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ABSTRACT

In a multiple access communication system that uses packet trans-
missions, the packets of one user might be subject to asynchronous
interference from the packets of other users in the system. This pa-
per analyses the influence of the placement of training symbols on
the performance of the channel estimator in this scenario. The anal-
ysis of the mean square error (MSE) of the minimum mean square
error estimator (MMSE) is shown to be equivalent to the analysis of
the Fisher Information Matrix (FIM) for mixtures of Gaussian dis-
tributions. A complete solution to this problem is hard to find, but
the bounds, asymptotics and simulations suggest that the best place-
ment of training symbols is in two clusters of equal or quasi-equal
size at the two ends of the data packet.

1. INTRODUCTION

The most challenging problems in the design of wireless communi-
cation systems are the time-varying wireless channel and the multi-
ple access problem.

Communication through point-to-point time-varying channels
under Gaussian noise has been studied extensively. A traditional
method used by the receiver is to first obtain an estimate of the
channel that is then used when decoding the data symbols. In or-
der to cope with the fast variations of the channel the transmitter
needs to insert a significant amount of side information into the data
stream. Recent papers [1, 2] analyse the ultimate performance of
some communication systems that use training to obtain the Chan-
nel State Information (CSI). Moreover, if a communication system
relies on the assumption of perfect CSI, then the errors in the CSI
can significantly degrade its performance [3]. On the other hand, if
the CSI is available at the transmitter then the total throughput of
the time-varying channel can be improved by allocating the trans-
mitting power function of the CSI [4].

Similarly, in a multiple access scenario, the availability of CSI
at the transmitter and receiver can be used by the medium access
control (MAC) layer for power allocation among users and by the
receiver for decoding [5]. For example, if the objective function is
the sum capacity, then only the user with the best channel is allowed
to transmit [6, 5]. Recently, in the framework of cross-layer design,
the CSI is used by the MAC layer of a modified slotted ALOHA
protocol to vary the transmission probability of each user [7]; the
increase in the total throughput of the system is significant.

This paper considers the channel estimation problem in a mul-
tiple access scenario. The system under study has a MAC layer that
allows collisions among packets. In addition, consider that the sys-
tem uses frequency hopping, i.e., each data packet of one user is
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transmitted using another carrier, and the hops are made according
to a predetermined pattern. Frequency hopping makes the packets
of any fixed pair of users collide very seldom. Thus, the interfer-
ence that affects the packets of one fixed user comes from a differ-
ent user each time. The packets of one fixed user are called data
packets; the other colliding packets are called interference packets.
Our approach considers a receiver that wants to recover as much
information as possible from each of the data packets, instead of
recovering (with a certain probability) a whole packet involved in a
collision and dropping it if recovery is not possible. This approach
is useful if the only synchronization among users is at the symbol
level ( and not at the packet level). In this case the data and interfer-
ence packets overlap partially, so that some symbols from the data
packet are interference-free. Because the interference packets come
from different users, the relative position of the data and interfer-
ence packets is random from packet to packet. The results can be
important for ad-hoc networks that are able to use the CSI (at either
transmitter and receiver) to improve the total throughput.

Inserting training symbols in the data stream is one of the sim-
plest but most widely used method of obtaining the CSI. In this
paper the channel is assumed to be Rayleigh block flat fading and
the receiver uses only training-based estimation. As a consequence,
the channel parameter during the transmission of each packet is es-
timated using only the training symbols in the respective packet.

The effect of training symbol placement in the data stream have
been studied previously. Negi and Cioffi [8], Adireddy, Tong and
Viswananthan [1], Dong and Tong [9], Ohno and Giannakis [10],
Budianu and Tong [11], considered this problem in different frame-
works, and using different metrics. The goal of our paper is to in-
vestigate how the placement of training symbols within a packet
influences the performance of channel estimation in the framework
described above.

