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Abstract

Channel estimation is one of the key components of space-time systems design. The transmission of pilot
symboals, referred to as training, is often used to aid channel acquisition. In this paper, a class of generalized
training schemes that allow the superposition of training and data symbols is considered. First, the Cramér-
Rao lower bound (CRLB) is derived as a function of the power allocation matrices that characterize different
training schemes. Then, equivalent training schemes are obtained and the behavior of CRLB is analyzed
under different power constraints. It is shown that, for certain training schemes, superimposing data with
training symbols increases CRLB, and concentrating training power reduces CRLB. On the other hand, once
the channel is acquired, uniformly superimposed power allocation maximizes the mutual information, and
hence the capacity.
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I. INTRODUCTION

A major challenge in wireless space-time communications is coping with channel uncertainties. While
Shannon theory does not mandate channel estimation [22], the idea of acquiring the channel state before
decoding, either blindly or through the use of pilot symbols, is entrenched in practice and has also been
proposed for space-time systems [1], [15], [16], [17], [18]. The use of pilot symbols, however, may impose an
unacceptable overhead that limits the effective data throughput. Here system designers must consider two
contradictory goals. On the one hand, it is desirable to minimize the number of pilot symbols in a data packet
so that more information carrying symbols can be transmitted. On the other hand, more pilot symbols result
in better channel estimation hence reducing the symbol error rate and the need for packet retransmissions.

Conventionally, each transmitted symbol is either a pilot or a data symbol. Furthermore, pilot symbols
are clustered so that training-based techniques which use received samples corresponding only to the pilot
symbols can be applied. For such schemes, observations affected by the unknown data are discarded. Although
training-based techniques simplify receiver design, they may carry a substantial penalty in performance for two
reasons. First, the received samples corresponding to the unknown data contain valuable information about
the channel. It was first established by de Carvalho and Slock [19] that the channel estimation errors can
be reduced significantly by using semiblind techniques which utilize all observations for channel estimation.
The second reason comes from the placement of pilot symbols in clusters suitable only for training-based
techniques. It has been established recently that placing pilot symbols optimally provides gain in channel
capacity [13], [9], [8] and reduction in symbol and channel estimation error [10], [20], [12].

A more general form of training that allows the superposition of pilot and data symbols has attracted
attention recently [5], [8]. Such schemes, proposed earlier in [6] and [4], allow us to allocate power to data
and training differently, perhaps in an adaptive fashion. It is hoped that, despite the additional complexity
introduced by the mixing of pilot and data symbols, some performance gain over the conventional techniques
can be realized. Furthermore, it is also hoped that the constant presence of pilot symbols in the data stream
will somehow improve the tracking capability of the receiver for time varying channels.

In this paper, we consider the channel estimation problem for multiple-input multiple-output (MIMO) sys-
tems that use the orthogonal block codes proposed by Tarokh, Jafarkhani and Calderbank [2]. In addition
to the placement of pilot symbols in time, we must now take the spatial domain into consideration. Within
the framework of semiblind channel estimation that utilizes all observations for channel estimation, and using
the Cramér-Rao Lower Bound (CRLB) as the performance measure, we examine general training strategies

that allow the superposition of pilot and data symbols. In particular, we consider the effect of number of
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training symbols, specific training signal used, and power allocation of training symbols on CRLB. To this end,
we characterize general training schemes by the power allocation matrices that specify, for each transmitted
symbol in the space-time coordinate, the amount of power used for training and data respectively.

The challenge of finding the optimal (even a good) training strategy is twofold. First, one needs an expression
of CRLB as a function of the power allocation matrices. Although conceptually simple, such an expression is in
general complicated and not easy to optimize. Fortunately, by exploiting special properties of the orthogonal
codes, we are able to simplify the CRLB expression to the point that equivalence among certain power allocation
schemes can be established. The second challenge is to minimize, under a certain power constraint, the CRLB
with respect to the power allocation matrices. This is again intractable in general. For the orthogonal codes
presented in [2], however, we are able to show a convexity property of the CRLB. This leads to an optimal
power allocation strategy under the per-symbol power constraint among those training schemes that have one
pilot symbol transmitted in each block. It turns out that superimposing training with data is not optimal for
channel estimation, although, with other considerations such as channel tracking and capacity enhancement,
such a technique may be an appropriate compromise between accuracy in channel estimation and high rate
in data transmission. While the optimal power allocation for the most general case is still unknown, our
investigation reveals power allocation patterns that favor channel estimation in the acquisition stage and the
optimal allocation once the channel has been acquired.

Finally, one must question that whether the CRLB is the appropriate measure. The use of CRLB as the
performance measure is motivated by the consideration that training placement is a transmitter technique, and
its design should not be affected by the specific technique used at the receiver. Furthermore, the asymptotic
efficiency of maximum likelihood (ML) technique lends support for the use of CRLB. In this paper, we have
also implemented the ML estimator and found that, for the case of using finite data samples, the performance
of the ML estimator is still close to the CRLB.

This paper is organized as follows. In Section Il, we present the framework and the assumptions used. The
CRLB is computed in section Il and it is followed by the analysis of its behavior in section IV. Numerical
results that complement the theorems are presented in Section V. We conclude in Section VI. The proofs of
the theorems are presented in the Appendix.

Notations used in this paper: matrices and vectors are in boldface with matrices usually in capital letters,
the vectors are column vectors, ® is the Kronecker product, diag(A) is the vector obtained from the diagonal
entries of matrix A, diag(a) is the diagonal matrix having a on the diagonal, tr(A) is the trace of the matrix

A, det(A) is the determinant of A. vec(A) is a vector obtained by stacking the columns of A. (-)7 denotes
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the transpose, Re{-} and Zm{-} are the real and imaginary part respectively. E denotes the expectation. I
is the identity matrix, 1 and O are the vectors that have all the elements 1 and 0 respectively. cov(y) is the
covariance matrix of the random vector y. N (i, C) denotes a Gaussian probability distribution function (pdf)
with mean p and covariance matrix C. A > B with A and Bbf sqare matrices means that their difference
A — B is positive definite, similar A > B means that A —B is positive semidefinite. [A];; means the element

of A with coordinates (i, j), the vector ey is the k — th vector of the standard basis.

Transmitter 1 jq:»“"qn’"” ““““ :,:'7" Receiver 1
S(t) = Y, Xisi(t) ST Y = AS() + N(@)
aml \\0,1\??
Transmitter m j/?—/: —————— Qmn.____ Receiver

Fig. 1: An m-transmitter n-receiver space-time system.
figure

IT. MODEL/PROBLEM DESCRIPTION
A. Space-Time Block Codes

Consider a multiple antenna system with m transmitters and n receivers as shown in Fig. 1. In this paper
we consider only rate one codes and real symbols, which means that a block of N symbols is transmitted
within N symbol periods. For block t, denote by S(t) € R™*¥ the input of the m antennas; the kth column
of S(t) corresponds to the transmitted vector in the kth symbol interval. The space-time code proposed by

Tarokh et al. [2] has the following form
N
S(t) =) Xisi(t), (1)
=1

where {s1(t),...,sn(t)} is the block of N transmitted symbols and {X; € Z™"},_;  x are the space-time
block code (STBC) integer matrices, that satisfy

xx! = { Lexr 127 @)
The theory of orthogonal designs also shows that (see [2]), for rate one codes and real symbols, the family
{X;, i=1,...,N} exists if and only if N is 2, 4 or 8. It is shown in [7] that using N single user detectors
in parallel, the choice of the matrices {X;, i =1,..., N} as above provide the best SNR.

