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Abstract—Multipacket reception (MPR) refers to physical
layers where receivers can decode multiple simultaneously trans-
mitted packets. In this paper we investigate the resulting perfor-
mance of conjoining carrier sense multiple access (CSMA) com-
munications with MPR. We report on its maximum achievable
stable throughput with decentralized control and show there can
be throughput gain over slotted ALOHA (S-ALOHA), the non-
channel-sensing protocol of choice. However, this gain diminishes
as the physical layer’s MPR strength increases, thereby dimin-
ishing the need for channel sensing. Nonetheless, for systems
evolving from a single-user (SU) to a multiple-user (MU) channel,
CSMA can furnish significantly more efficient utilization of MPR
capacity than S-ALOHA. This is meaningful in practice because
the emerging generation of the widely deployed IEEE 802.11
wireless local area networks (WLAN) — 802.11ac — is adapting
MPR and will operate in said region. In that regard, we also
discuss the effective usage of a channel’s resources for MPR
and highlight the advantages multiuser-MIMO (MU-MIMO),
an MPR technique, can offer to WLANs. Using early design
specifications of 802.11ac, we show that the existing SU-oriented
802.11 MAC parameters can under-utilize the MPR capacity
offered by a MU-oriented physical layer.

Index Terms—Multiple access theory, CSMA, multipacket
reception, IEEE 802.11ac, wireless local area networks, cross-
layer design, slotted ALOHA.

I. INTRODUCTION

TRADITIONALLY, practical design and theoretical anal-
ysis of random multiple access protocols have assumed

the classical collision channel model — namely, a trans-
mitted packet is considered successfully received as long
as it does not overlap or “collide” with another. Although
this model is analytically amenable and reflected the state
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of technology when networking was an emerging field, the
classical collision model does not represent the capabilities of
today’s transceivers. In particular, present transceiver technolo-
gies enable users to correctly receive multiple simultaneously
transmitted data packets. With proper design, this capability
— commonly referred to as multiple packet reception (MPR)
[1][2] — can significantly enhance network performance.

Many fundamental ideas behind MPR already have been
well researched and widely applied [3, §1]. Such examples
include code division multiple access (CDMA) and frequency
division multiple access (FDMA). But while MPR is applied
therein as the basis for enabling multiple users to share a
channel, for networks that employ packet-by-packet random
multiple access, MPR represents a paradigm shift from the
typical single-user (SU) to multiple-user (MU) models —
something that is only beginning to happen in practice. Em-
ploying MPR in the physical (PHY) layer also expands the
set of parameters for the media access control (MAC) layer to
consider in its scheduling process, thus underscoring the im-
portance for cross-layer design that strives to jointly optimize
the functions of these layers [4]. Providing further insights
for doing so in random multiple access communications with
MPR — both in theory and in practice — is the main goal of
the present paper.

A. Development of MPR in CSMA and 802.11 WLANs

The concept of random access on MPR channels was
introduced by Ghez, Verdú and Schwartz in [1] and [2],
where they studied the performance of slotted ALOHA (S-
ALOHA) with MPR. Since then there has been much research
on multiple access with MPR. However, until only recently,
there has been no research published on carrier sense multiple
access (CSMA) with MPR.

CSMA refers to a family of random multiple access
schemes wherein a station (STA) with packets to transmit
will attempt to do so only when the channel is detected to
be idle. It was first shown by Kleinrock and Tobagi [5] that
this provides significant performance improvement over S-
ALOHA on the collision channel. CSMA have become the
foundations of many networking technologies. For example,
CSMA and CSMA with collision avoidance (CSMA/CA) are
employed in the MAC layers of IEEE 802.11-based wireless
local area networks (WLAN) [6]. However, none of these
technologies have deployed MPR yet.
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Fig. 1. Typical realization of channel activities with the CSMA protocol based on our network model.

The first substantial research on CSMA with MPR did not
appear until 2004 when we reported in [7] on conjoining the
two concepts and studied the resulting performance. Recog-
nizing the benefits that MPR can bring to WLANs, in 2005
we presented the idea in a proposal [8] to the 802.11 WLAN
Working Group for a future WLAN standard that incorporates
MPR. Two years later, the notion of adapting a MU model in
WLAN began garnering more consideration from members of
the Working Group (eg. [9]). In late 2008, the 802.11ac Task
Group (TGac) was established to develop a WLAN standard
that supports a maximum aggregate throughput of at least 1
Gbps [10]. In order to realize the targeted data rates, TGac
recognizes the need for higher data multiplexing efficiency and
has identified MPR techniques like OFDMA and spatial divi-
sion multiple access (SDMA), also known as MU multiple-
input-multiple-output (MU-MIMO), as candidate technologies
[10]. TGac now has converged on adapting MU-MIMO as one
of the core technologies of the 802.11ac PHY layer [11].

B. Main Contributions of This Paper

This paper is an extension of the seminal multiaccess theory
on MPR channels set forth in [1] and [2] to embody another
essential MAC protocol — CSMA. We find that CSMA will
always provide a higher throughput than S-ALOHA when
closed-loop control is used, but this margin diminishes when
the ability to resolve simultaneous transmissions is strong.
Nonetheless, for systems that are evolving from SU to MU,
CSMA can furnish significantly better performance than S-
ALOHA via more efficient utilization of MPR capacity. This
is of practical significance because the emerging generation of
MPR-enabled WLANs likely will operate in this regime. We
illustrate the applicability of our theoretical results by showing
the effective usage of channel resources for MPR and the
advantages that MU-MIMO can offer to WLANs. In particular,
by simulating early 802.11ac specifications, we show that its
SU-oriented MAC layer can under-utilize the capacity offered
by an MPR-enabled MU-oriented PHY layer.

C. Other Related Work

In 2009, Zhang et al. reported in [12] their analysis of MPR
in WLANs, employing 802.11g as an example. While their
conclusions corroborate some themes in the theory we discuss
here, their main results for CSMA are not shown analytically
but via numerical results. And although they looked at S-
ALOHA too, its intricate relationship with CSMA is not
extensively investigated. Their entire focus is also only on
one specific type of MPR channel. Moreover, their discussion

for designing WLAN with MPR is on the limiting case when
number of users is infinite, which differs from ours on the
finite user case as reflected in practice. According to [13], their
research in [12] was conducted unbeknownst of our earlier
work.

Other researchers also have published results on this topic
that enrich the theory and advance our understanding of it,
like [14] and [15]. Particularly, Gau [14] provided another
treatment of this topic by applying the traditionally used but
possibly unrealistic framework wherein the overall offered
traffic is Poisson; we discuss in III-D how this provides an
alternative perspective of the theory in this paper.

II. THE NETWORK MODEL

A. Topology, Timing Relations and the CSMA Protocol

We consider a network with an unbounded number of
stations (STAs) contending to transmit data packets to a central
base station. Such a network model corresponds to the uplink
of the infrastructure mode in 802.11 WLANs, wherein the
base station is referred to as access point (AP) [6].

We assume each STA can perform carrier sensing, namely
to detect whether the channel is currently idle or busy (i.e., that
there is at least one other STA transmitting), and we assume
the time required to do so is negligible (i.e., zero detection
time).1 As illustrated in Fig. 1, we employ a slotted-time
system in which transmissions may begin only at the start
of a slot and that every STA is synchronized to the slots.2

Slot duration is designated to be at least the maximum signal
propagation time of tprop = dmax/c seconds, where dmax is
the maximum separation distance between the STAs and c is
the signal’s speed of propagation through the network’s PHY
medium.3 Such a setup ensures that, after a transmission stops,
every STA will find the channel to be clear for transmission
after one slot’s time; thus, each transmission must be preceded
by an idle slot. We also assume packets are of constant length
lasting T seconds. As in [5] and [17, §4.4], without loss of
generality, we choose T = 1, which is equivalent to expressing
time in units of T . We also express the slot duration in terms
of this normalized time unit as τ = tprop/T , 0 < τ < ∞.
Consequently, a packet will last for 1/τ slots, where we have
assumed as in [5] that 1/τ is an integer.4 In our model,

1Note that in 802.11 WLANs [6] a STA has to detect that the channel has
become busy within 4 μs, which is also less than half of the slot duration.

