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Channel Estimation under Asynchronous Packet Interference

Cristian Budianu and Lang Tong†

Abstract

This paper investigates the placement of training symbols within data packets of a wireless system

in which transmissions are subject to asynchronous interference. The minimum mean square error of

the training-based channel estimator is expressed as a function of the Fisher information of the received

signal. It is shown that the placement that minimizes the minimum mean square error should be searched

for within a set containing half as many elements as the number of training symbols in the packet.

Furthermore, a lower bound on the minimum mean square error is derived and analyzed. It is shown that

this bound is tight when the power of the interference is high. The placement of the training symbols

in two clusters of equal or quasi-equal length at the two edges of the data packet minimizes the lower

bound for all values of the parameters, and thus gives the solution of the problem for high values of the

interference power. The influence of the training symbols placement on the data transmission performance

is also investigated.
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I. INTRODUCTION

This paper considers the channel estimation problem in the presence of asynchronous packet in-

terference. Asynchronous interference arises in ad-hoc networks, wireless LANs, and even in cellular

networks where packet collisions can not be avoided and packet transmission is asynchronous or packet

synchronization is not perfect. Moreover, the interference packets can have a wide range of power levels

due to the near-far effect.

Channel estimation is crucial in coherent symbol detection, optimal scheduling and power allocation

[1], [2], and in the design of the medium access control protocol in random access networks [3], [4].

Typically, channel estimation is performed by including a certain number of training symbols in the data

packet. When the channel is memoryless, the placement of these training symbols does not affect the

performance and is designed to simplify the receiver implementation. When the channel has memory,

however, the placement of training symbols can affect the performance significantly. Optimal training

placement for intersymbol interference channels has been considered in [5], [6], [7], [8], [9].

Asynchronous packet interference introduces a different kind of channel memory. The event that a

symbol of a data packet is hit by an interfering packet affects the chance that its adjacent symbols are

also hit. The effect of packet interference on the training symbols, however, is somewhat subtle. If we

assume that an interference packet arrives randomly, and its position relative to the packet of interest is

uniformly distributed, then the average number of training symbols hit by the interference is the same

regardless how training symbols are placed in the packet. However, the distribution of the number of

training symbols that are hit by the interference is a function of the placement. It is the distribution of

the number of training symbols survived the interference—not the average number—that determines the

performance of the channel estimator.

We assume that the receiver uses the training-based minimum mean square error (MMSE) channel

estimator, i.e., only those observations corresponding to the training symbols are used in the estimation.

If there are N training symbols in a packet of size B, the brute-force approach to finding optimal

placement requires comparing
(

B
N

)

possible placements. The lack of a simple expression for the MMSE

coupled with the enormous number of possibilities makes the brute-force approach unappealing. Also, it

is unlikely that such an approach will lead to useful insights.

In searching for the optimal placement, we first obtain an expression of MMSE as a function of the

Fisher information matrix (FIM) of the received signal. This crucial step allows us to exploit the convexity

of the Fisher information functional and therefore reduce the number of searches from
(

B
N

)

to bN/2c+1,

DRAFT July 31, 2003



BUDIANU AND TONG: CHANNEL ESTIMATION UNDER ASYNCHRONOUS PACKET INTERFERENCE 3

which depends only on the number of training symbols and not on the size of the packet. Furthermore,

independent of the system parameters such as signal-to-noise ratio, the optimal placement belongs to a

fixed set of placements with either one or two clusters.

The main difficulty involved in obtaining the optimal placement in closed-form comes from the

nonlinearity of the MMSE estimator. One way to overcome this problem is to consider a lower bound

given by the MSE of a linear estimator that knows the position of the interference with respect to the

data packet. This estimator and its MSE are called the genie estimator and the genie bound respectively.

The genie estimator can only be approximated by a detect-then-estimate scheme where the receiver

first detects the presence of the interference. What we gain in considering the genie estimator is that

the relation between its MSE and the training placement can be obtained explicitly. We show that the

placement that minimizes the genie bound has two clusters of equal or quasi-equal length at the two

edges of the data packet, which is in contrast to widely accepted single cluster placement (such as that

in GSM) and the uniformly distributed periodic placement. We further show that the genie bound is

tight when the interference power is high, which implies that if the interference level is high, the two

equal sized clusters placed at the two ends of the packets is optimal. In general, we can only conjecture

that this placement is optimal for all values of the parameters involved; this conjecture is supported by

simulations.

Existing work on optimal placement focuses mainly on channels where self interference is introduced

by channel memory [6], [7]. In such cases and under different metrics, the optimal placements tend to be

scattered. In particular, for ISI channels, the optimal placement of training symbols is the quasi-periodic

placement [6] where the pilot symbols are placed periodically with the minimum cluster size. When the

interference comes from asynchronous packets, our result points to a different placement strategy where

the training clusters are placed at the two ends of the packet.

The paper is organized as follows: Section II contains the model and is followed by Section III with

the description and analysis of the MMSE channel estimation. In III-B the behavior of the MMSE is

analyzed using the FIM and in Section III-C the genie lower bound is introduced and analyzed. Section IV

studies the effect of the placement on the data communication performance. In Section V the simulations

and numerical results provide additional insight into the problem. We conclude the paper in Section VI.

Some derivations are given in the Appendix.

Notations : the vectors are in bold fonts, EX is the expectation with respect to the random variable

X , P{A} the probability of the event A, ∇af(a) the gradient operator with respect to vector a, and

diag(A) is a column vector formed by the diagonal elements of the square matrix A. We use 1u to
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denote an u × 1 vector with all elements equal to 1 and 1
∆
= 1N . Whenever necessary the function f(·)

is written as f(·; a) to emphasize the dependence on the parameter a. Given the vector a, ak is its k-th

element and (f(x))k is the k-th element of the vectorial function f(x). We denote by ek a vector that

has the k-th element 1 and the rest of them 0. If A, B are square matrices, A ≥ B means that A − B

is positive semidefinite. The complex Gaussian distribution with mean µ and covariance matrix C is

denoted by CN (µ,C), while CN (x; µ,C) is its probability density function. The set of strictly positive

natural numbers is denoted by N
∗.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a point-to-point one-way communication link. The channel is assumed Rayleigh block-flat-

fading, i.e., the channel is constant during the transmission of one packet, and has independent realizations

in different packets. The symbols of the data packets can be either training or data. The receiver obtains

an estimate of the channel based only on the training symbols from the current packet received.

The communication is subject to the usual i.i.d. complex additive white Gaussian noise (CAWGN)

with known variance σ2. A data packet is also affected by interference, modeled as a packet of i.i.d.

CAWGN with known variance σ2
q . The interference affects a contiguous subset of the symbols of the

packet depending on its position as described using Fig. 1. In practice, the distribution of the interference

symbols is usually unknown, so we assumed the worst-case distribution, which for the additive noise is

known to be the Gaussian one.