Under the quasi-static flat fading model with coherent time of B blocks, the received signal matrix for the
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t-th block is given by
Y(t) = AS(t)+N(t)

N
= A) Xsi(t)+N(t), t=1,---,B, (3)
=1

where A € C"*™ is the channel matrix and N(¢) is the additive complex Gaussian noise.

In the sequel we need the received signal and the parameters represented as column vectors. Denote

y(t) vec (Y (1)), n(t)Svec (N(1), (4)

a

>

vec (A7), w;2 (I, ® X7) a. (5)

The received signal in one block can then be written as

N
y(t) = wisi(t) + n(t). (6)
=1

For real symbols and white noise, the structure of the space-time code does not depend on the number of
receiving antennas, and Eq. (6) can be rewritten by separating the real and imaginary parts of the channel

and noise:
N
Re(y(t)} | _ ro o\ [ Refa} ], [ Refn}
| Zatriy | = (e LX) | pngay || Tmfn) |-
1=
Thus a system with n receiving antennas and complex channel coefficients is equivalent to a system with 2n

receiving antennas with Gaussian noise N (O, "2—21) For simplicity, in the rest of the paper we consider the

system described by (6) with all the channel coefficients real and real noise n(t) ~ N (0, o?I).

B. Generalized Model for Training Symbols

In this section we introduce a generalized model for training strategies. To allow superimposed placements,
the ith transmitted symbol s;(t) of block ¢ is expressed as a linear combination of a pilot symbol and a data
symbol

si(t) =/ duvi(t) + Vyiui(t), i=1,...,N, t =1,...,B, (7
where v;(t) is the known pilot taking values from {£1} and u;(t) a data symbol drawn independently from a
distribution with zero mean and unit variance. The coefficients ¢;; and +;; specify the power of the training
and data symbols respectively. Therefore, the placement of pilot symbols within the coherent time of B blocks

can be completely specified by the two N x B power allocation matrices

® = [¢17"'a¢B]a ¢t = [¢1ta"'a¢Nt]T7 (8)

r = [’717"-7’73]’ Y = [’Ylta""fYNt]T' (9)
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It is necessary to impose constraints on power allocation schemes. In this paper, we consider two types of
constraints:
1. Average Power Constraint (APC): \We assume that the average power per B blocks, each transmitting N

symbols, is BN, i.e.,

B N B N
SN E{(si0)?} = 30D (u + i) = BN. (10)

t=1 =1 t=1 i=1

2. Per-symbol Power Constraint (PPC): As a special case of APC, PPC is a stronger constraint imposed on

each symbol:
E{(s:(t))*} = ¢it + vir = 1. (11)

Power allocation schemes that specify training schemes can be illustrated graphically. Shown in Fig. 2 is a
general power allocation scheme under PPC applied to the transmission of B = 12 consecutive blocks with
N = 4 symbols per block. Each column corresponds to one block of symbols transmitted together within
N = 4 symbol intervals. Within each square, the shaded part represents the percentage of power allocated to

the training part. To illustrate the power allocation under APC, a similar 3D bar-diagram may be necessary.

S1
52
53

84

1234567 89101112 t

Fig. 2: A general power allocation scheme under the power constraint (11)
figure

Of particular interest are two special classes of power allocation schemes:
1. The horizontal placement, as illustrated in Fig. 3(a), is a scheme that places pilot symbols only in one

symbol subsequence, say, without loss of generality, s1(t). The power allocation matrices {®,I'} satisfy
i =0,y =1, Vi=2,...,N, Vt.

The periodic horizontal placement is a horizontal placement that repeats itself every N blocks - fig. 3(b). The
uniform horizontal placement, shown in Fig. 3(c), refers to the case when all pilot symbols in the horizontal
placement have the same magnitude, i.e., y1¢ = 7.

2. The vertical and uniform vertical placements, as illustrated in Fig. 3(c-d), are defined similarly. The periodic
vertical placement is when the pilot symbols are placed periodically with period N, as shown in Fig. 3(e). It
is important to note that the uniform schemes are under PPC.

Note that the conventional training-based technique corresponds to the periodic vertical placement with v = 0.
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Fig. 3: Power allocation schemes defined previously- (a)-(nonuniform) horizontal
scheme, (b)-uniform horizontal scheme, (c)-uniform vertical scheme

C. Assumptions

(¢)

figure

The following assumptions will be imposed throughout this paper.

A1 The noise n(t) is i.i.d. Gaussian with zero mean and covariance oI

A2 The pilot symbols are binary, v;(t) € {£1}.

A3 The data symbols u;(t) are i.i.d. (in both ¢ and i) Gaussian with zero mean and unit variance, i.e.,

ui(t) @ N(0,1).

A4 Random variables {u;(t),n(t),Vi,t} are mutually independent.

A5 The code matrix X satisfies X; = In or X1 = [I; ON—mxm]-

Collecting all observations in a vector y2[y” (1), ---,y* (B)]”, under A1-A4, we have y ~ N (i, C) where

u

C

The assumption that

N
A
= [pf, uB" SRy ()} = wiv/duvi(t) (12)
=1
A N
= diag[Cuy,...,Cnral, CuZcov{y(t)} =) wiw] vir +o’Ion. (13)
=1

pilot symbols are binary is not critical. The Gaussian assumption on data symbols,

however, is essential for obtaining the CRLB and other results in this paper. In addition to making the

problem analytically tractable, this assumption is partially justified because the capacity attaining signaling,

under the assumption that the channel is known, is Gaussian [23]. For unknown and time invariant channels,

the Gaussian signal is optimal for minimizing outage probability if the channel estimator used in the decoder is
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consistent [9]. Assumption A5 is made without loss of generality since the CRLB does not change if columns

of all code matrices are permuted the same way or if one column of all code matrices changes the sign.

D. An Information Theoretical Perspective

Before we tackle the problem of channel estimation using superimposed training, it is relevant to examine the
ultimate gain of such a scheme. Here we assume that the transmitter does not know when and if the receiver
has acquired the channel. Therefore, the pilot symbols are transmitted indefinitely. Let us also assume that
the receiver uses an estimator with strong consistency. Following the same argument in [9] where it is shown
that the achievable transmission rate is not affected by the use of a strongly consistent channel estimator
at the receiver, we can then assume that the channel is known at the receiver. We now ask: what is the
placement strategy that maximizes the mutual information between the transmitter and the receiver?

Theorem 1: Themutualinformationbetweertheinputandthe output
I(y;s1(1),---,sn(1), - ,s1(B),- -, sy(B)) doesnot changeunderary permutatiorof the coeficients{;}.