The paper is organized as follows: section 2 contains the model
and is followed by section 3 with the description and analysis of
the channel estimation. In 3.2 a genie lower bound on the MSE
of the MMSE estimator is introduced and analyzed, and in 3.3 the
behavior of the same MSE is analyzed using the FIM. In section
4 the simulations provide additional insight into the problem. We
conclude the paper in section 5.

Notations : the vectors are in bold fonts, ��� is the expectation
with respect to the random variable � , �
	���
 is the probability of
the event � , ����������� is the gradient operator with respect to vector� , ����� �!�#"$� is a column vector formed by the diagonal elements of
the square matrix " . Sometimes the same function ���&% � is written���&%('*)�� to emphasize the dependence on the parameter ) . ),+ is the-

-th element of vector � and for � vectorial function �.����/0�1�*+ is the-
-th element of ����/0� . If �3214 are square matrices, �6574 means

that �98:4 is positive semidefinite.



2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a point-to-point one-way communication link. The chan-
nel is assumed Rayleigh block-flat-fading, constant during the trans-
mission of one packet, and independent from packet to packet. The
symbols of the data packets can be either training or data. The re-
ceiver obtains an estimate of the channel based only on the training
symbols from the current packet received.

The communication is subject to the usual i.i.d. complex ad-
ditive white Gaussian noise (CAWGN) with known variance � � .
Besides this, the data packets are affected by interference which is
modeled as a packet of i.i.d CAWGN with known variance � �� that
affects a subset of the symbols of the packet depending on its po-
sition. The following assumptions about the interference are made:
only one interference packet can hit the data packet at a time, the
data and interference packets have the same length, the interference
packet always hits the data packet, and the relative position of the
data and interference packets is distributed uniformly. An important
feature of this model is that the relative position mentioned above
is not known by the transmitter or the receiver.

Denote by 4 the total number of symbols in one packet, out
of which

�
are allocated to training. The symbols in one received

packet are given by the 4���� vector�
	�� ��
���� (1)

In the equation above �������7��� 2�� � is the complex scalar channel
parameter, � a 4���� vector representing one block of transmitted
symbols and � the total noise vector that includes the CAWGN and
the interference; its probability density function (pdf) is a mixture
of Gaussians. We assumed the variance of the channel equal to �
without loss of generality.

A channel estimate for each packet is obtained only from the re-
ceived training symbols. Denote by � 	 	��� 2������ 2!�#" 
%$ 	&� 2��'��� 2 4 
 ,�)(*�' ,+*� � + % % %-+*�#".( 4 , the ordered set of indexes of the
training symbols within the packet. Extracting these symbols into
an
� �/� vector 0 we have

0 	�12��	*3 ��
 1 � 	43 ��
657� (2)

The placement matrix 1 is an
� � 4 matrix, with elements 1 � - 28� + � 	� 2:9 -<; 	=� 2������ 2 � 
 and the rest of the elements � . In other words,

for each
-

, the
-

-th row of 1 has only one non-zero element in the
column �*+ that gives the position of the

-
-th training symbol within

the data packet. We also supposed that all the training symbols are
equal to � .

To do the channel estimation we need the distribution of the to-
tal noise and interference vector 5 that affects the training symbols.

From the assumption that the interference packets are of the
same length 4 as the data packets, it follows that the relative po-
sition between the two packets can be described by a discrete ran-
dom variable > distributed uniformly on 	=� 2����'� 2@? 4786� 
 . If > ;
	&� 2������ 214 
 then the first > symbols of the data packet are hit, if> ; 	�4.
A� 2������ 2#? 4 84� 
 then the last ? 4 8B> symbols are
hit, see Fig.1. Then, we introduce another random variable, C ;
	&� 2������ 2#? � 
 that gives the position of the interference packet with
respect to the training symbols. Similar to > , if C ; 	&� 2������ 2 � 

the first

�
training symbols are hit, if C ; 	 � 
D� 2������ 2@? � 8E��
 the

last ? � 8�C training symbols are hit, and C 	 ? � corresponds to
the case in which no training symbol is hit by the interference. C is
not distributed uniformly anymore; given > , the value of C follows
but there can be more than one value of > leading to the same C , see
Fig. 1. The distribution of C can be obtained from the placement of
the training symbols by taking into account the uniform distribution