The following assumptions about the interference are made: only one interference packet can hit the
t1
1

t2
4

t3
5

t4
9

t5
10

V = 5

V = 8
V = 8 + 12 = 20

V = 5 + 12 = 17

U = 3; p3 = t4−t3
2B−1 = 4

23

U = 8; p8 = p3 = 4
23

data packet of interest

Fig. 1. Data packet and different possible positions of the interference packet. The training symbols are shaded in black. The

interference packets are colored in gray. B = 12, N = 5, J = {1, 4, 5, 9, 10}
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data packet at a time and the data and interference packets have the same length. The relative position of

the data and interference packets is not known either by the transmitter or the receiver and is distributed

uniformly.

The assumption of only one interference packet hitting the data packet models the collisions in a packet

ad-hoc network with random access and frequency hopping from packet to packet. Assuming different

hopping schemes for each user, the interference packets that collide with successive data packets come

from a different user each time. Furthermore, the users are not synchronized, so each interference packet

has a different offset. If the transmission rate of each user is low enough, then, with a high probability,

each collision will involve at most one interference packet.

Denote by B the total number of symbols of one packet, out of which N ≥ 2 are allocated to training.

The symbols of one received packet are given by the B × 1 vector

y = sA + z, (1)

where A ∼ CN (0, 1) is the complex scalar channel parameter, s a B × 1 vector representing one block

of transmitted symbols, and z the total noise vector that includes the CAWGN and the interference. The

probability density function (pdf) of z is a mixture of Gaussians. We assumed the variance of the channel

equal to 1 without loss of generality.

From the assumption that the interference packets are of the same length B as the data packets, it

follows that the relative position between the two packets can be described by a discrete random variable

V distributed uniformly on {1, . . . , 2B − 1}. As shown in Fig. 1, if V ∈ {1, . . . , B} then the first V

symbols of the data packet are hit. Similarly, if V ∈ {B + 1, . . . , 2B − 1} then the last 2B −V symbols

are hit. The distribution of the total noise vector z is obtained noting that, conditioned on {V = v},

z|V = v is CAWGN with independent components

f(z) =
2B−1
∑

v=1

1

2B − 1
f(z|V = v),

f(z|V = v) =
1

πB|Gv|
exp

(

−zHG−1
v z
)

.

For any v ∈ {1, . . . , 2B − 1} the elements of the diagonal matrices Gv may take only two values,

σ2 when the v-th symbol is interference-free, and σ2
h

∆
= σ2 + σ2

q when the v-th symbol is hit by the

interference

diag(Gv) =



















[σ2
h1

T
v σ21T

B−v]
T if v ∈ {1, . . . , B − 1}

σ2
h1B if v = B

[σ21T
v−B σ2

h1
T
2B−v]

T if v ∈ {B + 1, . . . , 2B − 1}

. (2)

July 31, 2003 DRAFT



6 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSING, APRIL 2003, REVISED JULY 2003

A channel estimate for each packet is obtained only from the received training symbols. Denote by

J = {t1, . . . , tN} ⊂ {1, . . . , B}, 1 ≤ t1 < t2 < · · · < tN ≤ B, the ordered set of indexes of the training

symbols within the packet. Using an N ×B selection matrix P we extract these symbols into an N × 1

vector x

x = Py = 1A + Pz = 1A + n, (3)

where, the k-th row of P has only one non-zero element in the column tk that gives the position of the

k-th training symbol within the data packet. All the training symbols are chosen equal to 1.

Next, we characterize the placement of training symbols through the probability mass function of the

relative position of the interference and training symbols. Consider the random variable U ∈ {0, 1, . . . , 2N−

1} that gives the position of the interference packet with respect to the training symbols. Some possible

values are shown in Fig. 1. Similar to V , if U ∈ {1, . . . , N} the first U training symbols are hit. If

U ∈ {N + 1, . . . , 2N − 1} the last 2N − U training symbols are hit. If U = 0 no training symbol is

hit by the interference. The random variable U is not distributed uniformly anymore. Specifically, U is

determined by V , and its distribution can be obtained from the placement of the training symbols by

taking into account the uniform distribution of V . Defining ε
∆
= 1

2B−1 , SN−1
∆
= {1, . . . , N − 1} and

SN+1
∆
= {N + 1, . . . , 2N − 1}, we obtain the distribution pu

∆
= P{U = u} of U as

pu =































ε(tu+1 − tu) if u ∈ SN−1

ε(B − (tN − t1)) if u = N

pu−N if u ∈ SN+1

pN − ε if u = 0

. (4)

We use p
∆
= [p0, p1 . . . , p2N−1]

T for the distribution of U . Denote by P the set of all distributions p that

satisfy the conditions (4), i.e.,

P
∆
=

{

p ∈ R
2N |

2N−1
∑

u=0

pu = 1; pu = pu+N , u = 1, . . . , N − 1; p0 = pN − ε;

pu

ε
∈ N

∗ ∀u ∈ {1, . . . , N}
}

. (5)

From equation (4) it follows that the placement of the training symbols (the set J ) is determined uniquely

by p if and only if p0 = 0. In this case t1 = 1 and tN = B, i.e., the packet starts and ends with a

training symbol. However, it will be shown that the MMSE channel estimator and the MMSE are the

same for all placements with the same p. This is why in the channel estimation part of the paper we’ll

refer to placements through their corresponding p.
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For the placement given in Fig. 1, we have J = {1, 4, 5, 9, 10} and p = 1
23 [2, 3, 1, 4, 1, 3, 3, 1, 4, 1]T .

Frequently referred in the paper is the placement of training symbols in two clusters of equal (or nearly

equal) length at the edges of the packet. This placement is given by

J̄ =

{

1, . . . ,

⌊

N

2

⌋

, B −

⌈

N

2

⌉

+ 1, . . . , B

}

, (6)

and the corresponding distribution is

p̄u =























ε if u /∈
{

bN
2 c, N + bN

2 c, 0
}

(B − N + 1)ε if u ∈
{

bN
2 c, N + bN

2 c
}

0 if u = 0

. (7)

We now complete the channel model given in (3) by deriving the pdf of the received signal. Given

the placement, or equivalently p, the pdf of n is

f(n) =
2N−1
∑

u=0

puf(n|U = u),

f(n|U = u) =
1

πN |Du|
exp

(

−nHD−1
u n

)

,

where the matrices Du are defined as

diag(Du) =































[σ2
h1

T
u σ21T

N−u]T if u ∈ SN−1

σ2
h1N if u = N

[σ21T
u−N σ2

h1
T
2N−u]T if u ∈ SN+1

σ21N if u = 0

. (8)

Finally, the pdf of x, the vector of received training symbols, is

f(x) =
2N−1
∑

u=0

puf(x|U = u) (9)

f(x|U = u) =
1

πN |Cu|
exp

(

−xHC−1
u x

)

, (10)

where

Cu
∆
= 11T + Du. (11)

The parameters of the system are {J , B, N, σ2, σ2
q}. It was specified the use of p instead of J for

convenience. Channel estimation depends on all the system parameters, but the dependence will not be

always expressed explicitly.
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III. CHANNEL ESTIMATION

A. The Bayesian MMSE Estimator

The Bayesian MMSE estimator of the channel parameter A is given by

Â(x;p) = E{A|x} = EUEA{A|x, U}

= EU{1
TC−1

U x|x} (12)

= 1T
EU |x{C

−1
U }x.

