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Channel Estimation Under Asynchronous
Packet Interference

Cristian Budianu, Student Member, IEEE, and Lang Tong, Senior Member, IEEE

Abstract—This paper investigates the placement of training
symbols within the data packets of a wireless system in which
transmissions are subject to asynchronous interference. The min-
imum mean square error of the training-based channel estimator
is expressed as a function of the Fisher information of the received
signal. It is shown that the placement that minimizes the minimum
mean square error should be searched for within a set containing
half as many elements as the number of training symbols in
the packet. Furthermore, a lower bound on the minimum mean
square error is derived and analyzed. It is shown that this bound is
tight when the power of the interference is high. The placement of
the training symbols in two clusters of equal or quasiequal length
at the two edges of the data packet minimizes the lower bound
for all values of the parameters and, thus, gives the solution of
the problem for high values of the interference power. The influ-
ence of the training symbols placement on the data transmission
performance is also investigated.

Index Terms—Fisher information, FIM, MMSE, pilot symbols,
placement schemes.

I. INTRODUCTION

THIS paper considers the channel estimation problem in
the presence of asynchronous packet interference. Asyn-

chronous interference arises in ad hoc networks, wireless local
area networks (LANs), and even in cellular networks where
packet collisions cannot be avoided and packet transmission is
asynchronous or packet synchronization is not perfect. More-
over, the interference packets can have a wide range of power
levels due to the near–far effect.

Channel estimation is crucial in coherent symbol detection,
optimal scheduling, and power allocation [1], [2], and in the
design of the medium access control protocol in random access
networks [3], [4]. Typically, channel estimation is performed
by including a certain number of training symbols in the data
packet. When the channel is memoryless, the placement of
these training symbols does not affect the performance and
is designed to simplify the receiver implementation. When
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the channel has memory, however, the placement of training
symbols can affect the performance significantly. Optimal
training placement for intersymbol interference channels has
been considered in [5]–[9].

Asynchronous packet interference introduces a different kind
of channel memory. The event that a symbol of a data packet is
hit by an interfering packet affects the chance that its adjacent
symbols are also hit. The effect of packet interference on the
training symbols, however, is somewhat subtle. If we assume
that an interference packet arrives randomly, and its position
relative to the packet of interest is uniformly distributed, then
the average number of training symbols hit by the interference
is the same, regardless of how training symbols are placed in
the packet. However, the distribution of the number of training
symbols that are hit by the interference is a function of the place-
ment. It is the distribution of the number of training symbols
survived the interference—not the average number—that deter-
mines the performance of the channel estimator.

We assume that the receiver uses the training-based minimum
mean square error (MMSE) channel estimator, i.e., only those
observations corresponding to the training symbols are used in
the estimation. If there are training symbols in a packet of
size , the brute-force approach to finding optimal placement
requires comparing possible placements. The lack of a
simple expression for the MMSE coupled with the enormous
number of possibilities makes the brute-force approach unap-
pealing. Also, it is unlikely that such an approach will lead to
useful insights.

In searching for the optimal placement, we first obtain an
expression of MMSE as a function of the Fisher information
matrix (FIM) of the received signal. This crucial step allows
us to exploit the convexity of the Fisher information functional
and therefore reduce the number of searches from to

, which depends only on the number of training
symbols and not on the size of the packet. Furthermore, inde-
pendent of the system parameters such as signal-to-noise ratio,
the optimal placement belongs to a fixed set of placements with
either one or two clusters.

The main difficulty involved in obtaining the optimal place-
ment in closed-form comes from the nonlinearity of the MMSE
estimator. One way to overcome this problem is to consider a
lower bound given by the MSE of a linear estimator that knows
the position of the interference with respect to the data packet.
This estimator and its MSE are called the genie estimator and
the genie bound, respectively. The genie estimator can only be
approximated by a detect-then-estimate scheme, where the re-
ceiver first detects the presence of the interference. What we
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gain in considering the genie estimator is that the relation be-
tween its MSE and the training placement can be obtained ex-
plicitly. We show that the placement that minimizes the genie
bound has two clusters of equal or quasiequal length at the two
edges of the data packet, which is in contrast to widely accepted
single cluster placement (such as that in GSM) and the uni-
formly distributed periodic placement. We further show that the
genie bound is tight when the interference power is high, which
implies that if the interference level is high, the two equal sized
clusters placed at the two ends of the packets is optimal. In gen-
eral, we can only conjecture that this placement is optimal for all
values of the parameters involved; this conjecture is supported
by simulations.