If we constrairthe totalamountof power thatcanbeusedto transmitpilot signalsto P;,, i.e.,

B N
>3 Ykt < BN — Py,
t=1 k=1
thentheuniform schemewith
Py
=1- =1...N,t=1...N 14
Vet =1 NGB Vk =1 =1 (14)

maximizeghe mutualinformationbetweertheinputandthe output.

Proof: see the appendix O

Of course, the above theorem tells only what happens if the channel has already been acquired. Nonetheless,
it shows that if the transmitter always needs to include pilot symbols in its transmission, the superimposed
strategy with a uniform placement of pilot symbols is the best. Next we look at the other part of the problem

that addresses the issue of channel estimation, using a different information measure—the Fisher information.

III. FISHER INFORMATION AND CRAMER-RAO LOWER BOUND
The Fisher Information Matrix (FIM) is defined as

F(a,®,T,v,0) = —E{Vilnp(y;a, ®,TI,v,0)},

and the CRLB matrix R(a, ®,T', v, o) is given by the inverse of FIM. In particular, for any unbiased estimator
a, we have

E(a —a)(a—a)’ >F!(a,&TI,v,0)2R(a,&,T,v,0).
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In the definition above, we have specified all relevant parameters. In order to simplify the notation in the
rest of the paper, we will write only those parameters of interest. In most of cases, only the power allocation
matrices ® and I' or some columns of these matrices are listed. If the power allocation matrices have a special
form and depend only on one parameter, we will use only that parameter in the argument of FIM or CRLB.

The i.i.d. assumptions on noise and data make the FIM additive. Specifically,

B
F(®,T) = Fi(d,7s), (15)
t=1

where F;(¢;, ;) is the FIM defined for block ¢. Under the Gaussian assumption (A1,A3), the FIM has a well

known special form given by [24]

_ | Omy g 1 | Opy 1 10Cy  10Cy
[Fe (70l = [8—%] Cu Ba; +5tr |Cu a—aictt da; |’

where a; is the th component of vector a.

A. FIM and CRLB Expressions

We now present the expressions of FIM and CRLB on which the derivation of further properties and
optimizations is based. The first expression is for the general case followed by a more compact expression for

the horizontal placement. Necessary notations are listed in Table I.

A < A
pZO'_Z Vt:[Ul (t), . ,’UN(t)]T

A A
VV:[Wl,...,WN] Fi:—%g = [fily"'afiN]

A A

G=diag[v1s, ..., ne] | Pi=diag [/due, - -, VP
A A :

Dt:dlag[Alt, cey ANt] Ait: — W
H,AWTF, — o1

TABLE I: Notations in the CRLB expressions
table

Theorem 2: TheFIM for estimatinghe channefrom therecevedvectory (t) is givenby
[F (T, @)]i; = [T1(t)]ij + [T2(8)]is, (16)
whereT (¢) is thepartcorrespondingo the mean
[Ty (8)];2vT Py(—H; + aT)Dy(H, + a;)Pyv, + p tr(P2)5;;, (17)
andTy(t) thecovariance

[T2(t)lij = aiaj (2¢° tr(D{GY) + 3pq tr(D,GY) + p” tr(GY))
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+0ij(pg® tr(D:GF) + p°q tr(GY))
+¢? tr(D:H,;G;DH;G;) — ¢° tr(D;H;GD,H;)
+2pq tr(D;H,;GH,G;) — pq tr(D;H;GH,)
+p? tr(GH;G,H;). (18)
Proof: The proof of this theorem involves a direct evaluation of FIM under the condition of code orthogonality
(2) which implies that w; are orthogonal vectors. The proof is given in the Appendix. O
The formula given above is for the most general placement scheme, and is difficult to analyze. However, in
the special case of the horizontal placement, the FIM has a compact form.
Theorem 3: Consideronly oneblock (t) of a horizontalpower allocationschemewith N € {2,4}, with power

allocationvectorsy, = [, 1,...,1]T andg, = [¢,0,...,0]T. TheFIM is givenby

N
Fr(vi#:) = go(OT+gi()ITwiewl J1 + go(t) > ITwywi Jo, (19)
k=2
g0(t) = pp+(pg® tr(DG?) + p*q tr(GF)), (20)
A
git) = (2¢° r(D}G?) + 3pq tr(D,GY) + p? tr(GF)) + $A,, (21)
A
gg(t) = ¢A1 + ’)’Al + (N — 2)A1 + Ay, (22)
where
T A 0l A 1

Proof. see the Appendix. O

Observe that for a (non-uniform) horizontal scheme with B blocks, we have

B B
F(T,®) =Y Fi(v; b)) = 9ol + I wiw] Ji+ g2 Y I wywl Ty, (24)
t=1 k=2
where .
A
9= gi(t).
t=1

Due to the orthogonality property of the vectors {w;} the inverse of the FIM can be easily computed if N = m.
This leads to the following corollary.

Corollary 1: Forahorizontalplacemenschemawith N = m, the CRLB is givenby

N
R =dpI+ dlwlwlT + do Z Wkwg, (25)
k=2
where
1 .
doé—, dzé — # (26)

9o 9o(g90 + qgi)
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Thetraceof the CRLB matrixis givenby

tI‘(R) = Ndy+ q(d1 + (N — l)dg). (27)
It is especially interesting that, if N = m, the eigenvalues of the FIM depend only on the norm of the
channel ||a|| and not the specific channel parameters. The same observation is valid for the trace of the CRLB

matrix which means that the CRLB on the MSE of the channel estimator is channel independent.

IV. BEHAVIOR OF FIM AND CRLB
A. Equivalent Power Allocation Schemes

We present two theorems that reveal the equivalence between two classes of power allocation schemes.

Theorem 4: For N € {2,4}, if thereis onesymbolblock thatcontainsasinglepilot, i.e., for someblockindex

&y = ger, vy =1 — (1 —7)e, (28)
the positionof thatpilot symboldoesnot affectthe FIM. SeeFig. 4.

Proof. see the Appendix. O

S1
59 —_
83
S4

1 23 4t 1 23 4t
(a) (b)
Fig. 4: Equivalent power allocation schemes in Theorem 4. The positions shaded by

. . . figure
light grey are where power allocations can be arbitrary. &

An immediate consequence of the above theorem is that, if only one pilot symbol is transmitted within each
block, it can be superimposed onto any data symbol (Fig. 5)(a),(b). Not so obvious is that this is not true in
general for N = 8 and if there are more than one pilot symbol transmitted within each block. In those cases,
it is possible that putting pilot symbols in different substreams gives different CRLBs.

The next theorem gives an equivalence between the uniform periodic horizontal and uniform periodic vertical
placements as shown in Fig. 5(b)(c).

Theorem 5: If N =2 or N = 4, theFIM is the samefor the uniform horizontalanduniform periodicvertical
placementvith N blockseachandequalparametety.