Conditioned on the position of the interference U , we have the well-known Gaussian model; relation (12)

follows from the conditional expectation in Gaussian models, see e.g.,[10], p.326. Writing the expectation

explicitly, we have

Â(x;p) = 1T

(

2N−1
∑

u=0

puf(x|U = u)

f(x)
C−1

u

)

x. (13)

The performance of the Bayesian MMSE estimator is given by the MMSE

E(p) = E[|A|2] − E[|Â(x;p)|2]. (14)

The MMSE estimator and the MMSE depend on the distribution p of the random variable U . Our goals

are to characterize this dependence and to find the placement(s) p0 that minimizes the MMSE (14) under

the conditions (5) imposed by the physical model, i.e., to find

arg min
p∈P

{E(p)} . (15)

In general, the set of solutions of the problem above depends on the choice of the system parameters

{B, N, σ2, σ2
q}.

Given a placement J and its distribution p, define its mirror reflection by J←
∆
= {B+1−tN , . . . , B+

1 − t1} and the corresponding p←. Note that if the placement is symmetric we have p = p←. Because

of the left-right symmetry of the model, the mirror reflection p← has the same MMSE as p. Thus if p0

is a solution of (15), so is p←0 .

In our case the MMSE estimator and its performance are non-linear functions of p. This makes their

analysis a hard problem.

B. MMSE and Optimal Placement

In this subsection we search for the training placement that minimizes the MMSE. Towards this goal,

we first establish the connection between the MMSE (14) and the Fisher information matrix of the
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received signal and then show that the optimal placement has either two clusters placed at the two ends

of the packet, or one cluster; thus it should be searched for within a certain subset with bN
2 c+1 elements.

For a random complex vector X with probability density function (pdf) f , the FIM is defined as

J(f) = E
{

∇x∗{log f(x)}(∇x∗{log f(x)})H
}

. (16)

Some regularity conditions on f are necessary for the FIM to exist, see [10] for details. These conditions

are satisfied by the distributions considered in our problem.

Lemma 1: The MMSE (14) can be written as

E(p) = 1 − 1TJ(f(·;p))1. (17)

The pdf f(·;p) is given by (9); here we indicated the dependence on p explicitly.

Proof From the properties of Gaussian densities we have

∇x∗f(x|U = u) = (−1)f(x|U = u)C−1
u x. (18)

Using this, the expression (13) of Â(x;p) becomes

Â(x;p) = −
1

f(x;p)
1T

2N−1
∑

u=0

pu ∇x∗f(x|U = u). (19)

Further,

|Â(x;p)|2 =
1

(f(x;p))2
1T

(

2N−1
∑

u=0

pu∇x∗f(x|U = u)
2N−1
∑

u=0

pu(∇x∗f(x|U = u))H

)

1, (20)

and E|Â(x;p)|2 = 1TJ(f(·;p))1. Using this in (14) and taking into account that A ∼ CN (0, 1), the

lemma follows.

This lemma allows us to use the convexity property of the FIM functional. This property is stated in the

next lemma, which is an an extension to complex vectors of a weaker form found in [11],[12].

Lemma 2: The Fisher information matrix of a random complex vector X with pdf f is a convex

functional of f . Specifically, for X1 and X2 random vectors with densities f1 and f2 respectively, and

a ∈ [0, 1] an arbitrary number, the following inequality holds :

aJ(f1) + (1 − a)J(f2) ≥ J(af1 + (1 − a)f2). (21)

Proof See [13].
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The convexity property given above allows us to reduce the number of possible solutions of the

optimization problem (15). To use this property we rewrite the pdf of the received signal f(·,p) given

in (9) as a mixture of densities

f(x;p) =
N−1
∑

u=0

2pu

(

1

2
f(x|U = u) +

1

2
f(x|U = N + u)

)

+ εf(x|U = N). (22)

The coefficients of this mixture are {2p0, 2p1, . . . , 2pN−1, ε}. One can observe that the maximum of

1TJ(f(·;p))1 is realized when one of the coefficients from the set given above takes its maximum

possible value, and all the others take their minimum value. This result is stated in the next theorem.

Theorem 1: The placement that minimizes the MMSE (14) belongs to the set P0 that contains the

placements with either two clusters placed at the two ends of the packet, or a single cluster. Formally,

from (4), P0 is defined as

P0
∆
= {p ∈ P| ∃m ∈ {1, . . . , N} : pm = (B − N + 1)ε; pu = ε , ∀u = 1, . . . , N, u 6= m},

(23)

and we have

arg min
p∈P

{E(p)} ⊂ P0.

Proof See the appendix.

The size of P0 depends only on N and increases linearly with it. Even if the distributions vectors p

of P0 depend on B and N , the physical structure of the corresponding placements does not. Although

the set P0 has N elements, since the mirror pairs have the same MSE, the optimal solution should be

searched for among only bN
2 c + 1 placements.

C. A Genie Lower Bound on the MMSE

A lower bound on the MMSE can be obtained by considering the performance of a receiver helped by

a genie who provides the current value of U , i.e., the position of the interference packet with respect to

the training symbols. For each value U = u we have a Gaussian model, for which the MMSE estimator

and its MSE are well known. Consider the following estimator, that assumes the random variable U

known:

Ã(x, U = u)
∆
= E{A|x, U = u} = 1TC−1

u x. (24)
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Its MSE for each U = u is given by m(u) and the averaged MSE by ξ(p)

m(u)
∆
= E{|Ã(x, U) − A|2|U = u} = 1 − 1TC−1

u 1

ξ(p)
∆
= E{|Ã(x, U) − A|2} =

2N−1
∑

u=0

pum(u). (25)

Given the state U = u, Ã(x, U = u) is the MMSE estimator. Thus, for any other estimator Â0(x, U) we

have

m(u) ≤ E{|Â0(x, U) − A|2|U = u}.

The estimators Â0(x, U) include those ones that do not use U , so the relation above applies to the true

MMSE estimator Â(x;p) (13) for each u. Thus ξ(p) is a lower bound (the genie lower bound) for the

MMSE

ξ(p) ≤ E{|Â(x;p) − A|2}.

One can observe that the genie bound is the bound obtained by applying the convexity of the FIM, i.e.,

Lemma 2, to the pdf (9) of the received signal expressed as a mixture of Gaussians.