2We will forgo analyzing the non-slotted versions as their performances
are inferior to those of slotted versions [16] [5].

3Eg., c is the speed of light for the air interface in wireless networks.
4We can achieve this integral assumption practically by designing one’s

slot duration to fit this requirement.
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each STA immediately becomes aware of its transmission out-
comes,5 either successful or unsuccessful, without expending
extra cost; in this regard, acknowledgements introduce only
fixed overheads and hence can be neglected from the model
without affecting comparative analyses.

Fig. 1 illustrates a typical realization of channel activities
with the CSMA protocol. It is not difficult to see that CSMA’s
channel activities can be modelled by a renewal process.
Namely, the process regenerates itself after either an idle slot
or an idle slot followed by transmission attempts that last for
a packet’s duration. We will refer to either of these events as
a transmission period (TP).

Our analysis focuses on CSMA with immediate first trans-
mission (IFT) admission control. Under this policy, when a
packet arrives at an inactive STA and the channel is sensed
idle, then the STA will attempt to transmit the packet at the
start of the slot immediately following the packet’s arrival.
If the channel is sensed busy, then the STA will defer its
attempt until there is idleness, and thereupon decides randomly
whether to “backoff” or transmit. This random backoff is mod-
elled as an independent sampling from a geometric distribution
with parameter p, 0 ≤ p ≤ 1; in other words, each STA
attempts transmission with probability p or backs off with
probability 1−p.6 The process is repeated if the channel is
sensed busy after a backoff or that the packet transmission is
not successfully received.

Note that CSMA with IFT is exactly the slotted
non-persistent CSMA protocol introduced by Kleinrock and
Tobagi in [5]. This variant of CSMA is, moreover, the primary
MAC protocol practiced in 802.11 WLANs, called distributed
coordinated function (DCF) [6].

B. Network Traffic and Throughput Characteristics

Each STA in our infinite population network model can have
up to one packet to be transmitted at any time, be it a newly
arrived packet or a so-called backlogged packet that needs to
be retransmitted. Packet arrivals for non-backlogged STAs are
assumed to be independent and identically distributed from
slot to slot. Let Ât denote the number of new packets that
arrived during the idle slot of TP t, t ≥ 0. Assume Ât has
probability distribution P [Ât = n] = λ̂n, for n ≥ 0, such that
the mean arrival rate per slot is

λ̂ =
∞∑

n=1

nλ̂n = τλ, (1)

where λ is the mean arrival rate per normalized time unit (i.e.,
per packet duration) and is finite. Described more precisely,
our packet arrival model is a point process over the real time
line, with mean measure equal to the unit rate λ scaled by the
Lebesgue measure. Note that a homogeneous Poisson point
process of intensity λ satisfies condition (1).

5This assumption reflects 802.11 WLANs wherein the STA that has
successfully received a data packet has to transmit an acknowledgement packet
immediately after a fixed short duration; otherwise, receipt of the data packet
is considered unsuccessful.

6Note that the exponential backoff process used in 802.11 can be equiv-
alently modelled by such a sampling from a geometric distribution with an
appropriate p [18].

When the arrival statistics are described in this manner, λ
is equivalent to the mean arrival rate considered in many well
known results, such as [1] and [2] for S-ALOHA with MPR
or [5] and [17, §4.4] for CSMA on the collision channel. In
other words, our current setup facilitates direct and meaningful
comparison of our results with those in classical multiple
access theory. In particular, the maximum λ for which packets
can be successfully transmitted by a multiaccess protocol
on a channel with asymptotically finite average delay is the
channel’s maximum achievable stable throughput with that
protocol [17, §4.2.3].

C. The MPR Channel Model and Examples

We employ the symmetric MPR channel model of [1], with
which the successful reception probabilities depend only on
the number of packets transmitted in the slot. For the infinite
population scenario, given that n packets are transmitted, for
1 ≤ n ≤ ∞, 0 ≤ k ≤ n, let

Cn,k = P [k packets are correctly received| n are transmitted].

Clearly, the symmetric MPR channel model is a generalized
formulation and embodies as a special case the classical
collision channel, which has C1,0 = 0 and Cn,0 = 1 for all
n > 1.

We denote the expected number of packets correctly re-
ceived from a transmission set of n STAs by

Cn �
n∑

k=1

kCn,k,

and assume that its limit C = limn→∞ Cn exists, which is
usually the case in practice [1]. For instance, it is natural
to expect C = 0 because practical PHY layers have finite
resources and hence cannot support an unbounded number of
simultaneous transmissions. We define channel capacity to be

C � sup
n

Cn,

namely the largest expected successes with simultaneous trans-
missions on a channel.

In addition, we also assume that Cn is concave in n,
a property possessed by reasonable MPR channels. To see
why, say we have n1 < n2 < arg supn Cn. Then it is
unreasonable to expect Cn1 > Cn2 < C because, if the channel
is still capable of supporting more successful receptions even
when greater than n2 STAs transmit, then we should have
Cn1 ≤ Cn2 . Similarly, say arg supn Cn < n3 < n4, then we
should have Cn3 ≥ Cn4 , because the channel can only yield
fewer successes with an increasing number of transmitting
STAs if there already are greater than arg supn Cn of them.
It is possible for supn Cn to be achieved at more than one n,
but with said assumption this must occur over one and only
one consecutive set of n’s.

In sections below we discuss two specific MPR channels
we consider exemplary and refer the reader to [1] and [2]
for additional ones. In the q-frequencies frequency-hopping
channel, each STA chooses with equal probability one of q
frequencies on which to transmit. If more than one STAs
choose the same frequency, then their transmissions will fail.
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Such a channel has Cn = n(1 − 1/q)n−1 [1]. We will have
an equivalent channel model if orthogonal multiuser codes
are used instead of the q frequencies, i.e., STAs select one
of q codes to encode their transmissions, failure occurring
whenever two or more STAs select the same code. Another
example we consider is the N -user channel, which assumes
failed reception when the transmission set is strictly greater
than N . The expected success of this channel is simply Cn = n
for n ≤ N and Cn = 0 for n > N . Note that the Cn’s of both
channels are concave in n.

A meaningful performance measure of a multiaccess pro-
tocol is how well it utilizes a channel’s MPR capacity;
accordingly we define efficiency to be the protocol’s maximum
stable throughput divided by C.

III. CAPACITY OF CSMA ON MPR CHANNELS

A. Ergodicity Region of CSMA

There have been many results on the stability and dynamic
control of CSMA, but they pertain to the collision channel
[17, §4.4] [19] [20]. Although they used different definitions
of stochastic stability and attacked the problem with unique
approaches, they all concluded that CSMA with the collision
channel is inherently unstable, which is expected from its
traffic load-throughput curve (cf. [17, §4.2] and [5]). We
employ instead the analytic framework used for S-ALOHA in
[1] and [2]:7 A system is defined to be stable if the discrete-
time Markov chain {Xt}t≥0, whose state is the number of
backlogged packets in the system at the beginning of the tth
TP, is ergodic and unstable otherwise [17, §3A.5].

We give the state transition probabilities of {Xt} in Ap-
pendix A. We can see from them that {Xt} will be irreducible
and aperiodic as long as it satisfies the sufficient condition
that 0 < λ̂0 < 1, which we assume holds as it is true for all
reasonable scenarios.