Proof. see the Appendix. O
The equivalence of these two schemes does not seem to be obvious. Indeed, if there is no noise and each

symbol is either a pilot or a data symbol, one block that contains N training symbols is sufficient for the
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51 T
FIM FIM

89 i —
s anfl )
54 [ |
1234t 1234t 1234t
(a) (b) (c)
Fig. 5: Power allocation schemes in Theorems 4 and 5: (a) a periodic scheme that
contains one training symbol in each block, all training symbols have equal

power, (b) the uniform horizontal scheme, (c) the uniform periodic vertical
scheme

figure

identification of the channel matrix. For the uniform horizontal placement, however, unknown data symbols
always present in the observation. Nonetheless, it can be shown that the uniform horizontal placement of N
blocks with full training symbols also leads to the identification of A. This result is a consequence of the
special properties of the orthogonal block codes, and it appears that this special code provides a symmetry
in space and time; if we transpose the matrix of transmitted symbols the estimate of the channel does not
change. Again, in general this result does not hold for N = 8 or if the placement is not uniform.

One may question the practical validity of the horizontal placement. By allowing the continuous transmission
of data and pilot symbols, it seems that the the horizontal placement may offer better tracking capability for

time varying channels.

B. The Convexity of FIM for Horizontal Placements

We now restrict ourselves to the horizontal placement with N € {2,4}. The convexity result is best
illustrated in Fig. 6. Suppose that we start with a uniform horizontal placement where every pilot symbol has
the same power. Now let us make the training power uneven by moving part of the training power from the
second block to the first, and the same amount of data power from the first block to the second. How does
the FIM vary?

CRLB

- 1 —C —

Fig. 6: Power allocation schemes compared in theorem 6 for N = 4.

figure

Theorem 6: Suppose¢hatonly onepilot symbolis transmittedn someblockt undePPCi.e., v, = [v,1,...,1]T
andy € (0,1) and¢; = (1 — y)e;. ThenV(¢ € (0,1) suchthat0 <y —( < v+ ¢ < 1,theFIM F(v) = F;(v,)
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correspondingo block ¢ satisfies
By =)+ F(y+0) > F(). (29)
Proof. see the Appendix. O

If we apply this theorem to two blocks, it is then apparent that one should allocate training power unevenly
as illustrated in Fig. 6. Please note that the sign {<} between the schemes illustrates the fact that the RHS
is “better” than the LHS, according to the CRLB criterion, which actually means that the relation between
the traces of the two CRLB matrices is opposite. It is then a direct consequence of the convex property in
Theorem 6 that one should avoid superimposing pilot with data symbol, and the optimal horizontal scheme is
given by the following corollary.

Corollary 2: Under PPCwith total training power Py,., the optimal horizontalplacemenis given by making
| P, ] symbolswith full trainingandallocatingthe remainingtrainingpower P, — | P, | to asinglesymbol. The
restof the symbols(if therearesuchsymbolsleft) will containonly data.

If, however, the average power constraint (APC) is used, it is then possible that one symbol is transmitted
with power greater than unity. In this case, one suspects that FIM can be increased further. The answer is
affirmative as shown in the next theorem and illustrated in Fig. 7. In words, if there are two blocks, each with
one pilot symbol. If the training power in one of the block is 100% and the other is not, the FIM increases by
concentrating all the power to one block.

Theorem 7: For N € {2,4}, considettwo blockst; andt, anddenote

¢, 2 [1,0,...,07, v, 2[0,1,...,17, (30)
b, £ [1-¢0,...,07, v, 20 1,...,1] . (31)
Thenfor ary ¢; < ¢o,
F(’Ytla’Ytza‘i”tl + ¢1ey, ¢t2 — ¢re1) < F(’Ytla’Ytp ¢t1 + ¢oe1, ¢t2 — ¢oey) (32)
It follows immediatelythat
tr(R(V4y s Vip0 Pr, + D101, @y, — d1€1)) > r(R(v4,, 74y, Py, + P21, Py, — P2€1)) (33)

Proof. see the appendix. O
We note that, from the proof of the theorem (see Eq. (100),(102) and the comment that follows) that the
FIM (and the CRLB) does not change if v+ = 0. In other words, combining the energy of two full training

symbols neither decreases nor increases the CRLB.



SUBMITTED TO /IEEE TRANS. ON SIGNAL PROCESSING, OCTOBER 2001 14

CRLB 1 4,

1 ! 1—¢—¢ — 1 ::ﬁ

v 1—¢2—¢

1+ ¢

Fig. 7: Power Allocation schemes compared in theorem 7
figure

From Theorem 7, it follows that the power allocation scheme that is optimal under PPC can be improved
by concentrating training power to a fewer number of pilot positions if one allows supraunitary power for some
symbols. It also shows that superimposed horizontal training can not be optimal.

In order to find the optimal power allocation for APC constraints, one must now look at power allocation
for data symbols. Here, unfortunately, we can only conjecture that it is also preferable to allocate data power
unevenly.

Conjecture 1: ConsiderN € {2,4}, m = N andahorizontalpower allocationschemenadeup of two blocks

definedasdefinedbelow :

¢ = [4,0,...,0]7, t=1,2, (34)
vi o= [y+¢1,..,107, (35)
Yo = [’)’—C,].,...,].]T. (36)

ThenVe,~,( suchthatd < ¢ < 1,0 <y —-(<y+(<1

I tr(R(y,¢, )
—— T ). 37
o < (37)
O
In the conjecture above the assumption m = N is important because this allows us to use the formula (27)
of the trace of the CRLB matrix. The above conjecture can also be stated differently. Consider two power

allocation schemes as in the conjecture with parameters (v, (1, ¢) and (v, (2, ¢) respectively, with {; < (.

These schemes are represented in Fig. (8).Then, tr(R(v,(1,¢)) > tr(R(y, (2, 9)).

. CRLB ¢
¢ -
7+G Wf—cl — G m

Fig. 8: Power Allocation schemes compared in conjecture 1

=26

— G2

figure

C. Summary Scenarios

Fig. 9 summarizes our results graphically. Fig. 9(a) is the uniform horizontal scheme which can be improved

by Theorem 6 to Fig. 9(c) via Fig. 9(b). This is the best under PPC. If APC is used, Fig. 9(c) can then be
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improved to Fig. 9(d) using Theorem 7. The same theorem says that the scheme in Fig. 9(e) and (d) have
the same performance. Our conjecture suggests that Fig. 9(d),(e) are better than Fig. 9(f) and Fig. 9(g). In

section V some numerical evaluations are given.

b ok

(a (b (c e (f) ()

Fig. 9: Power allocation schemes compared - application of convexity theorem
figure

V. SIMULATIONS AND NUMERICAL RESULTS
A. CRLB under Superimposed Training

In this section we want to see how does the amount of power allocated to training and the power allocation
scheme influence the CRLB. Fig. 10 illustrates the variation of the trace of the CRLB matrix with the amount
of power allocated to training for a system with N = 4, m = 4, n = 4 that uses a uniform horizontal placement
scheme under PPC with B = 32 blocks. The channel parameters have been chosen randomly. As we expect,
the CRLB decreases when the amount of training is modified. The figure reveals the behavior of the CRLB
for the superimposed schemes with the SNR. At low SNR the influence of the amount of training is low, but
it becomes large at high SNR. The performance of the superimposed schemes is limited by the data symbols
that are unknown.