The next theorem shows that the genie lower bound is tight when the power of the interference is high

for any placement p.

Theorem 2: Let ξ(p; σ2
q ) and E(p; σ2

q ) be the genie bound and the MMSE respectively, where the

dependence on the power of the interference σ2
q has been shown explicitly. For any choice of (B, N, σ2)

we have

lim
σ2

q→∞
(E(p; σ2

q ) − ξ(p; σ2
q )) = 0. (26)

Proof See the appendix.

The genie lower bound can be optimized with respect to p. The result is given below.

Theorem 3: Placing the training symbols in two equal or quasi-equal clusters at the two ends of the

data packet minimizes the genie lower bound for any set of values of the parameters involved. Specifically,

using the probability distribution p̄ given by

p̄u =























ε if u /∈
{

bN
2 c, N + bN

2 c, 0
}

(B − N + 1)ε if u ∈
{

bN
2 c, N + bN

2 c
}

0 if u = 0

, (27)

p̄ and p̄← are the only distributions that minimize the genie lower bound ξ(p) subject to the conditions

(5):

{p̄, p̄←} = arg min
p∈P

{ξ(p)} . (28)
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Note that p̄ = p̄← if N is even.

Proof Taking into account the definitions (11, 8) of Cu and Du, for u = 0, . . . , N , we have

m(u) =
1

1 +
∑N

k=1
1

Du(k,k)

=
1

1 + u
σ2+σ2

q

+ N−u
σ2

.

Replacing u with a continuous variable x, for x ∈ [0, N ], m(x) is a strictly convex function of x. Thus

the function m(x) + m(N − x) is strictly decreasing on
[

0, N
2

]

. Since the MSE of the genie estimator

is the same if the interference hits the first u symbols or the last u, for u = 1, . . . , 2N − 1 we have

m(u) = m(2N − u). Using this and the symmetry property (4) of p , ξ(p) can be written

ξ(p) =
N
∑

u=1

pu(m(u) + m(N − u)) −
1

2B − 1
m(0).

It follows that under the conditions (4), p̄ given by (27) minimizes ξ(p).

From Theorem 2 it follows that increasing σ2
q we can make the MMSE be as close to the genie bound

as wanted. Because the function m(x) preserves its strict convexity when σ2
q → ∞ and there is a finite

number of possible placements, it follows that even in this case the placements p̄ given by (27) and p̄←

are the only solutions of the optimization problem stated in Theorem 3. We have the following corollary.

Corollary 1: For any values of the system parameters (B, N, σ2), there is a level of interference

σ̄2
q (B, N, σ2) such that the placements p̄ and p̄← are the only placements that minimize the MMSE (14)

(i.e., solutions of the general problem (15)) for all σ2
q > σ̄2

q (B, N, σ2).

Remark 1: Using the properties of the genie bound given in the proof of Theorem 3, the placement

that maximizes the genie bound ξ(p) (i.e., the worst ) can be found as well, and it corresponds to placing

all the training symbols into one cluster. Using Theorem 2 we can conclude that placing the training

symbols in one cluster provides the worst performance at high values of the interference power.

Notice that the solution p̄ given by (27) obtained using the genie bound corresponds to the placement

in P0 of theorem (1) for which pbN

2
c = (B − N + 1)ε. Unfortunately, we were not able to show that p̄

is the solution of the problem for any choice of the parameters. Besides the genie bound solution and

the asymptotic solution, the simulations suggest the following conjecture.

Conjecture 1: The placement that minimizes the MMSE (14) is in two equal or quasi-equal clusters

at the edges of the packet, i.e.,

{p̄, p̄←} = arg min
p∈P

{E(p)} .
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IV. DATA COMMUNICATION UNDER ASYNCHRONOUS INTERFERENCE

In this section we investigate the influence of the placement of training symbols on the data transmis-

sion performance. Using the setup of Section II, we consider specific data transmission and reception

procedures and evaluate the achievable rate using the mutual information between the input and the

output.

We consider that the transmitter uses BPSK signaling with coding and interleaving. The data stream

is partitioned in B − N substreams at the transmitter and each substream is coded independently of the

others. The binary symbols of the codewords of one substream are inserted in successive data packets

in the same position (k-th). Thus each data packet contains one binary symbol from a codeword of each

substream. The receiver decodes each substream independently of the others. The communication channel

under these constraints is equivalent to B −N parallel independent channels. We name “channel k” the

channel corresponding to the data symbols in the k-th position (sk).

Before decoding, the receiver recovers each data symbol coherently using the channel estimate. To

make the model tractable, we assume that the receiver uses the genie estimator instead of the true

MMSE estimator. In general, the results obtained will be upper bounds to the performance of the system,

but if the power of the interference is high, the use of genie and MMSE estimates provides identical

results.

Two different receiver scenarios are considered. First, we consider a receiver that performs individual

hard reception, and then decoding. The second case is a receiver that decodes coherently the received

symbols without any intermediate processing.

A. Achievable Rate with Hard Reception

In this subsection we calculate the achievable rate of the system under the constraints given and

assuming a receiver that first obtains a hard estimate of each symbol and then does decoding. When

the interference power level is high, the data symbols that are hit are received with a very low SNR. If

the receiver tries to detect them (binary), the probability of error will be close to one half. Also, if all

training symbols of one packet are hit by the interference, then the probability of binary detection error

is close to one half for all data symbols of that packet. These two situations will be defined as erasure

events.

From the transmission model (1), the k-th received symbol (assume k /∈ J ,i.e., data symbol) is given

by

yk = skA + zk. (29)

July 31, 2003 DRAFT



14 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSING, APRIL 2003, REVISED JULY 2003

Introduce the binary random variable Hk; {Hk = 1} is the event that the k-th received symbol is

hit by interference and {Hk = 0} its complement. Conditioned on Hk, zk is Gaussian; zk|Hk ∼

CN (0, σ2 + Hkσ
2
q ). When the power of the interference is high, the erasure events can be detected

accurately. Equivalently, we assume that besides U , the detector knows Hk for each k. Assuming

equiprobable input symbols, the ML detector is

s̃k
∆
=







erasure if Hk = 1 or U = N

sgn{Re{Ã∗yk}} otherwise
. (30)

If the decoder does not use the information provided by the channel estimation part anymore, the

achievable rate for channel k is given by the capacity of the binary channel with erasures

Ck = (1 − Pk,r)(1 + Pk,e log2(Pk,e) + (1 − Pk,e) log2(1 − Pk,e)),

where the probability of erasure Pk,r and the conditional probability of error Pk,e are respectively given

by

Pk,r = P{{Hk = 1} ∪ {U = N}}

=



















B+(t1−k)
2B−1 if t1 > 1 and 1 ≤ k < t1

B+(k−tN )
2B−1 if tN < B and tN < k ≤ B

B
2B−1 otherwise

Pk,e = P{s̃k 6= sk|({Hk = 1} ∪ {U = N})C}.