Existing work on optimal placement focuses mainly on chan-
nels where self interference is introduced by channel memory
[6], [7]. In such cases and under different metrics, the optimal
placements tend to be scattered. In particular, for ISI channels,
the optimal placement of training symbols is the quasiperiodic
placement [6], where the pilot symbols are placed periodically
with the minimum cluster size. When the interference comes
from asynchronous packets, our result points to a different
placement strategy where the training clusters are placed at the
two ends of the packet.

The paper is organized as follows: Section II contains the
model and is followed by Section III with the description and
analysis of the MMSE channel estimation. In Section III-B, the
behavior of the MMSE is analyzed using the FIM, and in Sec-
tion III-C, the genie lower bound is introduced and analyzed.
Section IV studies the effect of the placement on the data com-
munication performance. In Section V, the simulations and nu-
merical results provide additional insight into the problem. We
conclude the paper in Section VI. Some derivations are given in
the Appendix.

Notations: The vectors are in bold font, is the expecta-
tion with respect to the random variable the proba-
bility of the event the gradient operator with respect
to vector , and diag is a column vector formed by the diag-
onal elements of the square matrix . We use to denote an

vector with all elements equal to 1 and . Whenever
necessary the function is written as to emphasize
the dependence on the parameter . Given the vector is
its th element, and is the th element of the vecto-
rial function . We denote by a vector that has the th
element 1 and the rest of them 0. If are square matrices,

means that is positive semidefinite. The com-
plex Gaussian distribution with mean and covariance matrix

is denoted by , while is its probability
density function. The set of strictly positive natural numbers is
denoted by .

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a point-to-point one-way communication link. The
channel is assumed Rayleigh block-flat-fading, i.e., the channel
is constant during the transmission of one packet, and has in-
dependent realizations in different packets. The symbols of the
data packets can be either training or data. The receiver obtains
an estimate of the channel based only on the training symbols
from the current packet received.

The communication is subject to the usual i.i.d. complex
additive white Gaussian noise (CAWGN) with known variance

. A data packet is also affected by interference, modeled
as a packet of i.i.d. CAWGN with known variance . The
interference affects a contiguous subset of the symbols of the
packet depending on its position as described using Fig. 1. In
practice, the distribution of the interference symbols is usually
unknown, so we assumed the worst-case distribution, which
for the additive noise is known to be the Gaussian one.

The following assumptions about the interference are made:
Only one interference packet can hit the data packet at a time,
and the data and interference packets have the same length.
The relative position of the data and interference packets is not
known either by the transmitter or the receiver and is distributed
uniformly.

The assumption of only one interference packet hitting the
data packet models the collisions in a packet ad hoc network
with random access and frequency hopping from packet to
packet. Assuming different hopping schemes for each user, the
interference packets that collide with successive data packets
come from a different user each time. Furthermore, the users
are not synchronized, so each interference packet has a different
offset. If the transmission rate of each user is low enough, then,
with a high probability, each collision will involve at most one
interference packet.

Denote by the total number of symbols of one packet, out
of which are allocated to training. The symbols of one
received packet are given by the vector

(1)

where is the complex scalar channel parameter,
a vector representing one block of transmitted sym-

bols, and the total noise vector that includes the CAWGN and
the interference. The probability density function (pdf) of is a
mixture of Gaussians. We assumed the variance of the channel
parameter equal to 1 without loss of generality.

From the assumption that the interference packets are of the
same length as the data packets, it follows that the relative
position between the two packets can be described by a discrete
random variable distributed uniformly on . As
shown in Fig. 1, if , then the first symbols of
the data packet are hit. Similarly, if ,
then the last symbols are hit. The distribution of the
total noise vector is obtained noting that, conditioned on

is CAWGN with independent components

For any , the elements of the diagonal
matrices in (2), shown at the bottom of the next page, may
take only two values ( when the th symbol is interference-
free and when the th symbol is hit by the
interference).
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Fig. 1. Data packet and different possible positions of the interference packet.
The training symbols are shaded in black. The interference packets are colored
in gray. B = 12; N = 5;J = f1;4; 5; 9; 10g.

