a sensor network. First, use the Good-
Turing formula (2) to estimate the missing mass P0. Then, using
the assumption of equally likely classes, the missing mass is
given by P0 = 1− S

N
. Using the estimated value of P0, we have

the following estimator for N :

N̂ =
S

1 − P̂0

=
S

1 − S1

n

. (3)

C. Estimation of Static Power Profile

To estimate the distribution of classes among the sensors, for
each vector X(c) we define the sets Sk(c) and the correspond-

ing Sk(c)
∆
= |Sk(c)| in the same way as S and |Sk| respectively.

For each class c, define the corresponding missing mass as
the probability that a new sample will be new and belonging to
class c

P0(c)
∆
= P{Xn+1 ∈ {x ∈ N : c(x) = c} \ S(c)|X}.

The Good-Turing estimator can be used to estimate the missing
mass for each class separately

P̂0(c) =
S1(c)

n
.

To estimate the number of sensors in each class N(c) = S(c) +

S0(c), we use the relation P0(c) = S0(c)
N

, and the estimates
N̂ and P̂0(c) obtained previously to get Ŝ0(c) = P̂0(c)N̂ , and
further, N̂(c) = S(c) + Ŝ0(c).

Thus,

N̂(c) = S(c) + S1(c)
S

n − S1
.

One can verify easily that
∑

c N̂(c) = N̂ .

D. Estimation of Time-Varying Power Profile

If the classes of sensors change in time, denote by c(t)(x) the
class of sensor x at time slot t. We want to estimate N (n+1)(c),
the number of sensors in each class at time slot n + 1. It is as-
sumed, however, that the class changing process does not mod-
ify the distribution of the received samples ( for example, the
case in which some sensors stop operating during the sample
collection process is not included ).

If the class c(n+1)(x) can be determined for each element x ∈
S based on the received sample, then we can use the previous
result for fixed classes considering the classes of all elements of
S given by c(n+1)(x).

One difficulty that appears is related to the prediction of the
class of a sensor. This depends strongly on the system model
used, i.e., transmission scheme, channel and reception. For ex-
ample, if the system uses an ideal CSMA MAC protocol, in
which only one packet is transmitted at a time and no packets
are lost, then the current class of each sensor in S can be de-
termined exactly. The same happens if each sensor attempts to
transmit a packet in every slot, but at most one packet per slot
can be received.

However, both situations described above are ideal. A more
realistic protocol choice is one in which each sensor transmits
a packet in each slot with a fixed probability, and at most one
packet per slot is received. We assume that the transmission
(and reception) in each slot is independent of the previous slots.
In this case, assuming that after n slots, the last received packet
from sensor x is in slot t, then given c(t)(x), only the distribution
of the class c(n+1)(x) can be determined. One possible way to
cope with this situation is to obtain an estimate of c(n+1)(x) us-
ing for example the maximum likelihood rule. However, a “soft”
approach can lead to better results. In this approach, the sets



S(n+1)(c) can’t be defined, so we define directly the quantities
S(n+1)(c), that previously were the corresponding sizes of sets

mentioned (define C
∆
= (c(1)(X1), c

(2)(X2), . . . , c
(n)(Xn))):

S(n+1)(c)
∆
=

∑

x∈S

P{c(n+1)(x) = c|X,C}

S
(n+1)
1 (c)

∆
=

∑

x∈S

1{t(x)=1}P{c
(n+1)(x) = c|X,C}.

The probabilities in the equation above are specified by the
system model. For example, if the class of each sensor varies
according to a Markov process with known transition matrix,
then one can calculate the probabilities P{c(n+1)(x) = c|X,C}
easily, using the position of the most recent apparition of x in
the data sample X and the power of the transition matrix.

With these definitions, we apply directly the algorithm given
in the previous section.

E. The Batch Sampling Model

A simple extension of the basic model is the so-called batch
sampling model, which models a sensor network with a mobile
access point that has MPR capability. In this scenario the sam-
ples are collected in batches of random size. Denoting by bi the
size of batch i, the sample X collected in m batches is

X = (X1,1, . . . , Xb1,1, . . . , X1,m, . . . , Xbm,m).

The property that the samples in one batch have to be different
can be written ∀ i, j, k, 1 ≤ i < j ≤ bk, Xi,k 6= Xj,k. It is
clear that the samples collected in the same batch can’t be con-
sidered realizations of i.i.d random variables, and thus the main
condition under which the Good-Turing estimator was derived
is violated.

