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Abstract—The problem of scheduling for large scale charging
of Electric Vehicles (EVs) is considered. As part of the future EV
infrastructure, a Large Scale Charging (LSC) facility is capable
of charging hundreds of electric vehicles simultaneously. As an
intelligent load in the future smart grid, LSC requires properly
designed pricing and scheduling algorithms that take into account
the electricity consumed, the arrival-departure characteristics,
and overall charging capacity.

The scheduling of LSC is formulated as a deadline scheduling
problem. Utility functions that combine both amount of charge
and tightness of the deadline are proposed. Under arbitrary
(and deterministic) arrival, departure, and charging character-
istics, a scheduling policy referred to as deadline scheduling
with admission control is proposed. The proposed algorithm
achieves the highest competitive ratio (against the best offline
scheduling) for the utility function linear in charging level among
all online scheduling algorithms. It also offers significant gain
over benchmark scheduling algorithms such as the Earliest
Deadline First (EDF) scheduling and the First Come First Serve
(FCFS) scheduling in terms of average performance for general
utility functions when tested with randomly generated charging
requests.

Index Terms—Electric vehicle infrastructure, large scale charg-
ing, EV/PHEV charging, demand response.

I. INTRODUCTION

The electrification of the transportation system is one of
the key components toward a clean and sustainable society.
The technology for Electric Vehicles1 (EVs) has sufficiently
advanced that an accelerated adoption of EVs is increasingly
likely. Crucial to the transition toward an EV based transporta-
tion is to establish Large Scale Charging (LSC) infrastructures,
i.e., a battery charging system at public parking facilities, work
places, and apartment complexes where a large number of
EVs are charged simultaneously. LSC is essential for urban
areas, especially in densely populated developing countries,
where in-home EV charging is not an option. With intelligent
scheduling, LSC sites can participate in demand side response,
taking advantages of the economies of scale, and offering
greater energy efficiency. For the management of the grid,
LSC provides an opportunity for efficient load management
[1], [2].

The pricing and scheduling of large scale EV charging fa-
cility is considered in this paper. Specifically, a pricing scheme
coupled with a deadline scheduling algorithm that exploits
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1Include both Plug-in Hybrid Electric Vehicles (PHEVs) and Battery
Electric Vehicles (BEVs).

the available charging capacity and the customer’s flexible
schedule is proposed. It is assumed that a customer arriving
at a charging facility can communicate its charging needs (the
amount of charging required and the deadline for completion)
to the operator. The pricing of a charging request should
be a function of not only the amount of required charging
but also the deadline of completion. To an LSC operator, a
job with a relaxed deadline offers the scheduling flexibility
to accommodate more profitable requests. Such requests also
give the operator the opportunities to avoid power surge and
exploit future pricing advantages. Therefore, customers should
be given price incentives to offer their flexibilities.

The scheduling of LSC is studied under the framework
of online scheduling of jobs with deadlines. In the online
scheduling setting there is no reservation requirements, and
the operator has to decide, at the time of customer arrival
with a charging request, whether to accept the customer and
the price of service. In a more general setting, the pricing itself
can be used as a way to reject a request or reduce the amount
of requests. In this paper, however, the policy of admission is
considered separately from that of pricing.

For online deadline scheduling algorithms operating in
uncertain environments, it is often inevitable that some jobs
cannot be completed by their deadlines. In the context of
LSC, for example, the power shortage or faulty equipments
may affect the completion of accepted charging requests. The
admission control can be used as a way to reduce but not
eliminate such occurrences. Therefore, there is a need, as part
of the pricing scheme, for a way to compensate the customer
whose charging request is accepted but not completed or not
to the requested level. For instance, a voucher for free future
services or cash credits for the uncharged amount can be
offered. Such mechanisms of compensating the customers with
unfulfilled requests need to be incorporated to the design of
optimal scheduling algorithm.