To obtain our first main result, we examine the expected
drift of the Markov chain {Xt} at state n, n ≥ 0, which is
given by

dn = E[Xt+1 −Xt|Xt = n] = E[At − Σt|Xt = n],

where At and Σt are respectively the no. of new packets that
arrived and the no. of successful transmissions during TP t.

Observe that the expected number of arrivals during a TP
depends on whether there are arrivals during its idle slot
and whether any of the backlogged STAs decide to transmit
in the slot after it. Due to IFT, if there is at least one
arrival in the idle slot, then the TP will consist of this idle
slot followed by a transmission, regardless of how many
backlogged STAs also decide to transmit during this time too.
And of course, this situation also occurs even if the idle slot
has no packet arrivals but at least one of the n backlogged
STAs transmits, which occurs with probability 1− (1 − p)n.
Since the expected number of arrivals during a slot and during
a packet transmission are respectively τλ and λ, we have

E[At|Xt = n] = τλ+ (1− λ̂0)λ+ λ̂0[1− (1− p)n]λ

= λ[1 + τ − λ̂0(1− p)n].

7In homage to Ghez, Verdú and Schwartz, in adapting their analytic
framework of [1] and [2], we have kept many of their notations unchanged
or as similar as possible.

To find Σt, observe that the STAs contributing to channel
contention in the current TP are only those with packets that
arrived during the idle slot and those that are retransmissions
from STAs backlogged at the start of this TP. As in the
derivation in [1], let Rt be the number of transmissions from
backlogged STAs in TP t. Then

P [Σt = k|Xt = n, Ât = i, Rt = j] = Ci+j,k,

for i ≥ 0, 0 ≤ j ≤ n, 0 ≤ k ≤ i+ j. With the convention that
C0,0 = 0, we have

E[Σt|Xt = n, Ât = i, Rt = j] = Ci+j

and hence get

E[Σt|Xt = n] =

∞∑
i=0

λ̂i

n∑
j=0

Bn(j)Ci+j ,

where we have let Bn(j) =
(
n
j

)
pj(1 − p)n−j . Therefore,

dn = λ(1 + τ)− λλ̂0(1 − p)n −
∞∑
i=0

λ̂i

n∑
j=0

Bn(j)Ci+j . (2)

Then by applying a result from [1], we arrive at the following
result on the ergodicity region of CSMA.

Theorem 1. A CSMA system is stable for all arrival distri-
butions such that λ < 1

1+τ C and is unstable for λ > 1
1+τ C,

where C = limn→∞ Cn. (This also holds if C is infinite: if
limn→∞ Cn = +∞, then the system is always stable.)

Proof: From (2) we can see that −2λ−n < dn < λ(1+
τ), so |dn| is finite for n < ∞. Then we can use Lemma 1
of [1], which states that

lim
n→∞

∞∑
i=0

λ̂i

n∑
j=0

Bn(j)Ci+j = C,

and see that the limit of equation (2) as n goes to infinity is

lim
n→∞ dn = λ(1 + τ)− C.

Then our result on the stable region follows by Pakes’ Lemma
(Theorem 2 of [21]).

To obtain our result on the unstable region, we will verify
that Kaplan’s condition [22] is satisfied provided that Cn <
L, n ≥ 1, for some L ∈ (0,∞). According to [23], this is
equivalent to showing the downward part of the drift,

D(i) = −
i∑

k=1

kPi,i−k, (3)

is bounded below, as shown in Appendix B.
Because the ergodicity region in Theorem 1 is achieved with

an arbitrary transmission probability p, 1
1+τ C is the maximum

stable throughput that CSMA can achieve with open-loop
control. Denoting ηc,o to be CSMA’s open-loop throughput,
then Theorem 1 states that ηc,o = 1

1+τ limn→∞ Cn = 1
1+τ C.

Another implication of Theorem 1 is that, since C = 0 for
the collision channel, the corresponding open-loop throughput
is then ηc,o = 0, which agrees with the known results
that CSMA over the collision channel is inherently unstable
without resort to a control protocol. It is also revealing to
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Station A
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Both packets
overlapping here

Signal
propagation

delay

Fig. 2. Unfavorable interference can occur in S-ALOHA if signal propagation
delay is not properly accounted for. Thus, in practice, S-ALOHA’s slot size
has to be at least 1+τ time units. Note that, when compared with Fig. 1, the
only difference in the channel activities is that CSMA’s idle slots are shorter.

compare ηc,o with the open-loop throughput for S-ALOHA
given in [1], which we will denote by ηa,o. Although [1] shows
that stability for uncontrolled S-ALOHA is achieved as long
as λ < C, this does not mean S-ALOHA actually outperforms
CSMA by a factor of 1 + τ . This is because the network
model assumed in [1] hasn’t accounted for signal propagation
delay. Certainly, if one were to implement S-ALOHA in
practice, as illustrated in Fig. 2, propagation delay will destroy
the synchronous assumption and detrimental interferences can
occur between packets. Thus, as Roberts originally proposed
[16], S-ALOHA’s slot size should have at least 1 + τ time
units. By applying the same derivations set forth in [1], one
can extend their results to show that S-ALOHA with a slot
size of 1+τ actually has ηa,o = 1

1+τ C. This means S-ALOHA
and CSMA perform identically with open-loop control. In
other words, Theorem 1 has the important implication that
CSMA’s extra capability to sense the channel affords no
additional advantage for random multiple access when no
control protocol is used; we’ll see below how this is different
when a control protocol is employed.

B. Maximum Decentralized Stable Throughput of CSMA

Similar to the decentralized control strategies analyzed in
[2] and the references therein, we consider strategies in which
STAs adjust their retransmission probability according to the
feedback information they can obtain from the channel. These
schemes can be characterized in such a form:

pt = F (St) and St+1 = G(St, Zt), (4)

where pt is the retransmission probability to be used in TP t,
St is an estimate of the backlogged STAs Xt at the beginning
of TP t, and Zt is the feedback information at the end of TP
t.8 To proceed with the analysis, we represent this system by
a discrete-time homogeneous Markov chain {Xt, St}t≥0, the
state of which at time t is the pair {Xt, St}. This Markov chain
also will be irreducible and aperiodic if the same sufficient
condition previously stated for {Xt} is satisfied, which we
henceforth assume to be the case.

Let ηc,c be the maximum stable throughput achievable by
CSMA with decentralized closed-loop control. Toward finding
ηc,c, we will first study the case when each STA knows
Xt at the beginning of TP t and determine the optimal
control function F ∗(Xt) for it. To do that, we proceed by

8See [2] for discussion on implementing such a closed-loop control.

analyzing the Markov chain {Xt} in Section III-A but with
p = pt = F (Xt). This will then reveal the largest ergodicity
region with decentralized control (4), and thus the highest
possible achievable stable throughput (cf.[2]).

Theorem 2. There exists a retransmission probability p∗n that
minimizes the expected drift, dn. With that p∗n the CSMA
system is stable for λ < ηc,c and unstable for λ > ηc,c, where

ηc,c = sup

{
λ : λ <

1

1 + τ
sup
x≥0

e−x

(
λ̂0λ+

∞∑
n=0

xn

n!

∞∑
j=0

λ̂jCn+j

)}
.

(5)

The largest stable achievable throughput by any decentralized
control algorithm of the form (4) for CSMA is ηc,c of (5).

Proof: We can write the expected drift equation (2)
as dn(p) = λ(1 + τ) − Yn(p), where Yn(p) = λλ̂0(1 −
p)n +

∑∞
i=0 λ̂i

∑n
j=0

(
n
j

)
pj(1 − p)n−jCi+j . Since Yn(p) is

a polynomial on [0, 1], it attains a global maximum and there
exists a p∗n = argmaxp∈[0,1]Yn(p) = argminp∈[0,1] dn(p); in
other words, there exists a retransmission probability p∗n that
minimizes the drift dn at state n.