However, the formula of the Good-Turing based estimator (3)
can be applied directly to this model, using

∑m

i=1 bi for the sam-
ple size and ignoring the restriction imposed by the batch sam-
pling:

N̂GT =
S

1 − P̂0

=
S

1 − S1
∑

m

i=1
bi

. (4)

The performance of the Good-Turing estimator for the miss-
ing mass can be improved if S1 is scaled by an appropriate fac-
tor. Denote by X

m a sample made of m batches and add the
superscript (m) to all the quantities related to X

m. The estima-
tion procedure proposed is iterative, and it is given briefly by

β(m) ∆
= β(m−1) +

∣

∣

∣
S

(m)
1 \ S

(m−1)
1

∣

∣

∣

(

1 −
bm

N̂ (m−1)

)

−
∣

∣

∣
S

(m−1)
1 \ S

(m)
1

∣

∣

∣

(

1 −
bm−1

N̂ (m−2)

)

P̂
(m)
0 =

β(m)

∑m

i=1 bi

N̂ (m) =
|S(m)|

1 − P̂
(m)
0

. (5)

The main idea of the procedure above is that if the batch size b is
fixed, then scaling S1 by a factor

(

1 − b
N

)

produces an unbiased

estimator; however, N is not available, and the batch size is
random, so we proposed a scaling factor that is function of the
batch size and of an estimated value of N .

The performance of the Good-Turing based estimator N̂GT

(4) and the adjusted one (5) was investigated by simulations; the
results and discussion are given in the simulations subsection.

IV. SIMULATION RESULTS

In this section we present some simulation results for the al-
gorithms presented. The performance measure used is the confi-
dence interval for the relative estimation error. For a fixed ε, the
x-axis represents the total number of samples available while

the y-axis gives the levels c such that P̃

{

N̂
N

> c > 1
}

= ε (

upper bound ) and P̃

{

N̂
N

< c < 1
}

= ε (lower bound), where

we denoted by P̃ the observed empirical probability of an event.
In Fig. 3 the performance of the Good-Turing estimator is

compared to the performance of the ML estimator given by (1).
For the situation analyzed, i.e., N = 1000, Monte = 10000
Monte-Carlo runs, and ε = 0.01, the confidence intervals for
the two methods are virtually identical. Other combination of
parameters also shown that the performance loss by using the
Good-Turing estimator instead of the ML one is negligible.
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Fig. 3. ML vs Good-Turing; the performance difference is negligible

For the histogram estimation case, we consider again N =
1000; the sensors belong to 4 classes, each class representing a
certain percentage of the total number of operating sensors; the
class distribution is Cd = [0.1, 0.2, 0.3, 0.4]. The confidence
intervals plots reveal the fact that the performance plots for the
number of operating sensors in each class is better when the
number of sensors in each class is larger. Also, one can see that
the performance of the estimator for the “larger” classes is very
close to the performance of the Good-Turing estimator of the
total number of samples.

In Fig. 5 the performance of the Good-Turing based algo-
rithm applied to the batch sampling model ( model mismatch ) is
compared to the performance of the same estimation algorithm
applied to the basic model (i.i.d. sampling) and the same num-
ber of samples available. The parameters used were N = 1000
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and 10000 Monte-Carlo runs. The batch sizes were generated
randomly with a uniform distribution U [1, . . . , 40]. The figure
reveals that the model mismatch introduces a small bias, in the
sense that the confidence interval curves are shifted upwards.
However, the loss is small and in practice it can be important to
obtain the necessary number of samples by doing far less sam-
pling operations.
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Fig. 5. Batch sampling model (model mismatch) vs the basic model

The Good-Turing based estimator is quite robust to the model
change imposed by the batch sampling; however, we want to
see its behavior in an extreme case. We consider N = 300
and (large) batch sizes generated with uniform distributions
U [1, . . . , 20] and U [1, . . . , 100]. Note that in the second case
the batch size is comparable to the number of operating sensors.
The performance metric considered is the root mean square er-
ror (RMSE). In Fig.6 the performance of the adjusted estimator
(5) is compared with the one of N̂GT . In this extreme situation,
the RMSE can be decreased in half, while for small throughputs
the improvement provided by the modified algorithm is small.
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V. CONCLUSIONS

We proposed the use of Good-Turing type estimators for the
number of operating nodes in a sensor network. This estimator
has a simple expression and its performance is almost identical
to that of the optimal ML estimator. This estimator can be used
for more complicated models like histogram estimation. It is
also robust to model changes; when applied to the batch sam-
pling model the performance loss due to model mismatch was
shown to be small. This showed that the MPR capability of the
mobile access point can can decrease significantly the number
of time slots necessary to obtain a certain performance.
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