The probabilities Pk,e are derived in the appendix. The achievable rate (lower bound on capacity) of the

system considered is given by the average

C =
1

B

∑

k/∈J

Ck. (31)

The placement that optimizes this lower bound cannot be found in closed form. Moreover, the numerical

evaluations indicate that the problem has different solutions for different choices of the parameters

(B, N, σ2). Note that if the noise has moderately low variance, at high interference power, the variation of

the probabilities of error P{s̃k 6= sk|Hk = 0, U = u} with u is small and the placement influence on the

achievable rate is mainly through the probabilities of erasure Pk,r. For example, if the training symbols

are placed in one cluster, then the data symbols from the first and last data clusters have high probability

of erasure. This can lower significantly the performance of the system, as shown and discussed further

in Section V.
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B. Reliable Rate with Soft Reception

The lower bound on capacity given before is valid only when the interference power is high. In order

to obtain a performance measure for any value of the interference power, we consider a receiver that

decodes coherently the received signal using the genie estimate but without performing hard detection

first. An upper bound on the achievable rate of the transmission system under the constraints imposed in

this section is calculated as the average of the capacities of the B − N parallel independent channels.

Denote by q0 the distribution of the data symbols sk. The upper bound on the capacity of channel k

is given by

C̄k = max
q0

{

I(sk; yk, U, Ã(x, U))
}

= max
q0

{

I(sk; U, Ã(x, U)) + I(sk; yk|U, Ã(x, U)
}

= max
q0

{

I( sk; yk|U, Ã(x, U) )
}

(32)

= max
q0

EU,Ã(x,U){If ( q0(sk); f(yk|sk, U, Ã(x, U)) )} (33)

= EU,Ã(x,U)

{

If ( q0(sk); f(yk|sk, U, Ã(x, U)) )|q0={
1

2
, 1
2
}

}

. (34)

Relation (32) follows from the independence between sk and the random variables U and Ã(x, U). In rela-

tion (33) we used the notation If (fx(x); fy|x(y|x))
∆
= I(x; y) =

∫

fx(x)fy|x(y|x) log(fy|x(y|x)/fy(y))dxdy,

with fy(y) =
∫

fy|x(y|x)fx(x)dx. Using the symmetry properties of the conditional distribution of the

interference zk and of the transmitted signal constellation, one can prove that the input distribution that

achieves the maximum of If ( q0(sk); f(yk|sk, U, Ã(x, U)) ) is the uniform one. Relation (34) holds

because this distribution is the same for all U and Ã(x, U). The distribution f(yk|sk, U, Ã(x, U)) is

given in the appendix, (57). So the upper bound on the capacity of channel k is obtained by averaging

the capacities of the channels given by each U and Ã(x, U). The upper bound on the achievable rate is

C̄ =
1

B

∑

k/∈J

C̄k. (35)

Because of the mixture of distributions, this upper bound can be calculated only numerically; some results

and further comments are provided in the next section.

V. SIMULATIONS AND NUMERICAL RESULTS

The simulations were done for the following parameters : B = 80, N = 6, σ2 = −16.9dB, σ2
A = 1.

The MMSE is evaluated from equation (14).
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For the numerical values considered, taking into account Theorem 1 and the remark that follows, the

optimal scheme should be searched for within a set with 4 elements. The corresponding placements are

the first four placements in Fig. 2.

(a) 2 clusters, unequal

(b) 2 clusters, unequal

(c) 2 clusters of equal size, “optimal”

(d) one cluster “middle”

(e) training symbols “spread”

Fig. 2. The training schemes compared in Figs. 3 and 4

Fig. 3 shows that for moderate to high interference power we can gain more than 10dB by using

the “optimal” placement over the placement that uses one cluster (in the middle of the packet). This is

the maximum gain that can be obtained; according to the genie bound the “middle” placement offers

the worst performance. Once we have two clusters placed at the edges of the packet, the gain obtained

by using the “optimal” placement is smaller, up to 2dB. The figure illustrates well the behavior of the

MMSE in three regimes. When the power of the interference is small, all training schemes have the same

MMSE, as expected. When σ2
q is large, then the MMSE of the three schemes considered is as predicted

by the corollary. In this regime the large gap between the “middle” placement and the others can be

easily explained by observing that for reasonably small values of σ2, the performance of the estimator

is significantly degraded if all the training symbols are hit, while if only one of them is not hit the

estimation can be done reasonably well. One may observe as well that the variation of the MMSE with

the power of the interference is not monotonic. This effect is somehow reduced for the situation of this

figure, and will be explained next.

In Fig. 4 we compared the MMSE with the genie bound for three of the placements represented in Fig.

2, i.e., “optimal”, “middle” and “spread” schemes. As predicted by Theorem 2, the MMSE converges to
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(a),  1+5
(b),  2+4
(c),"optimal"
(d), "middle"

Fig. 3. The MMSE of the first four training schemes from Fig. 2. The legend shows the number of training symbols in each

cluster.

the genie bound for σ2
q large enough. For the “optimal” and the “middle” placements, the genie bounds

are relatively tight for all σ2
q . The interesting fact is that the MMSE of the “spread” placement scheme has

a bell shape and the genie bound in not tight. The gap to the MMSE of the “optimal” placement can be

predicted using the convexity property of the FIM. Alternatively, it can be explained by thinking that the

coefficients f(U = u|x) in the expression (13) of the MMSE estimator act like an embedded maximum

a posteriori (MAP) soft detector. The detection can be done better if there are fewer events with high

a priori probabilities. This happens if the symbols are grouped into two clusters placed at the edges or

in one cluster; in these cases the MMSE is close to the genie bound. The previous argument works very

well when the interference power has moderately high values. However, when the interference is weak

or absent its position can’t be detected, but the detection is unnecessary and all the placements provide

the same performance, as one would expect, while at high values of the interference power the detection

can be done accurately for any placement.

In Fig. 5 the MMSE of three placement schemes as a function of the length of the packet length B

is shown. The interference power σ2
q was chosen close to the value that provides the worst performance.

The figure also contains the variation of the genie bounds associated. If the packet has only training

symbols, then the placement does not influence the MMSE. The variation of the MMSE and the genie
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(c) "optimal"−genie bnd 
(e) "spread"−MMSE      
(e) "spread"−genie bnd
(d) "middle"−MMSE        
(d) "middle"−genie bnd  

Fig. 4. The MMSE of the “optimal”, “middle” and “spread” placements and their genie bounds

bound can be explained by observing that when the packet length B is large, the probability that all the

training symbols are hit simultaneously becomes smaller and smaller. Also, it can be noted that the genie

bound can’t be achieved by increasing B. This is expected, since for large values of B the distribution

of the received signal is close to a mixture of only two distributions corresponding to the two dominant

events, i.e., the interference hits the left or the right cluster. The gap to the genie bound is explained by

the convexity of the FIM functional.

