
I
n a distributed detection (DD) system, multiple sensors/detectors work collaboratively
to distinguish between two or more hypotheses, e.g., the absence or presence of a tar-
get. While DD can be traced back to the advent of democracy and associated voting
schemes, one of its earliest formal treatments can be found in the work of Radner in
the early 1960s, [1] who considered the problem of decision making by a team of mul-

tiple persons. Each person has access to different information and independently makes
his/her decision. The coupling (i.e., the concept of a “team”) lies in the fact that the payoff
function of the decision-making process depends on all the decisions and the state of situ-
ation in an inseparable way.
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A more prevailing model for DD, as studied extensively in
the DD literature and arguably more relevant to engineering
applications, is a system involving both distributed sensors
and a fusion center. The fusion center is responsible for the
final decision-making task based on information gathered
from local sensors. A distinct feature that makes DD both chal-
lenging and meaningful is that local sensor observations need
to be compressed before they are jointly processed by a fusion
center. This need may arise due to the large data volume
observed at local sensors as well as the limited channel capaci-
ty between sensors and the fusion center. If, on the other hand,
the raw data observed at local sensors are accessible in their
entirety at the fusion center, the problem is reduced to the
classical hypothesis testing (HT) problem [2] at the fusion cen-
ter with multiple data samples supplied by multiple sensors.

The recent emergence of wireless sensor networks (WSNs) has
added a new dimension to DD system design. While the need for
distributed data compression is still the dominant issue, during
system design and, in particular, the development of signal pro-
cessing algorithms, one is confronted with both the stringent
resource constraints imposed by a typical WSN as well as the
unreliable transmission channels among the sensors and between
the sensors and the fusion center. The focus of this tutorial is to
revisit the classical decentralized detection theory in the light of
these new constraints and requirements. The central theme that
transcends various aspects of signal processing design is that an
integrated channel-aware approach needs to be taken for optimal
detection performance given the available resources.

A BRIEF REVIEW OF CLASSICAL DD
Closely related to DD is the so-called multiterminal inference
problem first introduced by Berger in 1979 [3]. There, the stan-
dard HT problem was put in the information theoretic frame-
work where multiple remote terminals are subject to rate
constraints in communicating their information to the decision
maker. The primary goal is to establish existence theorems and
bounds on the error exponent for multiterminal HT as a func-
tion of the rate constraint [4]–[6]. The results, however, are
exclusively established in the asymptotic regime and do not lend
themselves easily to practical design procedures to achieve the
desired error exponent. (Here the asymptotics are in the tempo-
ral domain for a fixed number of sensors. This differs from the
“large system” asymptotics where the
number of sensors grows to infinity, as
in [7].) For a more comprehensive sur-
vey in this area, the readers are referred
to [8] and the references therein.

The inception of DD, as we are
familiar with today in the signal pro-
cessing community, can be largely
attributed to the seminal work of
Tenney and Sandell in 1981 [9]. Since
then, DD has blossomed into a research
discipline with broad appeal to
researchers in the signal processing

community [10]–[13]. We consider in this tutorial primarily the
so-called canonical DD system, consisting of a fusion center and
parallel distributed sensors communicating directly with the
fusion center. This is illustrated in Figure 1.

From the signal processing perspective, two inherently dif-
ferent problems need to be considered for the canonical DD sys-
tem: the design of the decision rule at the fusion center (often
referred to as the fusion rule), which strives for an optimal sys-
tem performance using compressed input from distributed sen-
sors, and the design of local sensor signal processing
algorithms. These two problems are intertwined with each
other; they need to be jointly designed to optimize a prescribed
performance criterion. 

The design of fusion rules is conceptually straightforward—
with perfect knowledge of system parameters, the optimum
fusion rule amounts to a likelihood ratio test (LRT) and has
been obtained for both binary and multibit (soft) local sensor
outputs [11], [14]. Obtaining local sensor decision rules is con-
siderably more complicated because of its distributed nature.
Many examples can be found in the literature that highlight
both the difficulty of the problem and the counterintuitiveness
of some results. For example, under the Bayesian criterion, it
was demonstrated that even with identical sensor observations,
the optimal local sensor decision rules need not be identical
[15]. For the Neyman-Pearson (NP) problem, nonconcavity of
the receiver operating characteristics curves has been observed
[10], [16] for certain distributions of sensor observations.