A channel estimate for each packet is obtained only from the
received training symbols. Denote by

, the ordered set
of indexes of the training symbols within the packet. Using an

selection matrix we extract these symbols into an
vector

(3)

where the th row of has only one nonzero element in the
column that gives the position of the th training symbol
within the data packet. All the training symbols are chosen equal
to 1.

Next, we characterize the placement of training symbols
through the probability mass function of the relative posi-
tion of the interference and training symbols. Consider the
random variable that gives the po-
sition of the interference packet with respect to the training
symbols. Some possible values are shown in Fig. 1. Similar
to , if , the first training symbols are
hit. If , the last training
symbols are hit. If , no training symbol is hit by the
interference. The random variable is not distributed uni-
formly anymore. Specifically, is determined by , and its
distribution can be obtained from the placement of the training
symbols by taking into account the uniform distribution of

. Defining , and

, we obtain the distribution

of as

if
if
if
if

(4)

We use for the distribution of . De-
note by the set of all distributions that satisfy the conditions
(4), i.e.,

(5)

From (4), it follows that the placement of the training symbols
(the set ) is determined uniquely by if and only if .
In this case, , and , i.e., the packet starts and
ends with a training symbol. However, it will be shown that the
MMSE channel estimator and the MMSE are the same for all
placements with the same . This is why in the channel esti-
mation part of the paper we’ll refer to placements through their
corresponding .

For the placement given in Fig. 1, we have
and .

Frequently referred in the paper is the placement of training
symbols in two clusters of equal (or nearly equal) length at the
edges of the packet. This placement is given by

(6)

and the corresponding distribution is

if
if
if

(7)

We now complete the channel model given in (3) by deriving
the pdf of the received signal. Given the placement, or equiva-
lently , the pdf of is

where the matrices are defined as

diag

if
if

if
if

(8)

diag
if
if

if

(2)
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Finally, the pdf of , which is the vector of received training
symbols, is

(9)

(10)

where

(11)

The parameters of the system are . It was
specified the use of instead of for convenience. Channel
estimation depends on all the system parameters, but the depen-
dence will not be always expressed explicitly.

III. CHANNEL ESTIMATION

A. Bayesian MMSE Estimator

The Bayesian MMSE estimator of the channel parameter
is given by

(12)

Conditioned on the position of the interference , we have the
well-known Gaussian model; relation (12) follows from the con-
ditional expectation in Gaussian models; see, e.g., [10, p. 326].
Writing the expectation explicitly, we have

(13)

The performance of the Bayesian MMSE estimator is given
by the MMSE

(14)

The MMSE estimator and the MMSE depend on the distribution
of the random variable . Our goals are to characterize this

dependence and to find the placement(s) that minimizes the
MMSE (14) under the conditions (5) imposed by the physical
model, i.e., to find

(15)

In general, the set of solutions of the problem above depends on
the choice of the system parameters .

Given a placement and its distribution , define its mirror
reflection by and the
corresponding . Note that if the placement is symmetric, we
have . Because of the left-right symmetry of the model,
the mirror reflection has the same MMSE as . Thus, if
is a solution of (15), so is .

In our case, the MMSE estimator and its performance are non-
linear functions of . This makes their analysis a hard problem.

B. MMSE and Optimal Placement

In this subsection we search for the training placement that
minimizes the MMSE. Toward this goal, we first establish the
connection between the MMSE (14) and the Fisher information
matrix of the received signal and then show that the optimal
placement has either two clusters placed at the two ends of the
packet or one cluster; thus, it should be searched for within a
certain subset with elements.

For a random complex vector with probability density
function (pdf) , the FIM is defined as

(16)

Some regularity conditions on are necessary for the FIM to
exist; see [10] for details. These conditions are satisfied by the
distributions considered in our problem.

Lemma 1: The MMSE (14) can be written as

(17)

The pdf is given by (9); here, we indicated the depen-
dence on explicitly.