Some numerical results for the lower bound C given by (31) on the achievable rate of the binary

channel with errors and erasures when σ2
q → ∞ are given in Table I. First, it can be observed that C can

be almost doubled by selecting the right placement. The big difference is given by the erasures that occur

when all the training symbols are hit. However, once the packet begins and ends with a training symbol,

the influence of the training placement is relatively low. The placement Jmax that maximizes the bound

on the achievable rate was found by numerical evaluations. Except that it is symmetric, this placement

does not correspond to a regular scheme (e.g.,is not uniform). Moreover, if the system parameters are

changed, the placement that maximizes C is different. For example, if we change only the noise power to

σ2 = 0 dB, then we obtained Jmax = {5, 14, 30, 51, 67, 76} and the corresponding Cmax = 0.1382 bps.

In this case, the optimal placement obtained using exhaustive search provides a negligible improvement

DRAFT July 31, 2003



BUDIANU AND TONG: CHANNEL ESTIMATION UNDER ASYNCHRONOUS PACKET INTERFERENCE 19

0 20 40 60 80 100 120 140 160 180
−22

−20

−18

−16

−14

−12

−10

−8

MSE vs the packet length B, 6 training symbols, SNR=16.9dB, σ
q
2=12dB

B

M
S

E
 [d

B
]

(a) 1+5, MSE
(b) 2+4, MSE
(c) 3+3, MSE
(a) 1+5 gn. bnd.
(b) 2+4 gn. bnd.
(c) 3+3 gn. bnd.

Fig. 5. The performance of 3 placement schemes and their genie bounds when the packet length varies. N = 6, σ2 = −16.9dB,

σ2

A = 1, σ2

q = 12dB.

Placement -J C[bps]

J̄ = {1, 2, 3, 78, 79, 80} 0.4329

Jmiddle = {38, . . . , 43} 0.3313

Jone edge = {1, . . . , 6} 0.2282

Jmax = {1, 9, 28, 53, 72, 80} 0.4334

TABLE I

THE LOWER BOUND ON THE CHANNEL CAPACITY OF THE BINARY CHANNEL WITH ERRORS AND ERASURES, (B = 80,

N = 6, σ2 = −16.9dB , σ2

A = 1, σ2

q → ∞)

over the rate C = 0.1336 bps obtained using J̄ (two clusters at the edges). Furthermore, at very low SNR

( lower than −20 dB) placing all training symbols in the middle of the packet provides the maximum

performance. However, in this case the capacity tends to be very low as well, of the order 1/σ4 < 10−4

for all training schemes used. This behavior of the optimal placement with the SNR suggests that, when

SNR decreases, the gain obtained from having more training symbols not hit by the interference tends

to compensate for the erasures due to the loss of all training symbols. Although the problem does not

have a unique solution, the numerical results showed that the performance obtained using the placement
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in two clusters at the edges is very close to the one provided by the optimized placement.

The upper bound C̄ given by (35) on the achievable rate of the channel with soft outputs for the

“optimal” and “middle” placements is represented in Fig. 6. It can be seen that at high values of the

interference power the improvement is around 0.1 bps , or 30%. The numerical values of the capacity

obtained for high σ2
q are very close to those given in table I; in this situation (low noise power, high

interference power) the loss induced by considering the channel as a binary channel with erasures is very

small.

−20 −15 −10 −5 0 5 10 15 20
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The upper bound on the achievable rate of the channel vs the power of interference

σ
q
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ra
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 [b
ps

]

(d) "middle"
(c) "optimal"

Fig. 6. The upper bound on the capacity of the communication system; B = 80, N = 6, σ2 = −16.9 dB, σ2

A = 1.

VI. CONCLUSIONS

In this paper we considered the channel estimation problem in the presence of an asynchronous packet

interference. Using a connection between the Bayesian MMSE and the FIM of the received signal, it was

shown that the optimal placement should be searched for within a small set whose structure does not

depend on the parameters of the system. It was shown that placing the training symbols in two clusters of

equal or nearly equal sizes optimizes the MMSE for high values of the interference power. The behavior

of the genie bound and the simulations suggest that this is the solution of the problem for any set of
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system parameters. For data transmission the numerical results show that the influence of the placement

on the achievable data rate can be significant.

APPENDIX

Proof of Theorem 1

Taking into account expression (22) of f(x), that is

f(x;p) =

N−1
∑

u=0

2pu

(

1

2
f(x|U = u) +

1

2
f(x|U = N + u)

)

+ εf(x|U = N),

we introduce a new set of coefficients to remove the dependence among the elements of vector p.

Consider the mixture coefficients c = [c0, . . . , cN−1]
T , that satisfy ck ≥ 2ε, ∀k = 1, . . . , N −1, c0 ≥ 0

and
∑N−1

k=0 ck = 1 − ε, and the following pdf

fc(x; c)
∆
=

N−1
∑

u=0

cu

(

1

2
f(x|U = u) +

1

2
f(x|U = N + u)

)

+ εf(x|U = N). (36)

Define the function g : P −→ R
N

(g(p))0 = 2p0 = 2(pN − ε), (37)

(g(p))u = 2pu, u = 1, . . . , N − 1. (38)

Observe that from (36) and (22) we have fc(·; g(p)) = f(·;p). Defining C2
∆
= g(P), and g1 : P −→ C2,

g1(p)
∆
= g(p), then g1 is a bijective function. C2 is given by

C2
∆
= {c ∈ R

N | ck ≥ 2ε, k = 1, . . . , N − 1;
N−1
∑

k=0

ck = 1 − ε; ck/(2ε) ∈ N, k = 0, . . . , N − 1}.

C2 and P are both discrete sets with finite number of elements. Define C1 ⊂ R
N the smallest closed set

that contains C2. Clearly,

C1
∆
= {c ∈ R

N | ck ≥ 2ε, k = 1, . . . , N − 1; c0 ≥ 0;
N−1
∑

k=0

ck = 1 − ε}.

(39)

Observe that the set C1 is a bounded set with bounds given by linear constraints. A point c ∈ C1 is a

vertex if ∀ c1, c2 ∈ C1 and ∀ a, b ≥ 0, a + b = 1, we have

ac1 + bc2 = c =⇒ a ∈ {0, 1}.
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The set of vertices of C1 is given by

V
∆
= {c | ∃m ∈ {1, . . . , N − 1} : cm = 1 − (2N − 3)ε; c0 = 0; ck = 2ε ∀k 6= m, k 6= 0}

⋃

{c | c0 = 1 − (2N − 1)ε, ck = 2ε ∀k 6= 0}.