A. Summary of Results

The scheme presented in this paper focuses on the pricing
and the online scheduling for LSC, which is the first of this
kind to our best knowledge. An arbitrary (non stochastic)
model for arrival, departure, and charging processes is adopted.
Such a non-stochastic setting is appealing for both mathe-
matical and practical reasons. Because LSC for EVs is still
at an embryonic state, credible models that characterize the
processes of charging requests, the duration of stay, and the



level of charging are missing. Since the setting used in this
paper is assumed arbitrary, the proposed solution does not
require the knowledge of specific parameters.

A utility function and an associated pricing scheme that ties
both the amount of charging and the urgency of the deadline
are proposed. In particular, for a customer arriving at time
r with a charging request of p (joules) and deadline d, the
utility of such a job to the operator is u(p, d−r−p

p ) where u
is increasing with respect to the amount of charging p for
fixed d−r−p

p (the relative deadline factor) and decreasing with

respect to d−r−p
p for fixed p. Following the proposed pricing

scheme the customer will be charged for the amount of the
utility u if the request is fulfilled by the deadline. If the
operator fails to fulfill the request, the operator compensates
the customer in an amount proportional to the unfulfilled
amount (negative price for the customer).

An online scheduling algorithm aiming at maximizing the
reward under arbitrary arrival, departure (deadline), and charg-
ing instances is proposed. Referred to as Deadline Scheduling
with Admission Control (DSAC), this algorithm extends an
earlier algorithm proposed in [3] for problems involving mul-
tiple chargers. This generalization is necessary when parallel
charging—an essential feature for LSC—is allowed.

To measure performance of algorithms under arbitrary de-
terministic formulations, it is standard to use competitive ratio
analysis, which compares an online algorithm against the best
possible offline scheduling algorithm among all charging in-
stances. It can be shown that DSAC is optimal for linear utility
functions (u ∝ p, or u = kp) in terms of competitive ratio. In
other words, DSAC scheduler provides the best performance
guarantee under the worst possible charging scenarios. It is
also demonstrated that DSAC offers significant improvements
in average performance over benchmark algorithms such as
the Earliest Deadline First (EDF) and the First Come First
Serve (FCFS) algorithms for general utility functions.

B. Related Work

The benefits and impact of EV on the electricity network
are by now well documented. See, e.g., [4], [5], [6] where
the authors concluded that the current generation capacity
is able to sustain the additional EV charging. System level
constraints for the electric grid after introducing EV charging
are considered in [7], [8], [9]. There has also been economic
analysis of EV charging technology. The authors of [10] has
conducted an energy economic analysis of EV charging using
solar photovoltaic panels at workplace parking garage with
the conclusion that EV charging facility in public garage is
economically beneficial to both the car owners as well as the
facility operator.

For the scheduling of EVs, a variety of modeling and
optimization techniques have been proposed in the literature.
The EV charging for public garages has been considered in
[11], [12]. Specifically, the authors of [11] aggregated system
and operation models for the simulation of EV charging
in a municipal parking lot. The method of particle swarm
optimization is employed to allocate energy to EVs in [12].

The techniques in [11], [12] are significantly different from
the approach proposed in this paper, and there is no stated
performance guarantee; performance can only be evaluated by
simulations.

The proposed algorithm DSAC is rooted in the classical
deadline scheduling problem, stemming from the earlier prob-
lems of scheduling of processors for computer systems. It
should be noted, however, that the standard deadline schedul-
ing formulation does not include penalty if the job is not
completed by the scheduler. Since the seminal work of Liu
and Layland [13], there is considerable literature addressing
the scheduling problem in the underloaded and overloaded
regimes. The former corresponds to the case when there
exists an offline scheduling algorithm that can complete all
jobs arrived whereas the latter corresponds to the case when
some jobs cannot be completed even for the best offline
scheduling algorithm. For the underloaded scenario with single
processor, it has been shown that simple online scheduling
algorithms such as Earliest Deadline First (EDF) [13], [14] and
Least Laxity First (LLF) [15] achieve the same performance
as the optimal offline scheduling algorithm. The assumption
of underloaded overall workload, however, is restrictive and
unverifiable in practice. Locke showed in [16] that both EDF
and LLF can perform poorly in the presence of overload.
There were efforts to develop an online scheduling algorithm
with worst case performance guarantee when the system is
overloaded in [17], [18].