Proof: From the properties of Gaussian densities, we have

(18)

Using this, the expression (13) of becomes

(19)

Further,

(20)

and . Using this in (14) and
taking into account that , the lemma follows.

This lemma allows us to use the convexity property of the
FIM functional. This property is stated in the next lemma, which
is an an extension to complex vectors of a weaker form found
in [11] and [12].

Lemma 2: The Fisher information matrix of a random com-
plex vector with pdf is a convex functional of . Specifi-
cally, for and random vectors with densities and ,
respectively, and an arbitrary number, the following
inequality holds:

(21)

Proof: See [13].
The convexity property given above allows us to reduce the

number of possible solutions of the optimization problem (15).
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To use this property, we rewrite the pdf of the received signal
given in (9) as a mixture of densities

(22)

The coefficients of this mixture are .
One can observe that the maximum of is realized
when one of the coefficients from the set given above takes its
maximum possible value, and all the others take their minimum
value. This result is stated in the next theorem.

Theorem 1: The placement that minimizes the MMSE (14)
belongs to the set that contains the placements with either
two clusters placed at the two ends of the packet, or a single
cluster. Formally, from (4), is defined as

(23)

and we have

Proof: See the Appendix.
The size of depends only on and increases linearly with

it. Even if the distribution vectors of depend on and
, the physical structure of the corresponding placements does

not. Although the set has elements, since the mirror pairs
have the same MSE, the optimal solution should be searched for
among only placements.

C. Genie Lower Bound on the MMSE

A lower bound on the MMSE can be obtained by considering
the performance of a receiver helped by a genie who provides
the current value of , i.e., the position of the interference
packet with respect to the training symbols. For each value

, we have a Gaussian model, for which the MMSE
estimator and its MSE are well known. Consider the following
estimator, that assumes the random variable known:

(24)

Its MSE for each is given by and the averaged
MSE by

(25)

Given the state is the MMSE estimator.
Thus, for any other estimator , we have

The estimators include those ones that do not use
, so the relation above applies to the true MMSE estimator

(13) for each . Thus is a lower bound (the genie
lower bound) for the MMSE

One can observe that the genie bound is the bound obtained by
applying the convexity of the FIM, i.e., Lemma 2, to the pdf (9)
of the received signal expressed as a mixture of Gaussians.

The next theorem shows that the genie lower bound is tight
when the power of the interference is high for any placement .

Theorem 2: Let and be the genie bound
and the MMSE, respectively, where the dependence on the
power of the interference has been shown explicitly. For any
choice of , we have

(26)

Proof: See the Appendix.
The genie lower bound can be optimized with respect to .

The result is given below.
Theorem 3: Placing the training symbols in two equal or

quasiequal clusters at the two ends of the data packet minimizes
the genie lower bound for any set of values of the parameters in-
volved. Specifically, using the probability distribution given
by

if
if
if

(27)

and are the only distributions that minimize the genie
lower bound subject to the conditions (5):

(28)

Note that if is even.
Proof: Taking into account the definitions (8) and (11) of

and , for , we have

Replacing with a continuous variable , for
is a strictly convex function of . Thus, the function

is strictly decreasing on . Since the MSE
of the genie estimator is the same if the interference hits the
first symbols or the last , for , we have

. Using this and the symmetry property (4)
of can be written

It follows that under the conditions (4), given by (27) mini-
mizes .

From Theorem 2, it follows that by increasing , we can
make the MMSE be as close to the genie bound as wanted.
Because the function preserves its strict convexity when

and there is a finite number of possible placements, it
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follows that even in this case, the placements given by (27) and
are the only solutions of the optimization problem stated in

Theorem 3. We have the following corollary.
Corollary 1: For any values of the system parameters

, there is a level of interference such
that the placements and are the only placements that
minimize the MMSE (14) (i.e., solutions of the general problem
(15)) for all .

Remark 1: Using the properties of the genie bound given in
the Proof of Theorem 3, the placement that maximizes the genie
bound (i.e., the worst) can be found as well, and it corre-
sponds to placing all the training symbols into one cluster. Using
Theorem 2, we can conclude that placing the training symbols
in one cluster provides the worst performance at high values of
the interference power.