of > . Defining FHG	  �8IKJ  and the sets L " J  G	 	&� 2������ 2 � 8M� 
 ,LN"PON G	 	 � 
�� 2������ 2@? � 86� 
 , the distribution Q:R G	 �
	SC 	UT 


of C is given by

Q R 	
VWX WY F �Z�!R[ON 8��8R � if T ; L-" J  F �#4 89�Z� " 8��  �1� if T)	 �Q\R J " if T ; L-"7O- Q:" 8/F if T)	 ? � � (3)

We’ll use ]6G	_^ Q` 2������ 2aQ � "cbed to refer to the distribution of U. Also,
denote by f the set of all distributions ] that satisfy the conditions
(3). For channel estimation purposes, all placements with the same] have the same behavior due to the uniform distribution of > , so
we’ll refer to placements through their corresponding ] .
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Fig. 1: The symmetry property of the distribution of U. The

training symbols are colored in black. The interference
packets are colored in gray. 4 	 �w? , � 	 k ,� 	 	=� 2#j 2xk 2#m 2�����


The pdf of the total noise 5 is given byQ ��5 � 	Uy � "RSz- Q\R�Q ��5|{ C 	MT � , whereQ ��5P{ C 	MT � 	  }=~�� �����u�'����� 8�5-��� J  R 5`� . For any T ; 	=� 2����'� 2@? � 

the elements of the diagonal matrices �HR take only 2 values, � � and� �� G	 � � 
H� �� ( which is the variance of noise and interference cor-
responding to the symbols that are hit )

� � � �!��� R � 	
VWWX WWY
^ � �� 3 dR � � 3 d " J R bed if T ; L " J  � �� 3 " if T)	 �^ � � 3 dR J " � �� 3 d � " J R bqd if T ; LN"PON � � 3 " if T)	 ? � �

(4)
Further, the pdf of the received signal is

Q �a0 � 	 � "�RSzN Q\R�Q �a07{ C 	�T � (5)

Q �a07{ C 	�T � 	 �� " { �%R�{ �'����� 8�0 � � J  R 0���2 (6)

where � R�G	43�3 d 
6� R .

3. CHANNEL ESTIMATION

3.1. The Bayesian Estimator

The Bayesian MMSE estimator for the model considered is�� �a0 '8] � 	 �0	 �E{ 0 
 	 �N�
�\� 	��E{ 0 2xC�
	 � � 	 3 d � J  � 0P{ 0 2xC�
 (7)	 3 d � � � � 	[� J  � 
w0K�



Conditioned on C , the model becomes the well-known Gaussian
model, and relation (7) follows easily. Writing the expectation ex-
plicitly we have����a0 '!] � 	*3 d�� � "�R[zN Q\R�Q��a0P{ C 	MT �Q��a0 � � J  R�� 0�� (8)

The performance of the Bayesian MMSE estimator is given by
the MSE ����� �a] � 	 � ^ { �E{ � b,8 � ^ { ���{ � b�� (9)

The MMSE estimator and its MSE are function of the distribution of
the random variable C , i.e., the vector ] . Our goals are to character-
ize the dependence of the performance of the MMSE estimator on
the placement, and to find the placement(s) ]�	 that minimizes the
MSE (9) under the conditions (3) imposed by the physical model

��
*�
� �������� 	 ����� �a] �*
7� (10)

Given a placement defined by the set � and having the distribution] , define its mirror reflection by ��� G	 	 � 

�08E� " 2��'��� 2 � 

�08�  
 and the corresponding ] � . Note that we can have ] 	 ] � .
Because of the left-right symmetry of the model, the mirror reflec-
tion ]�� has the same performance as ] . Thus if ]�	 is a solution of
(10), so is ] �	 .