The admission control has been considered in the litera-
ture under the term “immediate notification” in [19] for the
application of video-on-demand. Later, joint admission and
scheduling has been studied in [20], [21], [22], [23] for non-
preemptive job requests without non-completion penalty. The
authors of [24], [25] give separately two joint admission and
scheduling algorithms for preemptive job requests with non-
completion penalty under proportional value model (v ∝ p),
where the non-completion penalty is the entire request value
v.

The deadline scheduling algorithm proposed in this paper
is an extension of an approach in [3] where its application to
large scale charging was mentioned but not addressed explic-
itly. There are major differences between [3] and the current
paper in both the application setting and the specific techniques
including the utility and reward structure, the presence of
multiple processors and parallel charging, and the evaluation
of average performance in performance comparison.

II. EV CHARGING MODEL

A. Charging Infrastructure and Customer Requests

The charging infrastructure at the facility consists of m
charging plugs (processors) with constant charging speed. In
LSC operations, preemption is allowed at no cost, i.e., a
preempted battery can be resumed charging from the previous
battery level upon preemption.

Each EV charging request T = (r, p, d) is represented by
a triple specified by the arrival (release) time r, charging
(processing) time p and deadline d. For example, a customer



who lives in an apartment in a high-rise building without
overnight charging equipment may arrive at a EV charging
facility near his office building around 8 am on the way
to work. The customer may intend to catch a flight for a
conference at 2 pm and plan to leave for the airport at 12
pm. The current battery level may be 10 miles and in order to
make the round trip to the airport the desired battery level after
charging is 50 miles. In this example the release time is 8 am,
the deadline is 12 pm and the processing time is determined
by the 40 miles desired battery level as well as the charging
speed of the charging plug.

Over a certain period of time, e.g., one day, all the
customer requests submitted constitute the input sequence
I = (T1, T2, . . . , Tn) including charging requests T1 =
(r1, p1, d1), . . . , Tn = (rn, pn, dn) to be priced, admitted and
scheduled by the LSC facility operator. Each fulfilled customer
request is associated with an individual utility, which is a
given function u(r, d, p) of the request parameters r, d and
p, whereas each admitted but unfulfilled request is associated
with a negative individual utility u(r, d, p̂), where p̂ is the
unfulfilled amount of the requested charging level.

Given the charging infrastructure and customer requests
model, the problem of interest is to devise a mechanism
of LSC operation to maximize the collective utility of the
customers. To this end we adopt the approach that uses the
revenue-seeking LSC operator as a proxy to maximize the col-
lective customer utility. Specifically, the LSC operator prices
the customer requests according to the individual utility and
conducts the admission control and scheduling in a revenue-
seeking fashion for his own benefit. When the individual utility
function is not known or known with uncertainty to the LSC
operator, the impact of using a pricing function that deviates
from the true individual utility function will be investigated
via simulation.

B. Interaction between Customers and LSC Operator

The interaction between the customers and the LSC facility
operator is summarized in the price quote offered by the
LSC operator. After the facility operator is given the charging
request parameters r, p and d, the facility operator offers a
price v for the charging request. The objective of the LSC
operator is to maximize the revenue, whereas the objective of
the customer is to obtain battery charging at a reasonable price.
In the process of both parties maximizing their own utility, our
system model allows the LSC operator to decline a customer
request (e.g., because the facility is currently busy serving
more profitable requests) to protect the utility of the LSC
operator, and thus indirectly expands the collective customer
utility by allocating the time and charging infrastructure to the
requests with better individual utility. Our system model also
allows the customer to evaluate the price quote and decide
to seek charging elsewhere. However, once the offered price
quote is accepted by the customer a contract is established
between the LSC operator and the customer; if the accepted
charging request is not completed by its deadline as promised,
the LSC operator loses the associated value (quoted price) of

the request and has to pay an additional penalty depending
on the amount of unfinished charging level. Specifically, the
non-completion penalty is equal to v p̂

p , where p̂ denotes the
unfinished charging level, i.e., the non-completion penalty is
the fraction in the quoted price that corresponds to the unfin-
ished charging level. This non-completion liability protects the
utility of the customer. This specific non-completion liability
suits LSC well since utility is delivered to the EV owner
continuously as the battery charging level increases.