Notice that the solution given by (27) obtained using the
genie bound corresponds to the placement in of theorem (1)
for which . Unfortunately, we were
not able to show that is the solution of the problem for any
choice of the parameters. Besides the genie bound solution and
the asymptotic solution, the simulations suggest the following
conjecture.

Conjecture 1: The placement that minimizes the MMSE (14)
is in two equal or quasiequal clusters at the edges of the packet,
i.e.,

IV. DATA COMMUNICATION UNDER

ASYNCHRONOUS INTERFERENCE

In this section, we investigate the influence of the placement
of training symbols on the data transmission performance.
Using the setup of Section II, we consider specific data trans-
mission and reception procedures and evaluate the achievable
rate using the mutual information between the input and the
output.

We consider that the transmitter uses BPSK signaling with
coding and interleaving. The data stream is partitioned in

substreams at the transmitter and each substream is
coded independently of the others. The binary symbols of
the codewords of one substream are inserted in successive
data packets in the same position ( th). Thus each data packet
contains one binary symbol from a codeword of each substream.
The receiver decodes each substream independently of the
others. The communication channel under these constraints is
equivalent to parallel independent channels. We call
“channel ” the channel corresponding to the data symbols
in the th position .

Before decoding, the receiver recovers each data symbol
coherently using the channel estimate. To make the model
tractable, we assume that the receiver uses the genie estimator
instead of the true MMSE estimator. In general, the results ob-
tained will be upper bounds to the performance of the system,
but if the power of the interference is high, the use of genie and
MMSE estimates provides identical results.

Two different receiver scenarios are considered. First, we
consider a receiver that performs individual hard reception
and then decoding. The second case is a receiver that decodes
coherently the received symbols without any intermediate
processing.

A. Achievable Rate with Hard Reception

In this subsection, we calculate the achievable rate of the
system under the constraints given and assuming a receiver that
first obtains a hard estimate of each symbol and then does de-
coding. When the interference power level is high, the data sym-
bols that are hit are received with a very low SNR. If the receiver
tries to detect them (binary), the probability of error will be close
to one half. In addition, if all training symbols of one packet are
hit by the interference, then the probability of binary detection
error is close to one half for all data symbols of that packet.
These two situations will be defined as erasure events.

From the transmission model (1), the th received symbol
(assume , i.e., data symbol) is given by

(29)

Introduce the binary random variable is the
event that the th received symbol is hit by interference and

its complement. Conditioned on is Gaussian;
. When the power of the inter-

ference is high, the erasure events can be detected accurately.
Equivalently, we assume that besides , the detector knows
for each . Assuming equiprobable input symbols, the ML de-
tector is

erasure if or
sgn otherwise

(30)

If the decoder no longer uses the information provided by the
channel estimation part, the achievable rate for channel is
given by the capacity of the binary channel with erasures

where the probability of erasure and the conditional prob-
ability of detection error are, respectively, given by

if and

if and

otherwise

The probabilities are derived in the Appendix. The achiev-
able rate (lower bound on capacity) of the system considered is
given by the average

(31)

The placement that optimizes this lower bound cannot be found
in closed form. Moreover, the numerical evaluations indicate
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that the problem has different solutions for different choices of
the parameters . Note that if the noise has moder-
ately low variance, at high interference power, the variation of
the probabilities of error with
is small, and the placement influence on the achievable rate is
mainly through the probabilities of erasure . For example,
if the training symbols are placed in one cluster, then the data
symbols from the first and last data clusters have high proba-
bility of erasure. This can lower significantly the performance
of the system, as shown and discussed further in Section V.

B. Reliable Rate with Soft Reception

The lower bound on capacity given before is valid only when
the interference power is high. In order to obtain a performance
measure for any value of the interference power, we consider
a receiver that decodes coherently the received signal using the
genie estimate but without performing hard detection first. An
upper bound on the achievable rate of the transmission system
under the constraints imposed in this section is calculated as
the average of the capacities of the parallel independent
channels.