In our case the MMSE estimator and its performance are non-
linear functions of ] . This makes their analysis a hard problem.

3.2. The Genie Lower Bound on the MSE

A lower bound on the MSE can be obtained by considering the per-
formance of a receiver helped by a genie who provides the current
value of C , i.e., the position of the interference packet with respect
to the training symbols. In this case, for each value C 	 T we
have a Gaussian model, for which the MMSE and its MSE are well
known. Consider the following estimator, that assumes the random
variable C known:�

�3�a0 2#C � G	 � 	��E{ 0 2[C�
 	*3 d � J  � 0K�
Its MSE for each C 	4T is given by � � T � and the averaged MSE
by ���a] �� � T � G	 � 	�{ �� �a0 2xC � 8 �,{ � { C 	MT 
 	 � 8 3 d � J  R 3���a] � G	 � 	�{ �� �a0 2xC � 8 �,{ � 
	 � "�R[zN Q R ��	�{

�
� �a0 2xC � 8:�E{ � { C 	MT 
 	 � "�R[zN Q R � � T �x�

(11)

Since

�
� is the MMSE estimator given the state C , for any other

estimator
���	 �a0 2xC � we have�:� T �P( � 	�{ �� 	 �a0 2@C � 8:�E{ � { C 	MT 
=�

The relation above is true for
�� 	 	 �� as well, for each T , so we

have a lower bound for the MSE of the MMSE estimator
���,�a] �P( � 	 { ��$�a0 '8] � 8:�E{ � 
=�

The genie lower bound can be optimized with respect to ] . The
result is given below.

Theorem 1 Let �] be the probability distribution given by

�Q\R 	 VX Y F if T��; �"! " ��# 2 � 
 ! " ��# 2#? �%$
�#4 8 � 
���� F if T ; �"! " ��# 2 � 
 ! " ��# $� if T�	 ? � �

(12)

Then �] and �] � are the only placements that minimize the genie
lower bound �,�a] � subject to the conditions (3):

	&�]
2'�] � 
 	 ��
*�
� �(������ 	)�,�a] �*
P� (13)

Note that �] 	 �] � if
�

is even.

Proof: Since the MSE of the genie estimator is the same if the inter-
ference hits the first T symbols or the last T , for T�	 � 2����'� 2@? � 8
�
we have �:� T � 	 � � ? � 8 T � . Then, taking into account the defi-
nitions of � R and � R , for T�	 � 2'����� 2 � we have�:� T � 	 ��P
 y "+ zN  * �,+ +�- +/. 	 ��7
 R021 O 0213 
 " J R0'1
Replacing T with a continuous variable / , for / ; ^ � 2 � b , �:��/0� is
a convex function of / . Thus the function � ��/0�-
4�:� � 8 /0� is
strictly decreasing on 5 � 2 " ��6 . It follows that under the conditions
(3), �] given by (12) minimize the function���a] � 	By " J  RSz- Q R��7�:� T ��
%�:� � 8 T �1��
�Q:"��7�:� ? � ��
8� � � �1� 8 �8I-J  �:� ? � � .

The distributions given in the previous theorem correspond to
the placement of training symbols in two clusters of equal (or nearly
equal) length at the edges of the packet. This can be easily seen
from the definition (3) of Q:R ( �x 	 � and �#" 	 4 follow fromQ � " , then the other � + ).

Next, one can observe that for any placement ] the genie bound
is tight when the power of the interference is high. This is stated in
the next theorem.

Theorem 2 As denoted before, let �,�a]
'8� � � and
����� �a] '!� � � be

the genie bound and the MSE of the MMSE estimator respectively,
where the dependence on the power of the interference has been
shown explicitly. Then we have9 ���0 3/:<; � ����� �a]
'8� � � 8=���a] '8� � �1� 	 � � (14)

Proof: The proof is rather long and it will be available in [12]. The
result can be briefly explained by observing that if the power of
the interference is high, then C , the position of the interference,
can be detected accurately. We consider a suboptimal estimator
that uses hard detection of C , then linear estimation based on the
detected value. For high values of � �� the probability of detec-
tion error is close to zero and the corresponding estimation error
is bounded. This shows that the performance of the suboptimal es-
timator is close to the genie bound which proves the theorem.