The profit obtained by the LSC operator is the total value
of all completed charging requests before their deadlines, less
all penalties paid for the admitted requests that miss their
deadlines. The pricing, admission and the scheduling has to
be conducted in an online fashion, i.e., the LSC operator
knows the parameters of request Ti only at the release time
ri. The LSC operator strives to design an online management
scheme with satisfactory performance in both underloaded and
overloaded regimes.

III. PRICING SCHEME AND UTILITY

The pricing function v(r, d, p) should be tied to the in-
dividual utility of the customer request, since this provides
an incentive for the customers to consider their flexibility
and submit charging requests with relaxed deadlines whenever
possible.

The pricing scheme has two effects for the LSC operation.
1) Pricing scheme determines customer response, i.e., shap-

ing the fraction of customers that accept a certain
price v(r, d, p) offered for requests with release time
r, deadline d and processing time p. Specifically, an
unreasonably high price will turn away the majority of
the customers and reduce both the revenue of the LSC
operator as well as the collective utility of the EV owners.
On the other hand, a price too low may overwhelm the
charging facility without earning appropriate revenue for
the LSC operator.

2) Due to the revenue-seeking nature of the LSC operator,
the pricing scheme will affect the specific admission
and scheduling decision since different prices may tag
different priorities to the charging requests in the view of
LSC operator. It is sensible for the LSC operator to devote
more resource and time on the customers who accepted
more rewarding quoted prices.

The first effect of the pricing scheme leads to the traditional
method of pricing a standard product. Specifically, with the
knowledge of the customer response curve f(v; r, d, p), where
f(v; r, d, p) gives the fraction of customers with release time
r, deadline d and processing time p that are willing to accept
the price v, the LSC operator maximizes vf(v; r, d, p). This
method balances the quoted price with the customer response
curve; in both extremes of v the revenue function vf(v; r, d, p)
cannot assume the maximum since either v or f(v; r, d, p) is
too small.

However, the customer response curve f(v; r, d, p) is dif-
ficult to obtain or approximate due to the three additional
parameters r, d and p. More importantly, the pricing problem



in EV garage charging exhibits significant distinctions from
pricing a standard product since, for the standard products
manufactured on demand, the contention for manufacturing
resource only comes into play in the term of manufacturing
cost, even when there are overwhelming orders for the standard
product. On the other hand, for LSC application the contention
for charging infrastructure and time is explicit. With the
limited peak power injection from the electricity network when
there are overwhelming requests for charging in a short period
of time, the LSC operator simply cannot fulfill all the requests,
even at the expense of more operational cost. Therefore, the
pricing scheme in EV garage charging serves for the purpose
of optimally allocating charging infrastructure and time among
charging requests.

Structural properties of the utility function u = u(r, d, p)
are presented below.

1) The class of time homogeneous utility functions is con-
sidered, i.e., the utility of the request given by the triple
(r, d, p) is identical to that of the triple (r+ t, d+ t, p). It
is worth pointing out that there may be additional issues
such as peak hour versus non-peak hour. However, in this
paper the utility function that adapts to time or the overall
customer request arrival process is not considered. One
can thus write the utility function u = u(p, σ), where
σ = (d − r − p)/p is the relative deadline factor of
the request T = (r, d, p), ranging in [0,∞), and implies
the difficulty for the LSC operator to fulfill the specific
charging request without affecting other requests.

2) The utility u = u(p, σ) should be an increasing function
of the processing time p when σ is fixed, since the
electricity consumed is proportional to the charging level
requirement p.

3) The utility function u(r, d, p) should be a decreasing
function of deadline d when the release time r and the
processing length p is fixed, since the extended deadline
delays the time the customer can retrieve the car and may
reduce the operational difficulty of the LSC operator. This
observation translates to the fact that u = u(p, σ) is a
decreasing function of σ when p is fixed.