Denote by the distribution of the data symbols . The
upper bound on the capacity of channel is given by

(32)

(33)

(34)

Relation (32) follows from the independence between
and the random variables and . In rela-

tion (33), we used the notation
,

with . Using the symmetry
properties of the conditional distribution of the interference

and of the transmitted signal constellation, one can prove
that the input distribution that achieves the maximum of

is the uniform one. Relation
(34) holds because this distribution is the same for all and

. The distribution is given in the
Appendix in (57). Therefore, the upper bound on the capacity
of channel is obtained by averaging the capacities of the
channels given by each and . The upper bound on
the achievable rate is

(35)

Because of the mixture of distributions, this upper bound can be
calculated only numerically; some results and further comments
are provided in the next section.

Fig. 2. Training schemes compared in Figs. 3 and 4. (a) Two clusters, unequal.
(b) Two clusters, unequal. (c) Two clusters of equal size, “optimal.” (d) One
cluster “middle.” (e) Training symbols “spread.”

V. SIMULATIONS AND NUMERICAL RESULTS

The simulations were done for the following parameters:
dB, and . The MMSE is evalu-

ated from (14).
For the numerical values considered, taking into account

Theorem 1 and the remark that follows, the optimal scheme
should be searched for within a set with four elements. The cor-
responding placements are the first four placements in Fig. 2.

Fig. 3 shows that for moderate to high interference power, we
can gain more than 10 dB by using the “optimal” placement over
the placement that uses one cluster (in the middle of the packet).
This is the maximum gain that can be obtained; according to
the genie bound the “middle” placement offers the worst per-
formance. Once we have two clusters placed at the edges of the
packet, the gain obtained by using the “optimal” placement is
smaller—up to 2 dB. The figure illustrates well the behavior of
the MMSE in three regimes. When the power of the interfer-
ence is small, all training schemes have the same MMSE, as ex-
pected. When is large, then the MMSE of the three schemes
considered is as predicted by the corollary. In this regime, the
large gap between the “middle” placement and the others can be
easily explained by observing that for reasonably small values
of , the performance of the estimator is significantly degraded
if all the training symbols are hit, while if only one of them is
not hit, the estimation can be done reasonably well. One may
observe as well that the variation of the MMSE with the power
of the interference is not monotonic. This effect is somehow re-
duced for the situation of Fig. 3 and will be explained next.

In Fig. 4, we compared the MMSE with the genie bound for
three of the placements represented in Fig. 2, i.e., “optimal,”
“middle,” and “spread” schemes. As predicted by Theorem 2,
the MMSE converges to the genie bound for large enough.
For the “optimal” and the “middle” placements, the genie
bounds are relatively tight for all . The interesting fact is that
the MMSE of the “spread” placement scheme has a bell shape
and the genie bound in not tight. The gap to the MMSE of
the “optimal” placement can be predicted using the convexity
property of the FIM. Alternatively, it can be explained by
thinking that the coefficients in the expression
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Fig. 3. MMSE of the first four training schemes from Fig. 2. The legend shows
the number of training symbols in each cluster.

(13) of the MMSE estimator act like an embedded maximum a
posteriori (MAP) soft detector. The detection can be done better
if there are fewer events with high a priori probabilities. This
happens if the symbols are grouped into two clusters placed at
the edges or in one cluster; in these cases the MMSE is close to
the genie bound. The previous argument works very well when
the interference power has moderately high values. However,
when the interference is weak or absent its position cannot be
detected, but the detection is unnecessary and all the placements
provide the same performance, as one would expect, while at
high values of the interference power, the detection can be done
accurately for any placement.

In Fig. 5, the MMSE of three placement schemes as a
function of the length of the packet length is shown. The
interference power was chosen close to the value that
provides the worst performance. The figure also contains the
variation of the associated genie bounds. If the packet has
only training symbols, then the placement does not influence
the MMSE. The variation of the MMSE and the genie bound
can be explained by observing that when the packet length

is large, the probability that all the training symbols are
hit simultaneously becomes smaller and smaller. In addition,
it can be noted that the genie bound cannot be achieved by
increasing . This is expected, since for large values of
the distribution of the received signal is close to a mixture
of only two distributions corresponding to the two dominant
events, i.e., the interference hits the left or the right cluster.
The gap to the genie bound is explained by the convexity of
the FIM functional.