From theorem 2 it follows that increasing � �� we can make the
MSE of the MMSE estimator be as close to the genie bound as
wanted. Observing that the function �:��/0� preserves its strict con-
vexity when � �� 8&>@? , we see that even in this case the placements�] given by (12) and �] � are the only solutions of the optimization
problem stated in Theorem 1. We have the following corollary.

Corollary 1 The placements �] given by (12) and �] � are the solu-
tions of the general problem (10) for � �� high enough.

It can be observed that the placement that maximizes the genie
bound (i.e., the worst ) can be found as well, and it corresponds
to placing all the training symbols into one cluster. The position of
the training cluster within the data packet does not modify the chan-
nel estimation performance (because it does not modify ] ). Using
theorem 2 we can conclude that placing the training symbols in one
cluster provides the worst performance at high values of the inter-
ference power.



3.3. A partial characterization of the MSE

In this section the connection between the MSE (9) and the FIM is
established and used to show that the optimal placement ] 	 (solu-
tion of (10)) belongs to a certain subset with

! " � # 
M� elements.
For a random complex vector � with pdf � , the Fisher Infor-

mation Matrix (FIM) is defined as� �.�!� 	 � � � ��� 	 9�� � ���a0 �*
��.� ��� 	 9�� � ���a0 �*
 � �	� � (15)

Some regularity conditions on � are necessary for the FIM to exist,
see [13] for details. These conditions are satisfied by the distribu-
tions considered in our problem.

Lemma 1 The MSE (9) of the MMSE estimator can be written as����� �a] � 	 � 8 3 d � � Q �&%('8] �1� 3 � (16)

The pdf Q �&%('8] � is given by (5); here we indicated the dependence
on ] explicitly.

Proof : From the properties of Gaussian pdf’s we have

� ��� Q �a07{ C 	MT � 	 �&8 � �qQ �a0P{ C 	MT �#� J  R 0�� (17)

Using this to express
�� given by (8), and then substituing in (9) the

lemma follows.
This lemma allows us to use some properties of the FIM of

random vectors in our problem. The next lemma is a convexity
property of FIM, that is an extension to complex vectors of a weaker
form found in [14],[15].

Lemma 2 The FIM of a random complex vector � with pdf � is a
convex functional of � . The convexity holds in the sense of positive
definiteness.

Proof: The proof follows the one given in [14] for real random vari-
ables.

More detailed, let �  and � � be random vectors with densities�= and � � respectively, and ) ; ^ � 2��xb an arbitrary number. Then,
the following inequality holds :

) � �.�  ��
 �!� 8 )�� � �.� � � 5 � ��),�  
 �!� 8 )��1� � �x� (18)

The convexity property given above allows us to reduce the number
of possible solutions of the optimization problem (10).

Using the symmetry properties in (3), we can rewrite the pdf in
(5)

Q �a0 '!] � 	 " J  �RSz- ?@Q R �? � Q �a07{ C 	�T � 
 Q �a07{ C 	 � 
 T �1�

 ?@Q � "�
 �? Q��a0P{ C 	 � � 
 �? Q��a0P{ C 	 ? � �
�

 F#Q �a07{ C 	 � �x� (19)

Using the convexity property of the FIM functional the follow-
ing theorem is easy to prove.

Theorem 3 Define the set � that contains all those vectors ] ; f
for which one of the elements has its maximum possible value; once
this element is chosen, the rest of the elements have the values given
by (3).

� G	 	w] ; f<{�� � ; 	&� 2��'��� 2 � 
��Q�� 	 �#4 8 � 
M��� F�'Q R 	 F 2�9 T)	 � 2��'��� 2 � 2 T��	 � 
=� (20)

Any solution ] 	 of (10) satisfies ] 	 ; � .