There is the following relation among the regions above V ⊂ C2 ⊂ C1. Note that the c vectors in region

C1 take continuous values. Consider the problem of finding c ∈ C1 that maximize µ(c) = 1TJ(f(·; c))1

c0
∆
= arg max

c∈C1

{µ(c)} . (40)

From the convexity of the FIM functional and the convexity of the region C1 it is straightforward that

the solution c0 ∈ V . Moreover, since V ⊂ C2 ⊂ C1, we have

c0 = arg max
c∈C2

{µ(c)} (41)

It follows that any solution p0 of problem (15) is given by g−1
1 (c0) which means that the set of solutions

of (15) is the set P0
∆
= g−1

1 (V). The set P0 contains all those vectors p ∈ P for which one of the vector

elements has its maximum possible value.

Proof of Theorem 2

We show the theorem by considering a specific suboptimal estimator denoted Âd(x) and showing that

lim
σ2

q→∞
(E{|Âd(x) − A|2} − ξ(p; σ2

q )) = 0. (42)

Using the optimality of the MMSE estimator, i.e., E{|Âd(x) − A|2} ≥ E(p; σ2
q ), the lemma follows.

The estimator Âd(x) considered first detects the position U of the interference packet with respect

to the training symbols, and then does linear estimation based on the detected position. The estimator

is defined such that if the detection is correct, then the estimate obtained is the same as the one given

by the genie estimator. The proof shows that the probability of error can be made arbitrarily small by

increasing σ2
q and the estimation error is bounded for the cases when detection is wrong.

The detector is described by its decision regions Dk, k = 0, . . . , 2N − 1,
⋃2N−1

k=0 Dk = C
N :

Û(x) = k if x ∈ Dk, ∀ k ∈ {0, . . . , 2N − 1}. (43)
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The decisions regions are given by

Dk =
{

x : s(|x| − xT1) = s(diag(Dk) − σ21)
}

k = 1, . . . , 2N − 1

D0 = C
N \

2N−1
⋃

k=1

Dk.

|x| is the vector of absolute values and the threshold xT is a positive number that can be chosen function

of σ2
q . s(y) is the step function for y ∈ R and s(y), y ∈ R

N is the N × 1 vector with components s(yk).

The threshold xT will be chosen function of the interference power σ2
q . The diagonal matrices Dk have

been defined in (8).

Using the detected value Û(x) the estimator is

Âd(x) = 1TC−1

Û(x)
x, (44)

and its MSE is given by

E{|Âd(x) − A|2} =

2N−1
∑

u=0

P{U = u}E{|Âd(x) − A|2|U = u}.

To show the theorem is enough to prove for each u that

lim
σ2

q→∞
(E{|Âd(x) − A|2|U = u} − E{|Ã(x, u) − A|2|U = u}) = 0. (45)

In the previous equation Ã(x, u) is the genie-aided estimator that was already defined.

E{|Âd(x) − A|2|U = u} =
2N−1
∑

v=0

∫

x∈Dv

∫

A
|Âd(x) − A|2 f(x, A|U = u) dAdx

=

∫

x∈Du

∫

A
|Âd(x) − A|2f(x, A|U = u)dAdx

+
∑

v 6=u

∫

x∈Dv

∫

A
|Âd(x) − A|2f(x, A|U = u)dAdx

≤

∫

x

∫

A
|Ã(x, u) − A|2f(x, A|U = u)dAdx

+
∑

v 6=u

∫

x∈Dv

∫

A
|Âd(x) − A|2f(x, A|U = u)dAdx (46)

= E{|Ã(x, U) − A|2)|U = u}

+
∑

v 6=u

∫

x∈Dv

∫

A
|Âd(x) − A|2f(x, A|U = u)dAdx.
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Relation (46) holds because if Û(x) = U , then Âd(x) = Ã(x, U), as it was mentioned before.

The second term can be upper bounded as

Iu
∆
=

∑

v 6=u

∫

x∈Dv

∫

A
|Âd(x) − A|2f(x, A|U = u)dAdx

≤ P{x /∈ Du|U = u} sup
x∈CN ;v 6=u

{

f(x|U = u)

∫

A
|Âd(x) − A|2f(A|x, U = u)dA

}

. (47)

Look first at the second factor that is the sup{·}. We have:

|Âd(x) − A|2 ≤ 2
(

|Âd(x)|2 + |A|2
)

.

(48)

For any fixed x, there is a v such that

Âd(x) = Ã(x, v)

|Âd(x)|2 = |1TC−1
v x|2

=

∣

∣

∣

∣

1T

(

D−1
v −

D−1
v 11TD−1

v

1 + 1TD−1
v 1

)

x

∣

∣

∣

∣

2

.

The elements of D−1
v are bounded for any values of the parameters involved and for any choice of v; the

same is true for the vector 1T
(

D−1
v − D−1

v 11T D−1

v

1+1T D
−1

v 1

)

. The bound can be computed explicitly. Defining

C1
∆
= (maxv,k

{

|1TC−1
v ek|

}

)2, we get

|Âd(x)|2 ≤ C1|x|
2. (49)

Now continue with the expression under the sup{·} in (47). A calculation using Gaussian pdf’s shows

that
∫

A
|A|2f(A|U = u,x)dA =

|1TD−1
u x|2

(1 + 1TD−1
u 1)2

+ (1 + 1TD−1
u 1)−1.

From a similar argument as before, there exist constants C3 > 0, C4 > 0, such that
∫

A
|A|2f(A|U = u,x)dA ≤ C3|x|

2 + C4

Using this in the formula of Iu, we obtain

Iu ≤ P{x /∈ Du|U = u} sup
CN

{(2(C1 + C3)|x|
2 + 2C4)f(x|U = u)} (50)
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For any square matrix A, denote by λmin(A) and λmax(A) the minimum and maximum eigenvalues

respectively. We have the inequalities

xHC−1
u x ≥ λmin(C−1

u )|x|2

≥
1

λmax(Cu)
|x|2.

Substituting in Iu,

Iu ≤ P{x /∈ Du|U = u} sup
CN

{

(2(C1 + C3)|x|
2 + 2C4)

1

πN |Cu|
exp

{

−
|x|2

λmax(Cu)

}}

(51)

≤ P{x /∈ Du|U = u} sup
CN

{

(2(C1 + C3)|x|
2 + 2C4)

1

πNλmax(Cu)(λmin(Cu))N−1

exp

{

−
|x|2

λmax(Cu)

}}

.

λmin(Cu) ≥ σ2 which is bounded away from zero. Observe that the expression that multiplies

P{x /∈ Du|U = u} is uniformly upper bounded by a constant C5 > 0 that does not depend on λmax(Cu).

So C5 does not depend on σ2
q , u or v.

We showed that

Iu ≤ C5 P{x /∈ Du|U = u}. (52)

To complete the proof of (45) we show that

P{x /∈ Du|U = u}
σ2

q→∞
−→ 0.