Fig. 11 compares the performance of schemes under PPC with the same amount of power allocated to
training but in different ways. The system has m = 3, N = 4, n = 5, and number of blocks B = 32.
The channel parameters have been chosen randomly. The uniform horizontal power allocation scheme was
compared to the corresponding uniform power allocation scheme. We chose two values of the parameter 7y
of the horizontal schemes and then determine the allocation matrix of the uniform schemes such that the
two schemes have the same power allocated to training. When the total power allocated to training is high
(7 = 0.1) then the difference between the two schemes is significant, i.e., the horizontal scheme (represented

with continuous line) is much better. When the power allocated to training is low (y = 0.8) then the
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performance of the two schemes is similar but (as we expect ) lower than in the previous case.

CRLB vs noise power
T T T

CRLB [dB]

i i i i i i i i i
5 10 15 20 25 30 35 40 45 50
1/0? [dB]

Fig. 10: m=4, N=4,n=4
figure

CRLB [dB]
i
5

1/0? [db)

Fig. 11: m=3, N=4,n=5
figure

B. Application of Convexity Theorems

We'll compare numerical some horizontal schemes with N = m = n = 4, B = 32, and Pigining = 2.5.
A comparison between these schemes has already been done in subsection IV-C that follow the convexity
theorems. Also, the schemes have been represented in Fig. 9 from the same subsection. Note that in the
figure is represented only one period of N = 4 blocks. The channel parameters have been chosen randomly.
The variation of the CRLB with the SNR for different allocation schemes is plotted in Fig. 12. We'll refer to
an allocation scheme by its index in Fig. 9.

It can be easy observed from Fig. 12 that the difference between the plots (a),(b) and the others is really big.

This means that modifying the power allocation scheme under the conditions of theorem 6 leads to significant
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CRLB vs noise power
10 T T T

CRLB [dB]

5 10 15 20 25 30 35 40 45 50
1/0? [dB]

Fig. 12: Comparison of different placements: for the schemes depicted in Fig.9 the

plots are from top to bottom : (a),(b),(g);-(f).(e),(c),(d) indistinguishable figure

changes of the CRLB. The modification of the scheme that is analyzed in theorem 7 produces a negligible
effect on the CRLB, the performance plots for the schemes in Fig. 9(c),(d),(e) are indistinguishable. While
the scheme in Fig. 9(f) is similar to the previous ones, the one represented in Fig. 9(g) is a little bit worse.

Thus the modification of the CRLB under the conditions of conjecture is small.

C. Comparison between semiblind and training-based-only estimation techniques

In this section we want to compare the performance of semiblind and training-based only estimation schemes.
However, such a comparation would not be fair for a superimposed scheme because the data will act like
noise in the training-based-only case. Thus we have considered a uniform vertical power allocation scheme
(N =m =n =4, B = 32 blocks, channel chosen randomly) with v = 0 (i.e., full training symbols) and
compared the performance of the two approaches. From theorem 5 we know that the performance of the
vertical scheme used is the same as the performance of the corresponding horizontal scheme. From Fig. 13
it can be observed that the performance of the semi-blind algorithm is 4dB better than the performance of
a training-based algorithm. However, it is easy to see that in order to have reasonable performance with
training-based only estimation we need to have blocks that contain only training, i.e., the training-based only

estimation can’t be applied efficiently if the power allocation scheme used is not uniform vertical with v = 0.

D. The ML Algorithm

The channel estimation algorithm that was used was a semiblind Maximum Likelihood Algorithm using

the scoring method. The numerical results that are presented were obtained using the following setup. The
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CRLB vs noise power for semiblind and training—based-only estimators

T T T T
—4— semiblind
—t+ training—only

-25

CRLB [dB]

)
w
S

-35

5 10 15 20 25 30
1/0? [dB]

Fig. 13: CRLB for semiblind and training-based-only estimators.
figure
training symbols were binary, {£1}, the parameters values were N =4, m = 3, n = 5, the number of blocks
considered B = 32. The channel coefficients were chosen randomly. 500 Monte Carlo simulations were
performed. We evaluated the sum of the CRLBs for all parameters.

From Fig. 14 it can be observed that the average performance of the ML channel estimator is close to the
CRLB. Similar results have been obtained using different system setups. This means that analyzing the CRLB
is a good way to predict the behaviour of the performance of the channel estimation algorithms when the
power allocation scheme is modified.

CRLB and variance for different allocation powers

~ —©-clb-0.1

E T~ -O- var-0.1

BES — crlb - 0.25
~ —x- var-0.25 ||
< —4— crib-0.4
—A- var - 0.4
—*— crlb- 0.6
—- var-0.6

CRLB and variance [dB]

5 10 15
1/0? [dB]

Fig. 14: CRLB and MSE of the ML estimator for m =3, N =4, n = 5.
figure
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VI. CONCLUSIONS

This paper deals with channel estimation in communication systems that use a class of space-time orthogonal
block codes. We have considered a general class of semiblind channel estimation techniques with superim-
posed data-pilot symbols. We have derived a closed-form expression for the FIM and further investigated the
behaviour of CRLB for different channel estimation schemes. It was shown that for a subclass of codes the
uniform horizontal scheme provides the same performance as the vertical one. Also we have characterized the
behaviour of the CRLB for horizontal schemes when the power allocation parameters are varied.

What has not been achieved in this paper, unfortunately, is to find the optimal placement, which remains
an open and challenging problem. What is clear though is that the placement that maximizes the mutual
information is not the same as one that gives maximum Fisher information. To reach a sensible compromise,
one must reformulate the problem in a different setting, allowing both channel estimation and detection errors
be part of the overall consideration. Along this line, approaches like those of Hassibi and Hochwald [21], or

Adireddy, Tong and Viswanathan [13] may be considered.

APPENDIX
A. Proof of theorem 1

If the channel is known, for Gaussian input symbols we have

1 1
I(y;s) =  log| det(cov(y))| — 5 log| det(o*T),

where sé[sl(l), cooysn(1),...,81(B),...,sn(B)]T. Using the properties of the space-time block codes we
have :
B N
det(cov(y)) = det(C(a)) = > " M TT T (amme + %), (38)
t=1k=1

because qyxs +0? and o? are the eigenvalues of C(a), o2 having multiplicity B(nN — N). It is straightforward
that under the constraint given in the theorem the determinant and thus the mutual information is maximized

if g are equal.

Properties of the STBC matrices

Most of the theorems derived in this paper rely on the special properties of the STBC matrices used (2).
In this section of the appendix we derive some extra properties of some STBC families of matrices, properties
that will be used in the proof of theorems.

Lemma 1: ConsiderN € {2,4} and{X;, i = 1,..., N} afamily of N x N matricessatisfyingconditions(2)

andX; = Iy. Constructhefamily Z,éXZ-X[, wherek is fixedand: € {1,..., N}. Thenwe have thefollowing
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Vie{l,...,N} 3j€{l,...,N} suchthatZ, = +X,
Proof.:
If K =1 then the statement is straightforward.
If i =1 then Z; = Xf = —X, thus we just choose j = k.
If i = k then Zy = X;XI =1 = X; so we choose j = 1.