From (3) it follows that all the placements in � have all the
training symbols placed in exactly two clusters at the two ends of
the packet, or all the training symbols placed in one cluster. Al-
though the set � has

�
elements, since the mirror pairs have the

same MSE, the optimal solution should be searched among only! " ��# 
M� elements.
Notice that the solution (12) obtained using the genie bound

corresponds to the choice Q�� ~ 1�� 	 �#478 � 
B��� F . Unfortunately,
we were not able to show that the choice given above is the solution
of the problem for any choice of the parameters. Besides the genie
bound solution, the simulations suggest the following conjecture.

Conjecture 1 The problems (10) and (13) have the same solutions
that are �] given by (12) and �]�� .

As noticed before, the distribution (12) implies the placement of the
training symbols in two clusters of equal or quasi-equal sizes at the
two ends of the packet.

From the approach above, it is clear that the genie bound dis-
cussed in the previous section is the bound given by the convex-
ity relation, where the pdf of the received signal is splitted into its
Gaussian components.

4. SIMULATION RESULTS

As it was mentioned previously, a complete solution of the problem
is hard to find. The simulations available in this section are aimed
to give some evidence in favor of the conjecture.

The simulations were done for the following parameters : 4 	t � 2 � 	�� 2#� � 	 � � j[m 	 8 � � � m�� 4 2#� �� 	 � . Taking into account
theorem 3 and the remark that follows, the optimal scheme should
be searchd in a set with j elements. The corresponding placements
are the first j placements in Fig.2. Fig.3 shows that we can gain

(a) 2 clusters, unequal

(b) 2 clusters, unequal

(c) 2 clusters of equal size, “optimal”

(d) one cluster “middle”

(e) training symbols “spread”
Fig. 2: The training schemes compared in Figs. 3 and 4

more than 10dB by using the ’optimal’ placement over the place-
ment that uses one cluster (in the middle of the packet). This is the
maximum gain that can be obtained; according to the genie bound
the placement of all the training symbols in the middleoffers the
worst performance. Once we have two clusters placed at the edges
of the packet, the performance gain by using the optimal placement
is smaller, up to 2dB. In fig.4 we compared the actual MSE with
the genie bound for three of the placements represented in fig.2 i.e.,
“optimal”, “middle” and “spread” schemes. For the “optimal” and
the “middle” placements, the genie bounds are relatively tight. The
interesting fact is that the MSE of the “spread” placement scheme
has a bell shape and the genie bound in not tight. This can be ex-
plained by thinking that the coefficients Q � C 	 T { 0�� in the ex-
pression (8) of the MMSE estimator

�� act like an embedded soft
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Fig. 3: The performance of the first 4 training schemes from Fig.
2. The legend shows hows the number of training symbols
in each cluster.

detector. The detection can be done better if there are fewer events
with high a priori probabilities. This happens if the symbols are
grouped into two clusters placed at the edges or in one cluster; in
these cases the MSE is close to the genie bound.
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(c) ’optimal’−MSE       
(c) ’optimal’−genie bnd 
(e) ’spread’−MSE      
(e) ’spread’−genie bnd
(d) ’middle’−MSE        
(d) ’middle’−genie bnd  

Fig. 4: The performance of the “optimal”, “middle” and
“spreaded” placements and their genie bounds

5. CONCLUSIONS

In this paper we considered the channel estimation in the presence
of an asynchronous interference. The model is equivalent to an es-
timation problem where the noise distribution is a mixture of Gaus-
sians. It was shown that the MSE of the nonlinear MMSE estimator
is related to the FIM of the received signal. Further, the convexity
property of the FIM allows a characterization of the performance of
different placements of the training symbols. It was shown that the
optimal placement should be searched in a small set of placement
schemes. To find the optimal placement scheme one needs to solve
a complicated optimization problem; however the bounds and the
simulations suggest that placing the training symbols in two clusters
of equal or nearly equal sizes optimizes the MSE of the Bayesian
MMSE estimator.
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