4) The decreasing trend of u = u(p, σ) in σ can also
be interpreted with the interaction among the charging
requests that come close in time. A charging request with
relative deadline factor very close to 0 cannot afford to
be moved around or delayed in the time axis. Therefore
stricter commitment in time and charging infrastructure
is necessary to fulfill the request which may potentially
block or delay other requests. The decreasing trend in the
price represents the commitment premium.

Considering the structural properties we adopt the utility
function u = u(p, σ) = ph(σ) in the simulations in Section
V, where u is proportional to p, and h(σ) is a decreasing
function of σ indicating the commitment premium. Exponen-
tial function is used for h(σ) in Section V.

Ideally the pricing function should be identical to utility
function in order to maximize collective utility. However, due

to uncertain knowledge of the utility function from LSC op-
erator side we adopt three different types of pricing functions
in the form v = v(p, σ) = pĥ(σ) in the simulations in Section
V, where ĥ(σ) is taken from one of the following three types:
constant, exponential (with correct and deviated parameters)
and step functions.

IV. ADMISSION AND SCHEDULING

Intuitively, the admission and scheduling tend to be easy for
the LSC operator if the overall charging load from the cus-
tomer requests is well below the facility capacity. Indeed, when
the overall charging load is reasonable, simple algorithms such
as EDF and first come first serve (FCFS) show reasonable
performance by simply admitting all requests that ever arrive.
However, if overwhelmingly many charging requests arrive
in a short period of time, e.g., during rush hours or due to
events like sports games, the admission and scheduling will be
more challenging. Described and interpreted below is an online
admission and scheduling algorithm DSAC, the performance
of which is demonstrated in Section V for both underloaded
and overloaded scenarios.

A. DSAC: Admission Control

When a customer request arrives and finds the facility
running well below capacity, the LSC operator offers a price
quote and once the offered quote is accepted, the operator
should immediately admit the customer, dispatch the request
to one of the lightly loaded processors and append the request
at the end of the current schedule. Otherwise, the charging
infrastructure would be left idle and potential profit would be
lost. In this easy-to-accommodate situation, the LSC operator
essentially takes a greedy approach and notices that admitting
the request will bring more revenue for now.

When a customer request arrives to a heavily occupied
facility, after the offered price quote is accepted, the LSC
operator faces a dilemma that admitting the customer may lead
to non-completion liability, while declining the customer again
means losing profit at hand. While optimal tradeoff between
the two concerns is difficult and involves accommodating
the newly arrived customer with minimum non-completion
liability, we propose a greedy threshold approach for this
difficult-to-accommodate situation.

The key idea behind the admission algorithm for difficult-to-
accommodate requests in DSAC is to evaluate the admission
decision based on the comparison of the potential profit
associated with admitting and declining the customer request.
Specifically, the LSC operator enumerates the potential proces-
sors. For each processor the admitting option is evaluated by
considering the quoted price as well as the incurred potential
non-completion penalty; the declining option is evaluated by
recognizing the potential value of the requests that would have
been affected upon admitting the new request. The ratio of
the profit associated with admitting and that with declining is
computed for each potential processor. Only if the maximum
ratio is over a prescribe threshold, the operator will admit this



request and dispatch it to the processor with the maximum
ratio.

B. DSAC: Scheduling

Even assuming the LSC operator admits the request just
released, there are many alternatives in the specific schedule of
the request just released as well as the other pending requests
(due to the admission of the new request, it may be necessary
to update the schedule of the other requests). DSAC makes
the scheduling decision in a greedy manner with minimum
backtrack in updating the schedule after admitting the newly
released request. Specifically, if the operator decides to admit
the request and dispatch to Processor k, the schedule of
Processor k is updated by tight-scheduling the newly released
request in the interval [d − p, d] where p and d are the
processing time and deadline of the newly released request,
respectively. Then the part of the previous schedule after
time d − p is moved to start at time d, or the end of the
current schedule, whichever comes later in time. This moving
may lead to some of the moved jobs to miss their deadlines.
Therefore the schedule is again updated to remove the part of
the moved jobs that comes after their deadlines.