Thus the statement follows for N = 2. For N = 4 we have to show that:
Vi#k 3j€{2,...,N} such that X;X] = £X;.
Without loss of generality assume k = 2. We have the following :
X3X5 # +X1; X3X; # +Xo; XX # X3 (39)

Thus we must show that Xng = +X4.

The family {X1, X2, X3, X2 X1} satisfies the conditions (2). We'll show that if the family {X1, Xy, X3, Z}
satisfies (2) then Z is determined up to a sign. It follows that X, = +X,X7.

We know that in any of the STBC matrices each row and each column has only one non-zero entry.
The position of the nonzero entries of Z are determined by the other three matrices from the orthogonality
conditions (2). We assumed X; = I so the diagonal entries of the other three matrices are all 0. Also, because
X; =T we have Z = —Z” and the two nonzero entries below the main diagonal are determined by the other
two nonzero entries.

Denote by Z(k,:) the k-th row of Z. From X,ZT = —ZXQT it follows that there are k1 and k9 such that
Xo(ki,:)Z(ke, )T = —Z(k1,:)Xo(ko,:)T #0. (40)

This corresponds to a non-zero entry of ZXZ, so ki # ko.

Each row vector Z(k1,:) and Z(kz,:) contains only one non-zero entry. If the nonzero entries that are con-
tained in Z(k1,:) and Z(k,,:) are placed symmetrical with respect to the first diagonal of Z, then Z(ks, k1) # 0.
This implies Xo(k1, k1) # Owhich is false because Xy = — X7

Thus (40) provides a relation between two elements of Z which are not placed symmetrical with respect to
the main diagonal. This means that Z is determined up to the sign, which shows that X3X71 = +X,.

O
Remark : in Tarokh's paper [2] it is mentioned the connection between a family of 4 x 4 STBC matrices

and the quaternionic algebra, however, the statement of the lemma does not follow immediately.
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Lemma 2: ConsidetN = 4and{X;, i =1,..., N} afamilyof mx N, m < N, matricessatisfyingconditions
(2). Asin [7], denoteby {Z;, i = 1,..., N} thegeneratingamily of matrices. Definethe following family of

matrices:
Zl (ka :)

Gké s k=1,...
ZN(]{}, :)
Notethat, by thedefinitionof the family { Gy}, X, is madeup of thefirst m rows of G;. ConsiderthatG; = 1.

N

7

Thenfor ary fixedk we have
Vie{l,...,N} 35 €{1,...,N} suchthatX;G} G; = +X;. (41)

We have to obsere thatif we fix ¢ thenj is differentfor differentchoicesof k. It follows thatif we fix j we

have:
Vie{l,...,N} 3k € {1,..., N} suchthatX;Gi G; = +X;. (42)

Proof.
It is easy to show that {G,i € {1,..., N}} satisfies (2). X;G G = X;G] are the first m rows of G;G] .
Then (41) follows immediately from lemma 1.
]

Lemma 3: Considerthe samefamily of matricesasin lemma2. Thenfor ary choiceof 4 differentindices
k1, ko, k3, ks Wwe have:

Xy, X, = +Xp, X,

Proof:
Use (42) from 2 to choose k such that:

Xy, G = +X,

Then by (41) with i = ky we have,
X, Gy = X,

because all the other three choices for the RHS matrix are not possible. The statement follows.

a

Proof of Theorem 2

Using the properties of the STBC matrices (2) the following properties can be checked:
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£ ik, = —fp i, if k1 # ko, £ fiky = Okyks
WIF;, = H;+a1, FIW=-H,;+ql
H = —H,.

It is convenient to separate the expression of the elements of the FIM in two parts

[Fi (e, vy = Ti(t) + Ta(t),

Oy ! _1 ( Op
Ti(t) = c;t (22
0 = () et (3.

_ 1 ~10Cy ,_10Cy
TQ(t) = 2tl’ (Ctt Ba; Ctt 8aj .

In order to obtain the formula of the elements of the FIM in the theorem we write the following relations:

o
85t = FiPtvt, Ctt = WGtWT + 0'21 (44)
(2
c;' = WD,WT 41, 8;;? =F,G,W” + WG,F’. (45)
(2

Plugging the subexpressions above in the formula of the FIM and taking into account the special properties
previously listed we obtain the formula given in the theorem.

T (t) is quite straightforward, as follows.

O \" 1 (O

J
= v P,F;WD,W'F,P;v; + pv' P,F; F;P;v; (47)
= vIPy(—H; + a;I)D(H; + a;T)Pyv; + p tr(P7)6;; (48)

Denote
Ti(t) = vIPy(—H; + a;1)Di(H; + a;1)Pyvy (49)
A

Tio(t) = ptr(P7)dy; (50)

For T5(t) we need to substitute the covariance matrix and its derivative and then write down all the sixteen
terms. Then we simplify these terms exchanging the order of the terms under the trace and using the special
properties of the matrices involved. The next steps are grouping the simplified terms in pairs of identical terms
and substituting the formulas (44). Then we use once more the special properties of the matrices involved

and we collect the terms in order to obtain the expression of T5(t) given in the theorem.
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al 10Cy _10Cy
To(t)== —C;;
h(t)= 2“ (Ctt Ba; "t Ba]

With the notations previously introduced T5 becomes:
1
To(t) = 5tr (WD,W! + pI)(F;G, W' + WG,F])(WD,W' + o) (F;G, W' + WGF7))

In the following we write all the sixteen terms in the expression above, we simplify them and we see which of

them are the same and/or cancel.

The simplified expressions of the terms are listed in the third column.

My, | tr (WD,WIF,G;W WD, WTF,G,W7) q tr (D;W!F;G,D;WF; Gt)
Mt | tr (WDtWTFiGtWTWDtWTWGtF]T) tr (WDtW F,G,D,GF’
Mii01 | ptr (WDtWTFiGtWTFj GtWT) pq tr (DtWTFiGtWTFjGt)
Mz | ptr (WD;WTF,G;W WG, F?) pg tr (WD, W' F,G3FT )
Mg, | tr (WD, WI WG, FITWD,WF,G,W7) tr (D, G, FI WD, WTF,Gy)
Mz | tr (WDWTWG,FIWD,W'WG,F!) tr (WDthFTWDthFJT)
Mgz | p tr (WD, WIWG,FIF,G,WT) Ztr (DG FIF;Gy)

Migss | ptr (WDtWTWGtFiTWGtFJT) 0 tr (WDthFi WGtF]T)
My, | ptr (F;G,WTWD,WTF,G,W7) pq tr (F;G;D;WTF,G,W7)
Moy | ptr (FGtWTWDtWTWGtFJT) pd? tr (FiGiD,GF!

M | p? tr (F,G/WTF;G,WT) p? tr (F,.G,WTF;G,WT)
Maas | p? tr (FiGtWTWGtFJT> p2q tr (F@%F?)