Following the same steps used in the proof of Theorem 1 of
[2], we can show that Yn(x/n) converges uniformly to Y (x)
for x ≥ 0, where

Y (x) = e−x

(
λ̂0λ+

∞∑
n=0

xn

n!

∞∑
j=0

λ̂jCn+j

)
. (6)

So it follows that

lim
n→∞Yn(p

∗
n) = lim

n→∞ sup
x≥0

Yn(x/n) = sup
x≥0

Y (x).

The stable region specified by (5) follows by applying Pakes’
Lemma [21, Theorem 2].

To obtain the unstable region, we can proceed as we did
in Theorem 1 but with pt = F (Xt) substituted for p. Since
pt ∈ [0, 1], the result obtained there holds with said pt.

To prove the second part of the theorem, we need to
show that the {Xt, St} is non-ergodic with any control when
λ > ηc,c. The proof of this is essentially the same as that
for Theorem 2 of [2], which gives the analogous result for
S-ALOHA. (Cf. [24] for such details.)

Though ηc,c of (5) is derived by assuming the STAs have
perfect knowledge of Xt, ηc,c can also be achieved with
a control with partial state information. In fact, by directly
applying the derivation in [2, §III] to our CSMA framework
here, we can show the same control they described for S-
ALOHA — a control that computes the backlogged estimate
St from feedback information Zt, where Zt = 0 when TP t
is empty (contains no transmission) and Zt = 1 otherwise —
can also achieve ηc,c.

Because Y (x) is expressed in terms of the arrival proba-
bilities {λ̂n}n≥0, the expression for ηc,c given by (5) is an
implicit equation of λ. Thus, unless the entire packet arrival
probability distribution is specified, it is unclear whether there
exist solutions to (5) and we cannot draw more meaningful
general conclusions from it. It turns out, however, that a
Poisson distribution will give a solution to (5), i.e., that the
arrival per slot is Poisson distributed with parameter τλ . Since
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Poisson arrivals are also a fitting — if not the de facto —
statistical model for packet generation in networks of large
numbers of STAs, we assume henceforth that the packet arrival
per slot has such a probability distribution. Then,

Y (x) = e−(x+τλ)

(
λ+

∞∑
n=0

xn

n!

∞∑
j=0

Cn+j
(τλ)j

j!

)

= e−(x+τλ)

(
λ+

∞∑
n=1

Cn (x + τλ)n

n!

)
, (7)

and hence,
ηc,c =

sup

{
λ : λ <

1

1 + τ
sup
x≥0

e−(x+τλ)

(
λ+

∞∑
n=1

Cn (x + τλ)n

n!

)}
,

(8)
which readily makes way for further analysis.

For example, under the collision channel model, Y (x) =
e−(x+τλ)[x + λ(1 + τ)]. And supx≥0 Y (x) is then attained
with x = 1 − λ(1 + τ), so (8) reduces to the transcendental
equation ηc,c = sup

{
λ : λ < 1

1+τ e
λ−1

}
. Solving numerically

for τ = 0.01, we find that ηc,c = 0.865 packets per unit
time (packets/T ), which is equal to the corresponding value
calculated from Kleinrock and Tobagi’s throughput expres-
sion for slotted non-persistent CSMA, i.e., equation (8) of
[5]. (Recall that the non-persistent CSMA is equivalent to
CSMA with IFT.) They also reported that as τ → 0, CSMA
could approach perfect (collision) channel utilization, or 100%
efficiency, which can be shown here as well. While usage of
(8) is probably limited to numerical solutions, an equivalent
closed form expression can be obtained for Poisson arrivals:

Theorem 3. For Poisson distributed packet arrival, the maxi-
mum achievable stable throughput of CSMA, ηc,c, is equiva-
lently given by both

ηc,c = sup

{
λ : λ <

1

1 + τ
sup
x≥0

e−x

(
λ+

∞∑
n=1

Cnx
n

n!

)}
(9)

and

ηc,c = sup
x≥0

1

1 + τ − e−x
e−x

∞∑
n=1

Cnx
n

n!
. (10)

If ηc,c > 1
1+τ C = 1

1+τ limn→∞ Cn, then there exists a constant
A > 0 such that the control pt = A/Xt for Xt > A yields
the optimal throughput ηc,c.

Proof: Observe that by solving directly for λ from the
inequality in (9), which is an operation that is independent of
x, we can obtain the equivalent closed form expression for ηc,c
of (10). So, to prove the first part of the theorem it remains
only to show that (9) and (8) are equivalent.

Let y(x) = e−x(λ+
∑∞

n=1 Cn xn

n! ). Then y(x+τλ) = Y (x);
i.e., Y (x) of (7) is a translation of y(x) by −τλ. (Recall that
τ ∈ (0,∞) and τλ ≥ 0.) To obtain (9), we need to show that
supx≥0 Y (x) = supx≥0 y(x) holds within the solution space
of the inequality λ < 1

1+τ supx≥0 Y (x), and thus this solution
space must then be identical to that of λ < 1

1+τ supx≥0 y(x),
with which (9) will follow by the definition of ηc,c in (8).

Consider first the case in which y(x) does not achieve
its supremum. Then together with Property 5 of [2], we

can also see that supx≥0 y(x) = limx→∞ y(x) = C. Since
Y (x) = y(x+ τλ), it follows that Y (x) will also not achieve
its supremum, and so for all τ ∈ (0,∞) and τλ ≥ 0,
supx≥0 y(x + τλ) = limx→∞ y(x + τλ) = C. Then for
all τ ∈ (0,∞) and τλ ≥ 0, supx≥0 y(x) = supx≥0 Y (x).
Therefore, by the definition of ηc,c in (8), we have ηc,c =
sup{λ : λ < 1

1+τ supx≥0 y(x)}, as given by (9).
Now consider the case in which supx≥0 y(x) = y(xo) at

some finite x0 ≥ 0. Then for all λ ∈ [0, x0/τ ],

sup
x≥0

Y (x) = Y (xo − τλ) = y(x0) = sup
x≥0

y(x). (11)

Also, for all x ≥ 0, y(x) ≤ e−xλ+x. So, for all λ ∈ [0, x0/τ ],

1
1+τ supx≥0 Y (x) = 1

1+τ supx≥0 y(x)

≤ 1
1+τ

(
e−x0λ+ x0

)
≤ 1

1+τ

(
e−x0 + τ

)
x0

τ

≤ x0

τ .

It follows that for all λ ∈ [0, 1
1+τ supx≥0 Y (x)], the identity

of (11) holds, which implies that the solution spaces of {λ :
λ < 1

1+τ supx≥0 Y (x)} and {λ : λ < 1
1+τ supx≥0 y(x)} are

identical. Therefore, by the definition of ηc,c in (8), ηc,c can
be expressed equivalently by (9) for this case as well.

The second part of this theorem can be proved by directly
applying the steps for the analogous result for S-ALOHA
given in the proof of Theorem 2 in [2].

By Theorem 3, if we have ηc,c =
1

1+τ C, which occurs when
C = limn→∞ Cn = supn≥1 Cn, then open-loop control can
already attain the maximum stable throughput, i.e., ηc,c = ηc,o;
otherwise, closed-loop control with pt = A/Xt should be used
to achieve the optimal throughput ηc,c > ηc,o (cf. [2]).