The decision process can be interpreted as follows. When
the LSC operator decides to admit the newly released re-
quest, the request is profitable once accepted but difficult to
accommodate into the current schedule. Therefore in order
to accommodate the newly released profitable request, the
operator sacrifices the jobs in the current schedule in the time
interval [d− p, d], some of which may have deadlines far into
the future, thus still have potential in completion even after
the moving.

Described next is the procedure to determine the profit
associated with admitting (e.g., to Processor 1) and declining
the requests that cannot be appended on Processor 1. First
execute (virtually) on the current tentative schedule of Pro-
cessor 1 the procedure associated with the decision to admit
the difficult-to-accommodate request (including scheduling
the newly released request in [d − p, d] and postponing the
previous requests in [d − p, d]) and find out the requests in
the current tentative schedule of Processor 1 that are affected
in the received processing time. Denote by Jaffect the set of
requests in the current tentative schedule that are affected in
the received processing time. The profit associated with the
option of declining can be computed as the value of the subset
of requests in Jaffect anticipated to complete by the current
tentative schedule, less the portion of penalty attributed to the
subset of requests. The profit associated with the option of
admitting can be computed as the value of the newly released
request, less the portion of penalty attributed to the acceptance
of the newly released request (due to affecting the requests in
Jaffect).

To summarize, the dynamics of DSAC admission and
scheduling algorithm can be described as follows: the operator
maintains a tentative schedule for each processor at all times;
when a customer request is released, the operator checks
whether it is possible to append the new request at the end of

the current tentative schedule of one of the processors while
meeting its deadline. If the deadline can be met, then the
request is admitted and appended at the end of the current
tentative schedule of that processor. Otherwise, the operator
determines whether to admit the request based on the profits of
the options of accepting and declining. If the profit associated
with accepting is not sufficiently large, then the request is
simply declined service. Otherwise, the request is scheduled
on the processor with the maximum profit ratio in the time
interval [di − pi, di]; the previous schedule after time di − pi
is then moved to start at time di, or the end of the current
schedule, whichever comes later in time, and the operator
further checks whether there are any moved requests that
already missed their deadlines after the moving, deletes them
and moves the requests accordingly to fill the gap left by the
requests deleted.

The pseudo code of DSAC is given below. At time 0
the operator starts the infinite loop in which the schedule is
updated upon each request release.

DSAC: Admission and Scheduling procedure
1: loop
2: upon event: request Tarr is released
3: if Tarr appendable to Processor i then
4: append Tarr to the end of the tentative schedule of Proces-

sor i
5: else
6: î = argmaxi Profiti,admit/Profiti,decline

7: if Profit̂i,admit > βProfit̂i,decline then
8: append Tarr at the end by darr on Processor î
9: update the schedule after darr − parr accordingly

10: else
11: decline Tarr

12: end if
13: end if
14: end loop

As indicated in the pseudo code Tarr gets admitted and
appended to the current schedule on Processor i if it is
appendable on Processor i (line 4). Otherwise, if Tarr is not
appendable to any of the m processors, the profits Profiti,accept
and Profiti,decline associated with admitting and declining Tarr

respectively get compared, where i indicates the processor
index. For the processor that maximizes the profit ratio (Pro-
cessor î), if admitting Tarr assumes better profit (line 7),
then Tarr is admitted and appended at the end by darr (i.e.,
scheduled in the time interval [darr − parr, darr]), and the
current schedule after darr − parr is moved and modified
accordingly (line 8 and 9). Otherwise, if admitting Tarr does
not have better profit, Tarr is declined service (line 11). The
threshold β (line 7) represents the tradeoff between the current
revenue versus the newly arrived requests.