Some numerical results for the lower bound given by (31),
for are given in Table I. First, it can be observed that

can be almost doubled by selecting the right placement. The
big difference is given by the erasures that occur when all the
training symbols are hit. However, once the packet begins and
ends with a training symbol, the influence of the training place-
ment is relatively low. The placement that maximizes the

Fig. 4. MMSE of the “optimal,” “middle,” and “spread” placements and their
genie bounds.

Fig. 5. Performance of three placement schemes and their genie bounds when
the packet length varies. N = 6; � = �16:9 dB, and � = 1; � = 12 dB.

TABLE I
LOWER BOUND C (BINARY SYMBOLS, ERASURE DETECTION);

B = 80;N = 6; � = �16:9 dB, � = 1; � ! 1.

bound on the achievable rate was found by numerical evalua-
tions. Except that it is symmetric, this placement does not corre-
spond to a regular scheme (e.g., is not uniform). Moreover, if the
system parameters are changed, the placement that maximizes

is different. For example, if we change only the noise power
to dB, then we obtained
and the corresponding b/s. In this case, the
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Fig. 6. Upper bound �C (soft outputs); B = 80; N = 6; � = �16:9 dB,
� = 1.

optimal placement obtained using exhaustive search provides a
negligible improvement over the rate b/s obtained
using (two clusters at the edges). Furthermore, at very low
SNR (lower than dB) placing all training symbols in the
middle of the packet provides the maximum performance. How-
ever, in this case, the capacity tends to be very low as well, of the
order for all training schemes used. This behavior
of the optimal placement with the SNR suggests that when SNR
decreases, the gain obtained from having more training symbols
not hit by the interference tends to compensate for the erasures
due to the loss of all training symbols. Although the problem
does not have a unique solution, the numerical results showed
that the performance obtained using the placement in two clus-
ters at the edges is very close to the one provided by the opti-
mized placement.

The upper bound given by (35) on the achievable rate of
the channel with soft outputs for the “optimal” and “middle”
placements is represented in Fig. 6. It can be seen that at high
values of the interference power the improvement is around 0.1
b/s or 30%. The numerical values of the capacity obtained for
high are very close to those given in Table I; in this situation
(low noise power, high interference power), the loss induced by
considering the channel as a binary channel with erasures is very
small.

VI. CONCLUSION

In this paper, we considered the channel estimation problem
in the presence of an asynchronous packet interference. Using a
connection between the Bayesian MMSE and the FIM of the re-
ceived signal, it was shown that the optimal placement should be
searched for within a small set whose structure does not depend
on the parameters of the system. It was shown that placing the
training symbols in two clusters of equal or nearly equal sizes
optimizes the MMSE for high values of the interference power.
The behavior of the genie bound and the simulations suggest

that this is the solution of the problem for any set of system pa-
rameters. For data transmission, the numerical results show that
the influence of the placement on the achievable data rate can
be significant.

APPENDIX

A. Proof of Theorem 1

Taking into account expression (22) of , that is

we introduce a new set of coefficients to remove the dependence
among the elements of vector .

Consider the mixture coefficients that
satisfy and

and the following pdf:

(36)

Define the function

(37)

(38)

Observe that from (36) and (22), we have .
Defining , and , then
is a bijective function. is given by

and are both discrete sets with finite number of elements.
Define as the smallest closed set that contains .
Clearly

(39)

Observe that the set is a bounded set with bounds given by
linear constraints. A point is a vertex if and

, we have

The set of vertices of is given by
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There is the following relation among the regions above
. Note that the vectors in region take continuous

values. Consider the problem of finding that maximize

(40)

From the convexity of the FIM functional and the convexity of
the region , it is straightforward that the solution .
Moreover, since , we have

(41)

It follows that any solution of problem (15) is given by
, which means that the set of solutions of (15) is the

set . The set contains all those vectors
for which one of the vector elements has its maximum possible
value.

B. Proof of Theorem 2

We show the theorem by considering a specific suboptimal
estimator denoted and showing that

(42)

Using the optimality of the MMSE estimator, i.e.,
, the lemma follows.