C. CSMA’s Throughput in Relation with S-ALOHA’s

We can straightforwardly adapt the derivation in [2] to
obtain S-ALOHA’s optimal closed-loop throughput for a slot
size of 1 + τ time units. Denoting said throughput by ηa,c,
such a derivation will yield

ηa,c = sup
x≥0

1

1 + τ
e−x

∞∑
n=1

Cnx
n

n!
. (12)

Comparing (10) and (12), we see the only difference be-
tween closed-loop CSMA and S-ALOHA comes down to just
a single −e−x term in the denominator. Since 1

1+τ ∈ (0, 1),

whenever sup0≥0
e−x

1+τ−e−x

∑∞
n=1 Cn xn

n! is achieved by an
x ∈ [0,∞), due to said −e−x term, CSMA’s maximum
throughput will always be higher than that of S-ALOHA.
But as it turns out, this advantage will diminish as the
channel supports more MPR. Though, before we can formally
describe this outcome, we need to define what is meant by
supporting more MPR. Since a larger expected success for a
transmission set corresponds to a better MPR capability for
that set, accordingly, we can assert the following definition.

Definition 1 (MPR Strength): Consider two channels given
respectively by their expected transmission successes {C(1)

n }
and {C(2)

n }, n ≥ 1. We say that the channel with {C(2)
n } has a

stronger MPR strength than the channel with {C(1)
n } if there
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TABLE I
THROUGHPUTS AND EFFICIENCIES OF S-ALOHA AND CSMA FOR q-ORTHOGONAL-CODES CHANNEL WITH PROPAGATION DELAY τ = 0.01

No. of codes (q) C ηc,c ηa,c
ηc,c
C

ηa,c

C
xc xa

1 1.0000 0.8655 0.3642 0.8655 0.3642 0.1345 1.0000

2 1.0000 0.9652 0.7285 0.9652 0.7285 0.4865 2.0000

3 1.3333 1.1752 1.0927 0.8814 0.8195 2.1706 3.0000

4 1.6875 1.4895 1.4569 0.8826 0.8634 3.5994 4.0000

5 2.0480 1.8346 1.8212 0.8958 0.8893 4.8034 5.0000

10 3.8742 3.6425 3.6424 0.9402 0.9402 9.9955 10.0000

exists a non-empty set N = {n : C(2)
n > C(1)

n } and that
C(2)
n = C(1)

n ∀n /∈ N .
Since {Cn} directly determines the value of the summation

in (10) and (12), Definition 1 gives a sufficient condition
for attaining greater throughput; i.e., ηc,c and ηa,c are in-
creasing functions of MPR strength. Moreover, we can show
a stronger MPR strength also leads to a greater x that
achieves the supremum in (10). For brevity, let Υ(x, {Cn}) =

e−x

1+τ−e−x

∑∞
n=1 Cn xn

n! , where {Cn} denotes a set of Cn, n ≥ 1.

Lemma 1. For all expected transmission success {C(1)
n } with

x1 = arg supx≥0 Υ(x, {C(1)
n }) < ∞, there exists a {C(2)

n }
with x2 = arg supx≥0Υ(x, {C(2)

n }) < ∞ such that {C(2)
n }

has stronger MPR strength than {C(1)
n } and x2 > x1.

The proof is given in Appendix C. Note that an ana-
logue to Lemma 1 for S-ALOHA can be stated by sub-
stituting Υ(x, {Cn}) with Γ(x, {Cn}) = e−x

1+τ

∑∞
n=1 Cn xn

n! .9

Moreover, it can be shown that arg supx≥0 Υ(x, {Cn}) ≤
arg supx≥0 Γ(x, {Cn}), with equality if and only if Cn = 0
for all n. The relationship between CSMA and S-ALOHA is
further revealed by employing Lemma 1:

Theorem 4. For Poisson distributed packet arrival, as the
channel’s MPR strength becomes stronger, the maximum sta-
ble throughput achievable by CSMA, ηc,c, approaches the
maximum stable throughput achievable by S-ALOHA, ηa,c. In
the limit as MPR strength becomes stronger, ηc,c = ηa,c and
the two protocols both have efficiency of 1.

Proof: If the MPR channel’s expected transmission suc-
cess {Cn} has limit C = supn≥1 Cn, then we know from the
proof of our Theorem 3 and Property 5 of [2], respectively,
that the best that CSMA and S-ALOHA can achieve are
their open-loop throughputs, which are the same. Therefore,
ηc,c = ηa,c = ηa,o = 1

1+τ C to start with and the proof is
already complete for this case.

So let us consider now only channels with C < supn≥1 Cn,
namely those with a {Cn} such that Υ(x, {Cn}) achieves
its supremum at some x ∈ [0,∞). Consider a sequence
of expected transmission successes with increasing MPR
strength {{C(i)

n }}i≥1= {{C(1)
n }, {C(2)

n }, {C(3)
n }, . . .}. Let xi =

arg supx≥0Υ(x, {C(i)
n }). Denote η

(i)
c,c and η

(i)
a,c to be the re-

spective maximum stable throughput of CSMA and S-ALOHA
for channel {C(i)

n }.

9This is because, apparent from Appendix C, dΓ(x0, {Cn})/dx =
−Γ(x, {Cn})+C(x, {Cn}), so Γ(x, {Cn}) has identities similar to (16) and
(17). Note that both dΥ(x, {Cn})/dx and dΓ(x, {Cn})/dx are linear ODEs.

TABLE II
THROUGHPUTS AND EFFICIENCIES OF S-ALOHA AND CSMA FOR THE

N -USER CHANNEL WITH PROPAGATION DELAY τ = 0.01

C = N ηc,c ηa,c
ηc,c
C

ηa,c

C
xc xa

1 0.8655 0.3642 0.8655 0.3642 0.1345 1.0000

2 1.1541 0.8316 0.5770 0.4158 0.8097 1.6180

3 1.5570 1.3575 0.5190 0.4525 1.7735 2.2695

4 2.0455 1.9231 0.5114 0.4808 2.6496 2.9452

5 2.5916 2.5184 0.5183 0.5037 3.4654 3.6395

10 5.7775 5.7737 0.5778 0.5774 7.2872 7.2970

From (10) and (12) we can see an upper bound: η
(i)
c,c ≤

1
1+τ−e−xi

supx≥0 e
−x

∑∞
n=1 C(i)

n
xn

n! = 1+τ
1+τ−e−xi

η
(i)
a,c. Be-

cause e−x > 0 for all x ∈ [0,∞), we also have a lower bound
of η(i)c,c ≥ η

(i)
a,c, with equality if and only if i = 1 and C(1)

n = 0
for all n. Stated equivalently, if we let γi = 1+τ

1+τ−e−xi
, then

η(i)a,c < η(i)c,c ≤ γiη
(i)
a,c for all i > 1. (13)

By our definition of stronger MPR strength, given any
{C(i)

n } in our sequence {{C(i)
n }}i≥1, there must exist a {C(j)

n },
j ≥ i, in {{C(i)

n }}i≥1 with C(j)
n = max{C(j)

n } = n for all
n ≤ �xi + 1	, where �xi + 1	 denotes the largest integer less
than or equal to xi + 1. Thereafter in the sequence, {C(j+1)

n }
must satisfy the construction method given in the proof of
Lemma 1, as if {C(j+1)

n } is constructed from {C(i)
n } with that

method. So, by Lemma 1 we can construct from {xi}i≥1 a
subsequence {x̂k}k≥1, with x̂k+1 > x̂k, and by our definition
of higher MPR strength there does not exist a subsequence in
{xi}i≥1 that is constant or strictly decreasing. Then because

1+τ

1+τ−e−x̂k+1
< 1+τ

1+τ−e−x̂k
for all k, we have limi→∞ γi = 1+,

i.e., that {γi}i≥1 is approaching 1 from above. Therefore,
along with (13), as the MPR strength becomes stronger with
each i, η(i)c,c is approaching η

(i)
a,c from above.

Finally, in the limit as MPR strength increases, we have the
ideal MPR channel that has Cn = n for all n and channel
capacity C = ∞. Accordingly we then have C = ∞, with
which ηc,c = ηa,c = ηa,o = ∞ and efficiency is ηc,c/C = 1.