C. Illustration

Fig. 1 illustrates the admission and scheduling algorithm
for the single processor case. The arrows and the circles
indicate the release times and the deadlines, respectively. The
blue request in Fig. 1(a) and the red request in Fig. 1(e) are



appendable and thus admitted and appended in the end of
the current schedule. The green request in Fig. 1(b) and the
brown request in Fig. 1(f) are difficult to accommodate into the
current schedule and thus the profits associated with admitting
and declining are examined in Fig. 1(c) and Fig. 1(g). The
admission and scheduling decisions in Fig. 1(d) and Fig. 1(h)
are rendered by the profit comparison. The schedule is updated
by tight-scheduling the green request and the brown request
in Fig. 1(d) and Fig. 1(h). The moving caused by the green
request and the brown request leads to non-completion penalty
of the blue request and the green request, respectively. On
the other hand, the red request is still feasible after the delay
caused by the brown request in Fig. 1(h).

D. Competitive Ratio Guarantee

In the EV charging problem, an online operator knows the
job parameters at the release time, whereas the offline operator
is clairvoyant and knows the entire input instance a priori.
Due to the prior knowledge of the job parameters, the offline
operator is never subject to any non-completion liability. When
faced with overloaded charging request sequences, the online
operator is at significant disadvantage compared with the
offline operator.

To measure the worst case performance guarantee of an
online algorithm the metric of competitive ratio is widely used
(see Definition 1).

Definition 1. Competitive ratio: An online algorithm A is α-
competitive for an input set I if minI∈I

A(I)
opt(I) ≥ α where I

varies over all possible input instances in I, and A(I) and
opt(I) are the values the online algorithm A and the optimal
offline algorithm obtain on input instance I , respectively.

Specifically, an α-competitive online algorithm is guaran-
teed to achieve at least α fraction of the optimal offline value
under any input instance I in the input set I. In the EV charg-
ing problem an input instance I includes a sequence of charg-
ing requests T1 = (r1, d1, p1, v1), . . . , Tn = (rn, dn, pn, vn),
and the input instance set I contains all input instances with
finite number of charging requests.

The worst case performance guarantee of the DSAC algo-
rithm in terms of competitive ratio for linear utility function
(u ∝ p, or u = kp) is stated in Theorem 1.

Theorem 1. DSAC algorithm achieves the optimal competitive
ratio in the entire set of online algorithms for linear utility
function.

The result in Theorem 1 extends the previous competitive
ratio optimality result in [3]. Due to space limit the detailed
proof and exposition will be included in future work [26].

V. AVERAGE PERFORMANCE: SIMULATION RESULTS

A. Simulation Setup

In this section the simulation of the average performance
of the DSAC algorithm and comparison with EDF and FCFS
with or without admission control are presented. The benefit of

appropriate pricing scheme is also demonstrated via simulating
the collective utility of the customers.

The system parameters in the simulation are adopted as
follows; the customer arrival process is assumed to be Poisson
process with parameter λ, the charging level requirements
assumed to be i.i.d. uniform random variables in the interval
[5, 100], and the relative deadlines assumed to be i.i.d expo-
nential random variables with parameter η, where the relative
deadline of charging request T = (r, d, p) is d−r−p, i.e., the
maximum amount of time that can be spent on other requests
in interval [r, d] in order to finish T in time.

The customer utility function is set to be u(p, σ) =
ph(σ), where h(σ) is an exponential function (h(σ) = 1 +
3 exp(−σ)). Different pricing functions are simulated with the
form v(p, σ) = pĥ(σ), where ĥ(σ) is chosen from constant
(ĥ(σ) = 1), correct exponential (ĥ(σ) = 1 + 3 exp(−σ)),
deviated exponential (ĥ(σ) = 1 + 2 exp(−σ)), and step
functions (ĥ(σ) = 1 + 3 · 1{σ≤2}). In the simulation 200
Monte Carlo runs are conducted with 1000 jobs released over
time for each Monte Carlo run. The tradeoff parameter of
DSAC algorithm is taken to be β = 2.4. The EDF and FCFS
algorithms are adapted to the multi-processor situation in that
an admitted request is dispatched to the processor with shortest
current tentative schedule.