Nonetheless, thanks to the collective effort of many
researchers, tremendous progress has been made over the years.
For example, under various problem settings and different crite-
ria, the optimality of LRT at the local sensors has been estab-
lished under the conditional independence assumption [9],
[17]–[19]. Relaxing the binary local sensor output assumption
to multilevel quantization, the optimality of LR quantization has
also been established [10], [20], [21].

Establishing the optimality of LRT at local sensors does not
completely solve the problem. Unlike an isolated detection sys-
tem, the LRT thresholds at the sensors are coupled with each
other; they affect the system performance in an interdependent
manner. This is true regardless of the detection paradigm
employed, i.e., Bayesian, NP, or other more heuristic criteria
(e.g., maximizing the Bhattacharyya distance [22]). Almost
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[FIG1] A canonical DD system. The kth local sensor observes Xk and sends its decision
Uk = γk(Xk) to the fusion center. The fusion center makes a final decision U0 regarding H
using the fusion rule γ0(U1, . . . , UK). The classical DD system assumes that local sensor
outputs U1, . . . , UK are reliably received at the fusion center.
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invariably used for finding the local sensor thresholds is the so-
called person-by-person optimization (PBPO) approach, where
each sensor’s threshold is optimized assuming fixed decision
rules at all other sensors and the fusion center [23]. The conver-
gence of PBPO is guaranteed as the error probability is lower
bounded by zero.

To circumvent the need for the PBPO approach, which
becomes intractable when the size of the sensor network
becomes large, Tsitsiklis has pioneered the use of error expo-
nents in a decentralized detection system [7]. Using large devia-
tion theory, it was shown that in the asymptotic regime (i.e., the
number of sensors grows large), an identical decision rule at the
sensors can be used that achieves the optimal error exponent for
binary HT, provided that the local sensor observations are condi-
tionally independent and identically distributed. This work, and
in particular, the use of error exponent, has also had profound
impact on some recent work in the area of detection for WSN
[24]–[35]. For example, the optimality of identical sensor-level
decision rules in the asymptotic regime was later generalized in
the context of WSN [25]–[27]. Other works that resort to the
large deviation theory for large-scale sensor networks include
the development of universal detection scheme in the absence of
knowledge of noise statistics [28], [29], the impact of bandwidth
constraint in large-scale sensor networks [24]–[30], and type-
based detection schemes that have been shown to attain the best
achievable error exponent [32]–[35].

WHY CHANNEL-AWARE SYSTEM DESIGN?
In WSN, the design of a DD system faces the challenge of deal-
ing with an interference-rich transmission environment and
stringent resource constraints, most notably the energy con-

straint with in-situ unattended sensor nodes operating on irre-
placeable battery supply, and the delay constraint for a system
engaged in a situation awareness mission.

From a system perspective, decision making in an inference-
centric WSN is affected by two levels of uncertainty: the first level
accounts for the disturbance and noise in the sensor observa-
tions, i.e., the uncertainty associated with the source phenome-
non as observed by the sensors; the second level of uncertainty is
due to the transmission channels between the sensors and the
fusion center that are typically affected by receiver noise, channel
fading, and interference. This concept is illustrated in Figure 2.

Classical DD addresses only the first layer of uncertainty, that
is, sensor signal processing algorithms are designed under the
premise that the transmission between the sensors and the
fusion center is always reliable. Directly applying classical DD
theory to sensor networks with nonideal transmission channels
leads to a separation approach: the designs of communication
schemes between the sensors and the fusion center are discon-
nected from the signal processing algorithms for the underlying
detection problem. 

To elaborate further, consider Figure 3 that depicts a canonical
parallel fusion system with θ being the underlying parameter of
inference interest. We point out here the difference between data-
centric and inference-driven approaches. In the former, the objec-
tive is to recover X1 through XK while the latter attempts to draw
inference regarding θ . This distinction will significantly affect the
signal processing design at all levels of the network. Accentuated
using the dotted box is the communication block. In resource and
delay constrained applications, an important question is this: con-
sidering all the constraints imposed by the practical application
(e.g., power, bandwidth, delay), is it good enough to design the

wireless communication system under
these constraints, irrespective of the
sensing/processing at both the local
sensor and fusion center level (or in
general, the inference task at hand)?