Theorem 4 essentially shows that as the MPR strength
becomes stronger, we can perform equally well without carrier
sensing by simply accessing the channel with random schedul-
ing — i.e., closed-loop S-ALOHA. And then when the MPR
strength is sufficiently strong, in lieu of scheduling, STAs
could even transmit at any slot and achieve the same through-
put performance by relying solely on the PHY layer as the
means for separating the STAs’ transmissions. This conclusion
regarding when MAC-layer scheduling becomes unnecessary
by virtue of the PHY layer’s MPR strength has been pointed
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Fig. 3. Maximum stable throughput of CSMA and S-ALOHA for the q-
orthogonal codes MPR channel with various propagation delays (τ ). The
channel’s MPR capacity is displayed for comparison. As in Figs. 4–6, note
also the overall throughput-lowering effect of τ .
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Fig. 4. Efficiency of CSMA and S-ALOHA for the q-orthogonal codes MPR
channel with various propagation delays (τ ). The channel’s MPR capacity
normalized by q is also displayed for comparison.

out [25]. An additional insight herein and implicit in [2] is
the juncture that occurs, i.e., when closed-loop control is first
rendered unnecessary and open-loop control alone suffices, is
when the MPR channel has C = lim supn≥1 Cn = C (cf. [24]).

To illustrate the results in our discussion thus far, we
plot ηc,c, ηa,c and their efficiencies in Figs. 3–6 for the
q-orthogonal-codes and N -user MPR channels. These val-
ues and the x’s that attain them are also given in Ta-
bles I–II, where xc = arg supx≥0 Υ(x, {Cn}) and xa =
arg supx≥0 Γ(x, {Cn}).

Observe that the N -user channel has N = {N} at each
increment in channel capacity; so, its MPR strength is be-
coming stronger. The same is true for the q-orthogonal-codes
channel, which has N = {n : n ≥ 1} at each q because
C(q+1)
n = n(1− 1

q+1 )
n−1 > n(1− 1

q )
n−1 = C(q)

n , ∀n ≥ 1. But
while their associated throughputs are increasing with channel
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Fig. 5. Maximum stable throughput of CSMA and S-ALOHA for the N -
user MPR channel with various propagation delays (τ ). The channel’s MPR
capacity is also displayed for comparison.
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Fig. 6. Efficiency of CSMA and S-ALOHA for the N -user MPR channel
with various propagation delays (τ ). The channel’s MPR capacity normalized
by N is also displayed for comparison. Note that the horizontal scale here
is different from that of Fig. 5 in order to show the relative growth of the
efficiency curves.

capacity, they also settle into linear growths in Figs. 3 and 5.
Actually, this is expected for the q-orthogonal-codes channel,
since ηa,c = 1

1+τ qe
−1 [2] and so its growth has a constant

slope of 1
1+τ e

−1. And, an approximately linear growth for
the N -user channel has been predicted by [26], wherein
throughputs of random access protocols for said channel are
bounded between N − √

N lnN and N − √
N when N is

large. Because
√
N lnN and

√
N are o(N) when N is large,

this channel’s ηa,c will eventually be growing approximately
linearly at a small positive slope.

These throughputs’ linear asymptotic growth trends are
as well reflected in Figs. 4 and 6, where the associated
efficiencies become nearly constant with MPR strength. This
too is expected for the q-orthogonal-codes channel, since
(1 − 1

q ) → e−1/q at large q, it can be easily shown that
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C → qe−1 at large q (as confirmed by the normalized capacity
in Fig. 4); thus, its efficiency evolves into ∼ 1

1+τ at large q. As
for the N -user MPR channel, said trend is due to the fact that
ηa,c/N is bounded between 1−√

(lnN)/N and 1−√
1/N

at large N , where both increase at a slow rate.
Interestingly, while S-ALOHA’s efficiency always rises

from below, CSMA’s efficiency may initially reach a local
maximum — even as high as 1 when τ is small for some
channels — before tapering off to approach S-ALOHA’s.
This perhaps unintuitive effect can be shown from (15). For
instance, as long as supn≥1 Cn ≤ C1, efficiency can be
maintained at or increase toward 1 (cf. Fig. 4). And even after
said local maximum, CSMA’s efficiency (and throughput) can
still be considerably higher than S-ALOHA’s. This indicates
CSMA can be much more efficient than S-ALOHA at utilizing
the MPR capability in the region where the SU channel is just
beginning to evolve into a MU one. We discuss in Section
IV how this region is an important one to consider because
resources for enabling more MPR can be scarce in practice.

D. Connection to Results from Classical Multiaccess Theory

An alternative interpretation is that
1
τ supx≥0 e

−x
∑∞

n=1 Cn xn

n! is equivalent to
1
τ supX∼Poiss(x),x≥0 E[CX ], i.e., the supremum of the
expectation of CX over all X , where X is a Poisson
distributed random variable with mean x [2]. Because
each TP for S-ALOHA is 1 + τ , be it idle or not, (12)
can be explained by said interpretation via renewal theory
arguments.10 This applies to CSMA too: Due to the benefits of
channel sensing, its difference from S-ALOHA is that an idle
slot lasts only τ time units, so the TP for CSMA has expected
value of (1 + τ)P [X > 0] + τP [X = 0] = 1 + τ − e−x,
which is reflected in (10).

Another perspective on CSMA’s diminishing throughput
gain also follows. As the MPR strength becomes stronger,
STAs can then transmit at any slot and have a lower chance of
collision; thus, there are fewer idle slots. This is confirmed by
xc and xa both increasing with MPR strength, i.e., P [X = 0]
is decreasing. When channel activities are viewed solely as a
renewal process, the only difference between CSMA and S-
ALOHA is that the former has shorter idle slots, and so, if idle
slots are becoming fewer, then the TPs for both protocols must
be approaching the same duration; ergo, the same throughput.

Finally, note that X , the number of transmission attempts
in each slot, is actually the overall offered network traffic, i.e.,
the aggregate of both new and backlogged traffic. That’s why
our ηc,c value for the collision channel is the same as that from
Kleinrock and Tobagi [5] despite the fact that their derivation,
like many multiaccess research of that era, hinges on the
flawed assumption [2] [17, §4.2.2] that the network’s offered
traffic is approximately Poisson distributed. Note that this is
also true for the CSMA with MPR throughputs calculated
from Gau’s equation (5) of [14], which actually has the same
Poisson traffic assumption.

10By renewal theory arguments, throughput (as measured in units of packets
per unit time) is the expected duration of successful attempts divided by
the expected duration of the transmission period (i.e., renewal cycle), and
multiplied by the expected number of packets in each successful attempt.

IV. APPLYING MPR IN PRACTICE AND PERFORMANCE OF

802.11 WLANS WITH MU-MIMO

A. Insights for Practical Designs of MPR-enabled Networks

Perhaps not emphasized enough in MPR multiaccess re-
search is the unstated assumption that even as more simulta-
neously transmitted packets can be successfully received, the
packet’s data rate has to be maintained at some minimum level
in order to achieve actual increase in network throughput. In
other words, we cannot examine solely the improvement on
multiaccess throughput expressed in packets per unit time; we
need to also consider whether and how much the packet’s data
rate has been sacrificed by the diverting of channel resources to
support MU capability. Simply put, if we denote r1 and η1 to
be the respective data rate (in bits per packet) and multiaccess
throughput (in packets per unit time) for a PHY layer, and
r2 and η2 for those of another PHY layer with stronger MPR
strength, then, even though η2 > η1, we still need

η2/η1 > r1/r2 (14)

in order for the latter PHY layer to deliver a higher network
throughput of η2r2, in bits per unit time.