The admission control scheme of EDF and FCFS is im-
plemented as follows. Under EDF and FCFS with admission
control, the LSC operator declines a newly released request
if overload is detected once the request is incorporated into
the current schedule. That is, the facility operator checks the
feasibility of the requests accepted so far to ensure no penalty
will be incurred. If accepting a newly released request may
lead to penalty, then the facility operator decides to decline
the request. In Fig. 2 the performance of EDF and FCFS is
normalized by the value obtained by DSAC.

B. Admission Control: Underloaded and Overloaded Scenar-
ios

Both underloaded and overloaded scenarios are simulated
and EDF and FCFS without admission control are compared
with DSAC. It can be observed that in lightly loaded scenarios
(Fig. 2(a) and 2(c)) EDF and FCFS without admission control
perform reasonably well compared with DSAC, especially in
the 6-processor situation in Fig. 2(c), where the system load is
extremely light and EDF and FCFS without admission control
achieves almost 100 percent of the value obtained by DSAC.

On the other hand, in overloaded scenarios (Fig. 2(b) and
2(d)) EDF and FCFS without admission control perform
poorly compared with DSAC. When the system load is
extremely heavy due to the fact that no admission control
is performed, EDF and FCFS admit all the requests and
incur excessive non-completion penalty. Therefore the value
obtained turns out to be negative, whereas DSAC still earns
positive revenue. The pricing function is set to be the true
utility function.

The effect of the admission ingredient is thus illustrated
by the significant gap in the overloaded scenario. Also the



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Illustration of the admission and scheduling algorithm
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(f) Deviated exponential function
ĥ(σ) = 1+ 2 exp(σ): single proces-
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Figure 2. Illustration of the performance of the pricing, admission and scheduling algorithm



simulation validates the satisfactory performance of DSAC in
both underloaded and overloaded scenarios.

C. Pricing and Utility

Different pricing functions are simulated and the impact of
deviation of the pricing function from the true utility function
is investigated with respect to the maximization of collective
utility. It can be observed that EDF and FCFS with admission
control achieve less fraction of the value of DSAC in Fig.
2(e) compared with Fig. 2(f) and Fig. 2(g). Same observation
can be made from the 3-processor situation (Fig. 2(h), 2(i)
and 2(j)). Since EDF and FCFS with admission control do
not adapt to the prices, a smaller ratio of the value of EDF
and FCFS over that of DSAC indicates better performance of
DSAC in terms of maximizing collective utility.

The effect of the pricing ingredient is thus illustrated by the
fact that when the pricing function approximates the true utility
function better, the LSC operations achieve better collective
utility. It can be observed that moderate deviation in the pricing
function (ĥ(σ) = 1 + 2 exp(σ) and ĥ(σ) = 1 + 3 · 1{σ≤2})
from the true utility function (h(σ) = 1 + 3 exp(σ)) does not
cause significant degradation in the collective customer utility.

D. Scheduling Impact

The normalized utility is plotted versus the mean inter-
arrival time and mean relative deadline, and the impact of
the scheduling ingredient is investigated by comparing with
EDF and FCFS with admission control. It can be observed
in Fig. 2(k) and 2(l) that DSAC performs stronger compared
with EDF and FCFS with admission control as the relative
deadline gets looser and the inter-arrival time gets smaller.

The effect of the scheduling ingredient can be illustrated
by the fact that the benefit associated with DSAC improves
when the arrival process gets heavier, indicating the capability
of DSAC handling extremely heavy request arrival. Similarly,
the benefit associated with DSAC improves when the deadline
is relaxed, indicating the capability of DSAC earning increased
revenue with customer flexibility.

VI. CONCLUSION

The problem of EV garage charging management is consid-
ered where EV customers arrive sporadically with deadlines
and battery charging level requirement. The pricing, admission
and scheduling aspects of the large scale charging facility
operations are investigated, and a utility based pricing scheme
is proposed that explores the customers’ time flexibility, to-
gether with an online admission and scheduling algorithm
DSAC with worst case competitive ratio guarantee for linear
utility function. Satisfactory average performance of DSAC is
demonstrated for both underloaded and overloaded scenarios
via extensive comparative simulation with benchmark algo-
rithms such as EDF and FCFS under a stochastic setup.
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