Mooyt | p tr (WGtFiTWDtWTFjGtWT) pq tr (GtFZTWDtWTFjGt)
Mag1s | ptr (WGtFiTWDtWTWGtFJT> g tr (WGtFiTWDthF]T>
Moooq p2 tr (WGtFZTF]-GtWT) p2q tr (GtFiTFjGt)

Moy | 2 tr (WG FTWGFT ) o tr (WG FTWGFT )

In the next table the terms from the third column of the previous table are grouped and then are further

simplified substituting the formulas (44).
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Mi111 | Ti212 q2 tr (DtWTFZ'GtDtWTFjGt) q2 tr(DtHiGtDtH]‘Gt) =+ q2aiaj tr(D%G%)
Mio11 | Ti112 q2 tr (WDtWTF,GtDthFg’) —q2 tl’(DtHZG%DtH]) + q2aiaj tI’(D%G%)
M99 | Ti101 | pg tr(DtWTFiGtWTFjGt) Pq tr(DtHiGtHjGt) + pqa;a; tr(DtG%)

Mo111 | Toonn

Mao11 | Trioe | pg tr (WDtWTFinFJT) —pq tr(DH;G2H,) + pgaa; tr(D,G2)
M1z | Tigor | pg® tr (DiGF; F;Gy) pg’® tr(D,G7)é;;

Mos999 | Th191 p2q tr (GtFZTFjGt) p2 tr(GtHiGtHj) + p2aiaj tl’(G%)
Mago | Tz | pq tr (FZG%FJT> p*q tr(G7)di;

Group together the terms that contain a;a; the terms that contain J;; and the rest of the terms that contain

the matrices H.

Ty(t) = Tor(t) + Tho(t) + Tas(t) (51)
Toi(t) = aia; (2¢° tr(D}G?) + 3pg tr(DyG?) + p tr(G3)) (52)
Ty(t) = 6ij(pq” tr(DyGY) + pq tr(GY)) (53)
To3(t) = ¢* tr(DH;G:D;H;G;) — ¢° tr(D;H,;G;D;H,) (54)

+2pq tr(D;H;GH;G;) — pg tr(D;H;GIH,)
+p2 tI’(GtHZ‘GtHj)

The expression given in the theorem follows.

a

Proof of Theorem 3

First we'll present some properties that allow the simplification of the FIM formula for the horizontal case.

We'll exploit the structure of the matrices {H;} by defining the vectors {h;} and the matrices {B;} by the
relation below (h; is the first column of the matrix H; and B; is the block of H; obtained by deleting the first
row and the first column)

H; = [[0,h;]", [~h;, B/]"]. (55)

It is easy to observe that the matrices {B;} satisfy {B] = —B;}.

Proposition 1: For ary two diagonalmatricesof theform

Cké = diag(cok, Ck,---,Ck), k€ {1,2} (56)
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we have :
tr(C1H;CoH;) = —(co1¢2 + co2e1)h] hy — ciep tr(B;B;).
a
Proposition 2: We have :
[ g, by = —[HiHj]k, 5, k1 # ko
Proof-
Taking into account that H;j, ;, = 0, we can write

BLH gk, = Y [Falky e [Hylkg ko
k3#k1,k2

For N = 2 the statement is clear (both sides are 0). For N = 4 the sum has only two terms
[HiH 1k ks = [Hilkaks [Hjlksks + Eilkka [Hlrak

(H kg ke, = [Hlky s [Flilkaka + [Flky kg [Flilk gy

From lemma 1 and lemma 3 and the expression of the elements of {H;}we know that Vi € {1,...

[Hi]k1k4 = i[Hi]kskw [Hi]k41€2 = i[Hi]klks'

The statement follows.
O
Proposition 3: We have
tr(B;B;) = —(N — 2)h! h;.
Proof:

25

(57)

(58)

(59)

7N}

(62)

For N = 2 is clear. For N = 4 express the LHS using wy, and f;; and then apply lemma 1 if m = N or lemma

3ifm < N.

a

Now we return to the main part of the proof. For the horizontal placement scheme the matrices G, Dy

and Py, with t fixed, previously defined for the general case, become

G; = diag(7,1,...,1); Dy = diag(A, Ay, ..., A); Py = diag(\/$,0,...,0).

Using the special structure of the matrices above and the properties previously derived, the general formula

of the elements of the FIM can be simplified. We'll use the terms as derived in the proof of theorem 2.
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TllH(t) = VTPt(—HZ' + CI,ZI)Dt(H] + ajI)Ptvt
= —VTPtHiDtHthVt + aiajvTPtDtPtvt

= gbAlh,LTh] + a,-ajqﬁA,y

We have used vI'P,H,;D,;P;v; = 0.

Tiom (t) = p</>5z-j .

Tor(t) = aia;j(2¢°(?A)% + (N —1)A1%) + 3pg(v°A,

+H(NV = 1)A) +p* (7" + (N - 1))

Tou(t) = 65(pq°(VAy+ (N —1)A1) + p*q(v* + (N — 1))

Now compute T3 for the horizontal placement scheme.

Tosu(t) = ¢*(—2yA,A;hlh; + A2 t(B;B;))
—?(—(Ay A1 +v2AA)BT b 4+ A2 tr(B;B;))
+2pq(— (YA, + vA1)b] b + A; tr(B;B)))
—pg(—(A, +7*A1)h{h; + A tr(B;B;y))

+0*(~2yhTh; + t(B;B)

= (¢°A18y(y = 1)*hi'h; + (pgls + %) tr(B;B;)
+pg(Ay +72A1 — 2yA, — 29A;) — 2p>y)h! by
= (’YAI + Afy)h;rhj AN tr(BiB]’)

= (yA1+A,)hIh; + (N —2)Ahlh;

[FIM);; 2 Tiig(t) + Tiou () + To1a (t) + Toom (t) + Tosu (t)

26

(63)
(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)
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Tiou(t) = ptr(P])d;
Tuu(t) = aiaj (2¢° tr(D{G}) + 3pq tr(D:G}) + p* tr(GY))
Tyou(t) = 6ij(pg” tr(D:GY) + p*q tr(GF))
Tip(t) +Tosu(t) = ¢Ajaiaj+ (A +vA; + (N —2)A; + A,)h] h; (73)

The formula in the theorem follows from the following observations.

We have by definition,

wlJie;
h; = : ; (74)
w%}Jlei
which implies
N
hih; =e] I ) wiwiJre;. (75)
k=2
Also, since a = J¥'wy, it is clear that
aiaj = [J{ wiwiJi];;. (76)

The formulas above allow us to express the FIM in closed form instead of expressing each of its elements.

Proof of Theorem 4

Consider the received signal for one block
Y(t) = A) Xisi(t) + N(t). (77)

Consider first the case m = N, i.e., the code matrices are square.
We saw that we can assume wlog that X; = I. In order to show that the FIM does not change when we

change the symbol in which the pilot is inserted, we consider the following two signals :

N
Y@ = AXyso(t) + A Xu(t) + N()
1=2

N
YE(1) = AXpso(t) +A > Xui(t) + N(2).
i=1,i#k

Observe that

N
YOMXT = Aso(t)+A > XXfui(t) + N()
i=1,i#k
N
= AXiso(t)+A > XiXfui(t) + N(2) (78)
i=1,i#k



SUBMITTED TO /IEEE TRANS. ON SIGNAL PROCESSING, OCTOBER 2001 28

From lemma 1, the family {Z; = X;X}, ,i # k} is the same as {X;,i € {2,..., N}}, up to the sign of
matrices. Since the distribution of u; is symmetric with respect to zero, the sign does not affect the FIM of
the parameters. Also, it is easy to check that the transformation applied preserves the covariance matrix of
the noise. This proves the theorem for m = N.