Use the union bound to upper bound the error probability. The distribution of x conditioned on U is

given by (10). Consider u ∈ {1, . . . , N − 1}. In this case the marginal conditional distribution of each

element is given by

f(xk|U = u) =







1
π(1+σ2+σ2

q) exp
(

− |xk|2

1+σ2+σ2
q

)

if k = 1, . . . , u

1
π(1+σ2) exp

(

− |xk|2

1+σ2

)

if k = u + 1, . . . , N
.

P{x /∈ Du|U = u} ≤
u
∑

k=1

P{|xk| ≤ xT |U = u} +
N
∑

k=u+1

P{|xk| > xT |U = u} (53)

=

u
∑

k=1

(1 − exp(−x2
T /(1 + σ2 + σ2

q ))) +

N
∑

k=u+1

exp(−x2
T /(1 + σ2)) (54)

To show that ∀ ε > 0 ∃ xT , σ2
q such that P[x /∈ Du|U = u] < ε , just choose xT such that

exp(−x2
T /(1 + σ2)) < ε

N and then σ2
q such that 1− exp(−x2

T /(1 + σ2 + σ2
q )) < ε

N . The proof is similar

for the rest of values u = 0, N, . . . , 2N − 1. This completes the last step of the proof of (45) and the

theorem follows.
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Probability of detection error when σ2
q → ∞

In this section of the appendix we’ll derive the detector s̃k and the conditional probabilities of error

Pk,e. Towards this, we first derive the binary ML detector without considering σ2
q → ∞. Then we derive

the probability of error for this binary detector. From the transmission model (1), the k-th received symbol

(assume k /∈ J ,i.e., data symbol) is given by

yk = skA + zk. (55)

The receiver uses the genie estimator, i.e., it knows the realization of the random variable U . Consider

U = u and write the channel parameter A = Ã(x, u) + ∆A(x, u), where Ã(x, u) is the genie estimator

(24). The received data symbol yk becomes

yk = skÃ(x, u) + sk∆A(x, u) + zk. (56)

Conditioned on U = u the random variables Ã(x, u) and ∆A(x, u) are independent complex Gaussian

with distributions

Ã(x, u) ∼ CN (0,1TC−1
u 1)

∆A(x, u) ∼ CN (0, 1 − 1TC−1
u 1).

The pdf of the observation yk conditioned on U , Ã, and the transmitted symbol sk is

f(yk|sk, U, Ã) = P{Hk = 0|U} f(yk|sk, Hk = 0, U, Ã) + P{Hk = 1|U} f(yk|sk, Hk = 1, U, Ã)

= P{Hk = 0|U} CN (yk; skÃ, 1 − 1TC−1
U 1 + σ2)

+P{Hk = 1|U} CN (yk; skÃ, 1 − 1TC−1
U 1 + σ2 + σ2

q ). (57)

The arguments x and U in the expressions of Ã and ∆A were omitted for simplicity.

Assuming that the transmitted symbols are equiprobable, the symbol-by-symbol maximum likelihood

(ML) detector for the k-th symbol (which is assumed to be data symbol) is found by solving

ŝk = arg max
sk∈{±1}

f(yk|sk, U, Ã). (58)

Taking into account the monotonicity of the exponential function, one can show that

ŝk = sgn{Re{Ã∗yk}}. (59)

Conditioned on Hk and U the received signal yk is Gaussian, thus P{ŝk 6= sk|U, Hk} can be computed

using the well-known formula for the probability of error of BPSK signaling in Rayleigh fading [14]. If

y = as + n is the received complex signal, s ∈ {±1} the BPSK transmitted symbols with equal priors,
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a ∼ CN (0, σ2
a) the known channel parameter, and n ∼ CN (0, σ2

n) the noise, then the probability of

detection error when ŝ = sgn{Re{a∗y}} is given by

Pe =
1

2



1 −
1

√

σ2
n

σ2
a

+ 1



 . (60)

Substituting σ2
n = 1 − (1TC−1

u 1) + σ2 + hσ2
q and σ2

a = 1TC−1
u 1 in (60) we obtain

θ(u, h)
∆
= P{ŝk 6= sk|U = u, Hk = h} =

1

2

(

1 −

√

1TC−1
u 1

σ2 + hσ2
q + 1

)

=
1

2

(

1 −

√

1 − m(u)

σ2 + hσ2
q + 1

)

.

(61)

When the interference power is high, the probability of detection error is close to one half if the current

data symbol is hit or if all the training symbols are hit:

lim
σ2

q→∞
θ(u, 1; σ2

q ) =
1

2
,

lim
σ2

q→∞
θ(N, h; σ2

q ) =
1

2
.

These two situations were defined as erasure events; when the power of the interference is high (σ2
q → ∞),

the receiver can detect them accurately (i.e., detect Hk with negligible error). We obtain the detector s̃

(30)

s̃k
∆
=







erasure if Hk = 1 or U = N

sgn{Re{Ã∗yk}} otherwise
. (62)

For channel k, the probability of error Pk,e (conditioned that no erasure occurs) was defined as

Pk,e = P{s̃k 6= sk|({Hk = 1} ∪ {U = N})C}

= P{ŝk 6= sk|({Hk = 1} ∪ {U = N})C}.

To give the probabilities Pk,e in a convenient form, we introduce some new notations. The N training

symbols divide the data symbols into maximum N + 1 data blocks. For each u = 1, . . . , N + 1 define

Bu as the set of indices of the u-th block of data symbols, and ∆u its size

Bu
∆
=































Ø if tu+1 − tu = 1 or tu+1 = 1 or tu = N

{1, . . . , t1 − 1} if u = 0 and t1 ≥ 2

{tu + 1, . . . , tu+1 − 1} if u = 1, . . . , N − 1 and tu+1 − tu ≥ 2

{tu + 1, . . . , N} if u = N and tu ≤ N − 1

, (63)

∆u
∆
= |Bu| =



















t1 − 1 if u = 0

tu+1 − tu − 1 if u = 1, . . . , N − 1

N − tN if u = N

. (64)

July 31, 2003 DRAFT



28 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSING, APRIL 2003, REVISED JULY 2003

The probability of error is given below for each of the cases k ∈ B0, k ∈ BN and k /∈ B0 ∪ BN :

Pk,e;k∈B0
=

1

B − 1 − (t1 − k)

(

(k − 1)θ(0, 0) +
N−1
∑

u=1

(1 + ∆u)θ(N − u, 0) + ∆Nθ(0, 0)

)

Pk,e;k∈BN
=

1

B − 1 − (k − tN )

(

∆0θ(0, 0) +

N−1
∑

u=1

(1 + ∆u)θ(u, 0) + (B − k)θ(0, 0)

)

Pk,e;k∈Bw,0<w<N =
1

B − 1

(

∆0θ(0, 0) +
w−1
∑

u=1

(1 + ∆u)θ(u, 0) + (k − tw)θ(w, 0)

+ (tw+1 − k)θ(N − w, 0) +

N−1
∑

u=w+1

(1 + ∆u)θ(N − u, 0) + ∆Nθ(0, 0)

)

.
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