The estimator considered first detects the position
of the interference packet with respect to the training symbols
and then does linear estimation based on the detected position.
The estimator is defined such that if the detection is correct, then
the estimate obtained is the same as the one given by the genie
estimator. The proof shows that the probability of error can be
made arbitrarily small by increasing , and the estimation error
is bounded for the cases when detection is wrong.

The detector is described by its decision regions

if (43)

The decision regions are given by

diag

is the vector of absolute values, and the threshold is a pos-
itive number that can be chosen function of , is the step
function for , and is the vector with
components . The threshold will be chosen function of
the interference power . The diagonal matrices have been
defined in (8).

Using the detected value , the estimator is

(44)

and its MSE is given by

To show the theorem is enough to prove for each that

(45)

In the previous equation, is the genie-aided estimator
that was already defined.

(46)

Relation (46) holds because if , then
, as it was mentioned before.

The second term can be upper bounded as

(47)

Look first at the second factor that is the . We have

(48)

For any fixed , there is a such that

The elements of are bounded for any values of the pa-
rameters involved and for any choice of ; the same is true
for the vector .
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The bound can be computed explicitly. Defining
, we get

(49)

Now, continue with the expression under the in (47). A
calculation using Gaussian pdfs shows that

From a similar argument as before, there exist constants
, such that

Using this in the formula of , we obtain

(50)

For any square matrix , denote by and the
minimum and maximum eigenvalues, respectively. We have the
inequalities

Substituting in , we get

(51)

We have , which is bounded away from zero.
Observe that the expression that multiplies
is uniformly upper bounded by a constant that does not
depend on . Therefore, does not depend on
or .

We showed that

(52)

To complete the proof of (45), we show that

Use the union bound to upper bound the error probability. The
distribution of conditioned on is given by (10). Consider

. In this case, the marginal conditional dis-
tribution of each element is given by

if

if

Thus, we can write

(53)

(54)

To show that such that
, just choose such that

and then such that .
The proof is similar for the rest of values .
This completes the last step of the proof of (45), and the theorem
follows.

C. Conditional Probability of Detection Error

In this section of the Appendix, we will derive the detector
and the conditional probabilities of error . Toward this,

we first derive the binary ML detector without considering
. Then, we derive the probability of error for this

binary detector. From the transmission model (1), the th
received symbol (assume , i.e., data symbol) is given by

(55)

The receiver uses the genie estimator, i.e., it knows the realiza-
tion of the random variable . Consider and write the
channel parameter , where is
the genie estimator (24). The received data symbol becomes

(56)

Conditioned on , the random variables and
are independent complex Gaussian with distributions

The pdf of the observation conditioned on , and the
transmitted symbol is
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if or or
if and
if and
if and

(63)

if
if
if

(64)

(57)

The arguments and in the expressions of and were
omitted for simplicity.

Assuming that the transmitted symbols are equiprobable, the
symbol-by-symbol maximum likelihood (ML) detector for the

th symbol (which is assumed to be data symbol) is found by
solving

(58)

Taking into account the monotonicity of the exponential func-
tion, one can show that

sgn (59)

Conditioned on and , the received signal is Gaussian;
thus, can be computed using the well-
known formula for the probability of error of BPSK signaling
in Rayleigh fading [14]. If is the received complex
signal, is the BPSK transmitted symbols with equal
priors, is the known channel parameter, and

is the noise, then the probability of detection
error when sgn is given by

(60)

Substituting and
in (60), we obtain

(61)

When the interference power is high, the probability of detection
error is close to one half if the current data symbol is hit or if all
the training symbols are hit:

These two situations were defined as erasure events; when the
power of the interference is high , the receiver can
detect them accurately (i.e., detect with negligible error).
We obtain the detector (30)

erasure if or
sgn otherwise

(62)

For channel , the conditional probability of detection error
(conditioned that no erasure occurs) was defined as

To give the probabilities in a convenient form, we intro-
duce some new notations. The training symbols divide the
data symbols into maximum data blocks. For each

, define as the set of indices of the th block of
data symbols and its size [see (63) and (64), shown at the
top of the page].

The conditional probability of detection error is given below
for each of the cases and
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