The basis for MU capability is to exploit resources in the
channel that provide orthogonal properties to support MPR.
Ultimately, this is equivalent to finding what is known as
degrees of freedom (DoF) from the channel to multiplex data
streams [3, §1]. The design criteria that we describe here is:
A resource that gives rise to new DoF should be used to
increase MU capability when (14) can be satisfied; otherwise,
the network throughput can be made higher by applying the
resource to instead increase the data rate of each packet.

B. WLAN Design Constraints and Advantages of MU-MIMO

MIMO signaling with multiple antennas exploits the spatial
diversity “resource” in multipaths of a wireless channel to
generate DoF that can be used for boosting a point-to-point
link’s spectral efficiency or robustness. Because of indepen-
dent fading statistics among users’ propagation paths, MU
diversity also exists as a resource for creating DoF to multiplex
MU data streams [27]. The challenge in designing MIMO
systems centers on balancing the trade-offs among said various
gains with the available DoF.

While MIMO spatial multiplexing of additional data
streams increases data rates linearly, the SNR required to
robustly receive them also grows noticeably. In fact, a cur-
rently impractical level of SNR is required to receive just a
few spatial streams signaled at high orders of modulation and
coding rates [28, §5.3]. Contrastingly, indoor measurements
show MU-MIMO can achieve considerably higher spectral
efficiencies than SU-MIMO for the same SNR and number of
receive antennas per user [29]–[30]. This implies that, as SNR
and number of receive antennas are typical WLAN design
constraints, the extra DoF obtained from adding transmit
antennas should be applied on MU multiplexing rather than on
raising the level of a SU’s spatial multiplexing toward levels
that the system cannot sustain robustly. And since a PHY layer
that uses these new DoF to improve its SU data rate cannot
practically do so below a certain SNR, when this PHY layer is
compared to another that instead diverts these DoF to increase
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Fig. 7. Aggregate network throughput of the proposed 802.11ac WLAN
for 1–4 spatial streams (s.s.) per user. As in Fig. 8, the A-MPDU size limits
considered are 65 KB and 520 KB, which are, respectively, the maximum
defined in 802.11n and eight times of that; note that larger sizes do not show
changes to the trends. 802.11ac proposes to support up to four MU-MIMO
users, where each user can have up to 4 s.s. for a system maximum of 8 s.s.
802.11ac has a maximum aggregate throughput of at least 1 Gbps.

TABLE III
A SELECTION OF DATA RATES FOR AN 80-MHZ 802.11AC OFDM

SYMBOL WITH SHORT GUARD INTERVAL (400 NS) [11]

No. of Modulation Code Spectral efficiency Data rate

spatial streams rate (Mb/s/Hz) (Mbps)

1 BPSK 1/2 0.40625 32.5

1 64-QAM 5/6 4.0625 325.0

2 64-QAM 5/6 8.125 650.0

3 64-QAM 5/6 12.1875 975.0

4 64-QAM 5/6 16.25 1300.0

the system’s MU capacity, we can also expect (14) to likely
be satisfied. Thus, MU diversity can be an effective resource
for realizing throughput gains from MPR in current WLANs.

Lastly, we note that finding new channel resources to
enhance MPR can become progressively difficult because of
practical issues. For instance, the number of antennas is a
potential constraint due to space limitations and costs. Also,
the maximum transmit power allowable by regulatory rules is a
constraint on the power density per spatial stream, limiting the
achievable level of MU multiplexing. Consequently, although
the throughput gain with the next generation of WLANs
promises to be rewarding, the increment in MPR capacity will
only be moderate, not dramatic.

C. Performance Results and Enhancements for MU-based
802.11ac WLANs

To see the benefits from applying MPR to CSMA wireless
networks in practice, we have simulated the performance of
WLANs based on the initial draft text (version D0.1) [11] pro-
posed for the 802.11ac standard.11 While this standardization

11The particular parameters we took from D0.1 have not been changed in
D4.0, the latest and nearly final draft version at this paper’s press time (Nov.
2012).
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Fig. 8. Efficiency of the proposed 802.11ac WLAN in the infrastructure
mode. The decrease in efficiency with M indicates the current 802.11 SU-
oriented MAC cannot fully utilize the PHY layer’s MU capacity.

effort is still ongoing and industry dynamics are difficult to
predict, our results provide the best means for speculating at
present about how the finalized specification may perform.

The plan for 802.11ac to perform MU-MIMO is to extend
the SU-MIMO framework of 802.11n. As a result, the funda-
mental components in the 802.11n PHY layer are adopted.
Table III lists the 80-MHz data rates from [11] that we
simulated. Details of our simulation framework are explained
in Table IV. Of note is that 802.11ac has adapted the same
MAC backoff policy as 802.11n. And since this policy’s
parameters are originally designed for a SU PHY layer, the
simulation results represent those of a SU-oriented MAC layer.

In Figs. 7-8 we plot the network throughput and efficiency
for the described framework. Fig. 7 shows that MU-MIMO
can offer significant increase in network throughput. However,
these throughputs exhibit a ceiling, and hence the corre-
sponding efficiencies in Fig. 8 also show a gradual decrease
with M . To remedy this effect, we extend the maximum A-
MPDU size to 8 times that of the 802.11n limits. This would
mitigate the degradation on the ratio of preamble overhead to
payload duration as the packet’s data rate increases. But while
this method improves performances, which are also plotted
in Figs. 7-8, the downward trend in efficiencies persists.
Evidently such performances are those of a MAC layer that
is not optimized for its underlying PHY layers; otherwise,
as discussed in Section III, the throughputs will unboundedly
scale with MU capacity. Note that we have found the general
trends displayed of the plots in Figs. 7-8 remain unchanged
when the number of clients in the network is varied.

These results clearly indicate that the current SU-oriented
MAC layer in 802.11 cannot fully utilize the PHY layer’s MU
capacity. As expected from what we pointed out in Section III,
when the MU capacity increases, the number of idle slots has
to correspondingly decrease to achieve the optimal throughput.
Thus, the fundamentals for 802.11ac can be enhanced with
an appropriate cross-layer design approach, in particular, by
applying the theory of CSMA with MPR that we discussed.
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TABLE IV
DETAILS OF OUR 802.11AC WLAN SIMULATION FRAMEWORK

Simulation parameter Value Remarks

Operating mode Infrastructure
mode

Downlink and uplink transmissions cannot concurrently coexist; i.e., when STA(s) transmit together
with the AP, none of their frames are correctly received.

No. of AP 1 AP transmissions to the clients are called downlink [6].

No. of clients 29 Client transmissions to the AP are called uplink [6].

No. of simultaneous
transmissions

Downlink: M
Uplink: 1 to M

M is the maximum no. of simultaneous transmissions allowable by the MU-MIMO PHY layer. Note
that, unlike in our simulations, TGac has ultimately decided to define only downlink MU-MIMO in
the current 802.11ac standard, despite early proposals to also adapt uplink MU-MIMO and leaving
this for potential consideration in future amendments.

Channel width and PHY data
rates

See Table III Only those signaled by 64-QAM at rate 5/6 are used here. Each client’s link has the same data rate.
SNR is assumed sufficient enough for a negligible PER.

PHY header duration 16 μs This is based on the header structure proposed in [11], i.e., the SIG fields.

No. of LTFs in preamble Depends on
no. of spatial
streams, per

[11]

This is necessary for receivers to estimate the MIMO channel properly (cf. 802.11n [6]). These Long
Training Fields (LTFs) are those proposed in [11].

MAC backoff policy As in 802.11n 802.11ac has adapted essentially the same backoff policy as in 802.11n. Note that these parameters
were designed for a SU-oriented PHY.

RTS-CTS frame exchange Enforced for
all TXOPs

Transmitted with 1 spatial stream by BPSK at rate 1/2 (cf. Table III), as in practice to maximize
effect against hidden nodes.