In the case m < N, using the same arguments as above we can consider the matrices X;, i € {1,...,N}
such that G; = I, see lemma 2. The theorem follows by multiplying Y(k)(t) by Gf(}l and applying lemma
2.

Proof of Theorem 5

The proof of the theorem is based on the formulas derived in theorems 2 and 3. In this subsection the terms
that have the subindex H and V are for the horizontal and vertical placement scheme respectively.

It is easy to observe that Tiog = 110y, 1915 = To1v and Tooy = They. We need to show that 1114 +
Tosg = T11v + To3y. This last statement follows if we compute separately each of the two sides of the
relation. Below are the details.

In the special case of uniform placement scheme, we substitute ¢ = 1 — 7 in formula (72) to get:

Tiig(t) = (1 - v)Arhi hj + aja;(1 —7)A,
Tiig = N Tug(t)
Tosg = N Tazg (1)
and further,
Tum+Tusg = N(1—7)Ajaa;+NAh{h;

+NA,h]h; + N(N —2)A;h b,

= N(1—7)A,aia; + N(N —1)A1hlh; + NA,hTh;. (79)

Now we have to compute the FIM for the uniform vertical transmission scheme.

G = 11, Gi|ps1 =1, (80)
D, = A,YI, Dt|t>1 = A1, (81)

P1 = \/1—’)’I,Pt|t>1 =0. (82)
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Tuy = Tuv(1)
= v{Py(—H; + ¢,I)D;(-H, + a;I)P;v,
= —vtTPtHiDtHthvt + aiajvtTPtDtPtvt
= —(1- 'y)A,yvtTHivat + (1 —v)Aya;a;N
= —(1 =AY (Hi)gy oy (H))py o + (1 — ) Aqas0;N

= N(1=7)Ah h; + N(1—7)Aaia (83)

The relation (83) follows from proposition (2).

Calculate the expression of Tb3 in the vertical case.

Tosy = Tosv(1) + (N — 1)Tosv(t > 1)
= Y (Aypq+ p?) tr(FLH,) + (N — 1)(A1pq + p°) tr(H;H;)
= (=7Ay = (N =1)A)(~2h{h; + tr(B;By))

— —N(—yA, — (N —1)A;)h/ b, (84)

Tuy +Tesy = N(1—7v)Aaa; + N(N — 1)A1hz‘Thj + NAvhiThj (85)

Proof of Theorem 6

Consider first the case m = N for which J; = I so that the formula of the FIM simplifies considerably.
We'll show that the eigenvalues {go, g0 + ¢ * g1, 90 + ¢ * g2} of the matrix F(-y) are convex functions (of ~y).
For each of the functions we’ll separate the terms that are linear in v (we'll denote the coefficients with 6;)
and calculate the second derivative of the nonlinear part.

Introduce the following notation :
A g
(¢ = = (86)

Note that £ can be interpreted as the average SNR at the receiver. With this notation A, and A; be come

Y 2 7 1

Ay = —— DAL= Ay = Pt
! e R L L =

(87)
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With the notation above, taking into account that A; does not depend on -y, we obtain :

go = (N — tr(G1)) + (pg* tr(D1G3) + p’q tr(GY))

= 017+ 60+ pg® Ay + pPay?
3

Y 2 2
= 01y + 60— pg’p? +
1Y 0 PQP§7+1 pqy
2 2 v?
= Ohy+6p+ -
17+ 6o PQ(7 E&Jrl)
2
~
= by +6o+p°
1Y 0T p qf’)’ 1
(88)
= —_— 89
d 2 P ey v 1) (89)
Taking into account the range of the variables for our problem, it follows that gg is convex.
g1 = (2¢* tr(D?G?) + 3pq tr(D,G?) + p? tr(G?))
+(1-7)A,
4 3
g 2 7 2.2 (1—=7)
= (200" 5 — ¥ e+
( &y +1)? Ey+1 {y+1
+0p7y + 64
4 3
2 2 7 g 2 (1-— ’Y)’Y>
g (£(£7+1)2 £§7+1 Ey+1
+60oy + 61 (90)
d? 2_46)+2
9 _ o V(€ — 48) +4 +¢ (91)
dv Er+1)
Usually, even for high noise powers £ > 4 which makes the function g; convex wrt +.
However, we'll show that the eigenvalue h1 = go + qg1 is a convex function in v for any value of &.
d?hy  d?g | dZg
d ,),2 =49 d ,),2 d ,},2
12 —4)+24+¢ o
= 2p°¢ +20°q¢———3
€y +1)* €y +1)°
23 3
€y +1)

It is easy to observe that the denominator of the expression above is positive for any value of v € [0, 1].

g2 = (N-1A1+A4,) (93)
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d 292 _ p2 3
d 2 (€y+1)?

(94)

(95)

go is clearly convex wrt v thus hy is the same.

If n < N the relations above hold but {go,g0 + g * g1,90 + ¢ * g2} are not the eigenvalues of the matrix
F(v) anymore. Instead, we can write,

F(y) = I F()J4,

and then {go, 90 + q * 91,90 + g * g2} are the eigenvalues of F(y). Thus we have
0 <F(y =)+ F(y+¢) - 2F(7). (96)

Since the matrix Jy is tall and full column rank for any positive definite matrix U the matrix JTUJ; is also
positive definite (see [14]). The formula in the theorem follows from (96).
Proof of Theorem 7

We need to how the FIM matrix for the horizontal power allocation scheme described below varies with ¢ :

[1+¢707"'70]T7 ’71é[07 17""1]T7 (97)

[1_C_¢505"'50]Ta 72é[7715"'71]T' (98)

1>

&
o

1>

Like in the proof of theorem 6, consider first that m = N so that J; =1.
Unlike the previous theorem, here we don’t have a symmetry in ¢ so we need to analyze the functions

9r = gk(1) + gx(2), that are the eigenvalues of the FIM for two blocks.

go = go(1) +90(2) =p(l+d+1—-¢p—()+¥0 (99)
dgo
iy = (100)

This term is constant in ¢.

g = 91(1) +91(2) = (1 + ¢)A7|7=0 + (1 —¢—C+ 9)A7
= (1-¢-(+0)A, (101)
= —A, (102)

o
Q
=

a
-
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Thus gy is an increasing function of ¢.

It is easy to see that go = g2(1) + g2(2) does not depend on ¢. Thus any increase of ¢ increases one of the
eigenvalues of the FIM which implies that the CRLB is improved. Observe that 1 — ¢ — ( > 0 which implies
that this theorem applies only to the cases in which 0 < ¢ < 1.

Also observe that v = 0 implies A, = 0, thus the eigenvalues are constant in this case.

For m < N the statement in the theorem follows straightforward, like in the proof of theorem 6.
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