TXOP duration 3.008 ms This is the maximum specified for OFDM-based PHY layers by 802.11 [6].

Frame aggregation Enforced for
all data frames

Each TXOP is packed with as many A-MPDUs as possible. In 802.11 parlance, an aggregated data
frame is known as aggregated MPDU (A-MPDU).

MPDUs per A-MPDU 64 This is the maximum specified by 802.11 [6].

A-MPDU size 65 535 bytes This is the maximum specified by 802.11 [6]; 802.11ac is proposing a maximum 16 times of that.

Acknowledgement (ACK)
policy

Implicit and
Compressed
BlockACK

We assume the M clients ACK simultaneously via uplink MU-MIMO. Although currently in
802.11ac each client’s ACK is sent individually to the AP, our results will still show the general
expected performance trend. Implicit and Compressed BlockACK minimizes ACK overheads.

CSI feedback or channel
sounding

Not included Obtaining channel state information (CSI), which is essential for MU-MIMO, can incur small
overheads. Since our goal is on showing the general expected performance, we have assumed accurate
CSI is known at the transmitter.

Network traffic model STAs always
saturated with

packets to send

This forces the system to operate in a critical region where it is on the verge of drifting into instability,
i.e, throughput approaching zero and delay approaching infinity, allowing us to examine a protocol’s
fundamental performance.

No. of iterations in simulation 100 000 Running more, e.g. 1 000 000, did not exhibit any significant differences in the scale of our plots.

APPENDIX A: STATE TRANSITION PROBABILITIES OF

MARKOV CHAIN {Xt}
Let Pi,k be the conditional probability that, if j packets are

backlogged at the start of the current TP, then k packets will
be backlogged at the start of the next TP. With Λk denoting
the probability there are exactly k new arrivals during the 1/τ

slots when there are transmissions (e.g., Λ0 = λ̂
1/τ
0 ), we have:

• P0,0 = λ̂0 +

∞∑
n=1

λ̂nCn,nΛ0

• P0,k =

∞∑
n=1

λ̂n

n∑
s=max(0,n−k)

Cn,sΛk−(n−s), for k ≥ 1;

• Pi,i−k =
∞∑
n=0

λ̂n

i∑
j=k

Bi(j)

j∑
s=k

Cn+j,n+sΛs−k, for i ≥ 1

and 1 ≤ k < i;

• Pi,i = λ̂0Bi(0) +

∞∑
n=0

λ̂n

i∑
j=0

Bi(j)

j∑
s=0

Cn+j,n+sΛs, for

i ≥ 1; and

• Pi,i+k =

∞∑
n=0

λ̂n

i∑
j=k

Bi(j)

n+j∑
s=max(0,n−k)

Cn+j,sΛk−(n−s),

for i ≥ 1 and k ≥ 1.

APPENDIX B: PROOF OF (3) IS BOUNDED BELOW

D(i) = −
i∑

k=1

kPi,i−k

= −
i∑

k=1

k

∞∑
n=0

λ̂n

i∑
j=k

Bi(j)

j∑
s=k

Cn+j,n+sΛs−k

= −
i∑

j=1

Bi(j)
∞∑

n=0

λ̂n

j∑
s=1

s∑
k=1

kCn+j,n+sΛs−k

> −
i∑

j=1

Bi(j)

∞∑
n=0

λ̂n

j∑
s=1

sCn+j,n+s

s∑
k=1

Λs−k

> −
i∑

j=1

Bi(j)

∞∑
n=0

λ̂nCn+j

> −L,

where Pi,i−k and definition of Λk are given in Appendix A.
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APPENDIX C: PROOF OF LEMMA 1

Proof: We first establish some properties to be used in
the proof. Consider an x0 = arg supx≥0Υ(x, {Cn}) for some
general {Cn} where x0 < ∞. The concavity assumption we
have on expected transmission successes {Cn} implies that
Υ(x, {Cn}) is concave down, and thus x0 is where the global
maximum occurs. Naturally, dΥ(x,{Cn})

dx

∣∣
x=x0

= 0, which after
some simplification of terms can be written as
dΥ(x0,{Cn})

dx = − e−x

1+τ−e−x

∑∞
n=1 Cn xn

n! +
e−x

1+τ

∑∞
n=1 Cn xn−1

(n−1)! = 0.
(15)

Interestingly, the first term of dΥ(x,{Cn})
dx in (15) is exactly the

expression for −Υ(x, {Cn}). Thus, if we denote C(x, {Cn})
to be the second term of dΥ(x,{Cn})

dx in (15), we will have

sup
x≥0

Υ(x, {Cn}) = Υ(x0, {Cn}) = C(x0, {Cn}). (16)

Since x0 is the global maximum, dΥ(x,{Cn})
dx > 0 for x < x0,

so it follows from (15) that

Υ(x, {Cn}) < C(x, {Cn}) for x < x0. (17)

Similarly, because dΥ(x,{Cn})
dx < 0 for x > x0, Υ(x, {Cn}) >

C(x, {Cn}) for x > x0.
We now construct an expected transmission success {C(2)

n }
that will complete the proof. Consider a {C(2)

n } with C(2)
n >

C(1)
n for all n ∈ N and C(2)

n = C(1)
n for all n /∈ N , where N ∈

{n : n > x1+1} and N �= ∅. In other words, {C(2)
n } contains

one or more C(2)
n that are greater than C(1)

n at some (integer)
indices n > x1 + 1, while the rest of {C(2)

n } is the same
as {C(1)

n }. Further construct {C(2)
n } such that limn→∞ C(2)

n <

supn≥1{C(2)
n }. Then we know from the proof of Theorem 3

that Υ(x, {C(2)
n }) will achieve its supremum at some finite x2.

From the construction of {C(2)
n } we can readily see that it has

stronger MPR strength than {C(1)
n }. So, what remains to be

shown is that x2 > x1 with this {C(2)
n }.

Obviously if x1 = 0, which happens when C(1)
n = 0

for all n, then we have x2 > x1 already because by our
construction of {C(2)

n } we can only have x2 > 0. Thus, we
need consider only those {C(1)

n }’s that give x1 ∈ (0,∞).
Let us compare the values of Υ(x, {C(2)

n }) and C(x, {C(2)
n })

when evaluated at x = x1. Let {δn} = {C(2)
n − C(1)

n }. Then
Υ(x, {C(2)

n }) = Υ(x, {C(1)
n }) + e−x

1+τ−e−x

∑
n∈N δn

xn

n! and

C(x, {C(2)
n }) = C(x, {C(1)

n }) + e−x

1+τ

∑
n∈N δn

xn−1

(n−1)! , where
in both expressions all the δn terms are greater than zero.
Because the supremum of Υ(x, {C(1)

n }) is attained at x1, from
(16) we know that Υ(x1, {C(1)

n }) = C(x1, {C(1)
n }). Observe

that for all x ∈ (0,∞), since xn

n! < x
1+x

xn−1

(n−1)! when n > x+1

and x
1+x < 1+τ−e−x

1+τ for any τ > 0, it will also be true that
1

1+τ−e−x
xn

n! < 1
1+τ

xn−1

(n−1)! when n > x+1 and for any τ > 0.
Thus we have,

Υ(x1, {C(1)
n }) + e−x1

1+τ−e−x1

∑
n∈N δn

xn
1

n!

< C(x1, {C(1)
n }) + e−x1

1+τ

∑
n∈N δn

xn−1
1

(n−1)! ,

i.e., Υ(x1, {C(2)
n }) < C(x1, {C(2)

n }). Finally, given this fact
and that the supremum of Υ(x, {C(2)

n }) is attained at x2, it
follows from (17) that we must have x1 < x2.
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