The answer to this question is no,
which can be illuminated by examin-
ing the decision fusion problem. If the
communication block is designed
independently of signal processing,
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[FIG2] An illustration of a sensor network with two layers of uncertainty, one contributed
by the observation uncertainty and the other introduced due to the nonideal transmission
channels.
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[FIG3] A block diagram for a WSN tasked with inference problems regarding θ. Treating the communication block (dotted box) as an
independent component leads to the separation approach.
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then each receiver, Rx k in Figure 3, is tasked with the inference
problem regarding Uk, and the fusion center would simply
process the receiver output Ûk. However, for a fusion network,
the ultimate goal is to evaluate the underlying parameter θ
instead of recovering U1, . . . , UK . The data processing inequality
[36] mandates that one should jointly process the output of the
channels, namely Y1, . . . , YK , rather than processing the output
of the receivers to avoid any potential information loss. This
illustrates the importance of integrating the transceiver design
with the design of the fusion algorithms.

A similar argument can be made for the signal processing
algorithms designed at local sensors. For concreteness, we use
Example 1 to demonstrate the need for channel-aware distrib-
uted signal processing at local sensors for optimal detection
performance.

EXAMPLE 1
Consider the detection of a known signal in additive Gaussian
noise with two sensors

H0 Xk = Nk

H1 Xk = S + Nk (1)

for k = 1, 2, where N1 and N2 are independent and identically
distributed according to N (0, σ 2). Without loss of generality,
we assume π0 = Pr [H0] = 0.8, S = 1, and σ 2 = 1. Each sen-
sor makes a binary decision based on its observation Xk

Uk = γk(Xk).

Each Uk is then transmitted through a binary symmetric chan-
nel (BSC) with crossover probability αk, and let us assume
α1 = 0.05 and α2 = 0.15. We denote by τ1and τ2 the thresholds

on X1 and X2. For these parameters, the channel-aware design
yields a threshold pair (τ1, τ2) = (0.8426, 1.2570) [37]. The
validity of the result is confirmed by Figure 4, where the mesh
and contour plots of minimum achievable error probability as a
function of (τ1, τ2) are given. Figure 4(b) shows that the
obtained threshold pair, marked with an “x,” achieves the mini-
mum error probability Pe = 0.1889.

If one assumes ideal transmission, a pair of identical thresh-
olds τ1 = τ2 = 0.8474 [marked with an “o” in Figure 4(b)] can
be obtained using classical DD theory [10], with a correspon-
ding error probability Pe = 0.1928. While the degradation
from the channel-aware design in terms of error probability is
nominal in this case, the penalty of assuming ideal transmis-
sion will become more severe when the number of sensors
and/or the quantization levels increase [39].

WHEN IS CHANNEL-AWARE PROCESSING NECESSARY?
We conclude this section by looking at a detection example
where optimal sensor signal processing does not need to be
channel aware. Consider the special case of an isolated sensor
attempting to distinguish between two hypotheses and sending
its decision to the final decision maker via a noisy channel.
Assume that the sensor can use a total of m bits for transmis-
sion, and it has perfect knowledge of the transmission channel
in terms of its conditional probability p(Y|U). This is depicted in
Figure 5. Intuitively, if the channel is ideal, only a single bit is
needed; the sensor simply implements the optimum detector
and sends its decision to the fusion center. Surprisingly, we
show that the same holds even in the presence of nonideal chan-
nels regardless of the exact channel state p(Y|U).

For this single remote sensor system, the probability of error
at the fusion center can be written as, using the fact that
H → X → U → Y → U0 form a Markov chain

[FIG4] The mesh and contour plots of minimum achievable error probability as a function of (τ1, τ2) for Example 1. The parameter
settings are π0 = 0.8, α1 = 0.05, and α2 = 0.15.
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Pe0 = π0 P(U0 = 1|H0) + π1 P(U0 = 0|H1)

=
∫

X

[
M−1∑
i=0

P(U = i|X)Di(X)

]
dX,

where M = 2m is the total number of quantization levels and 

Di(X) =π0 p(X|H0)P(U0 = 1|U = i)

+ π1 p(X|H1)P(U0 = 0|U = i), (2)

where P(U0 = j|U = i) can be computed by 

P(U0 = j|U = i) =
∫

Y
P(U0 = j|Y)p(Y|U = i)dY.

The optimal sensor decision rule is to set 

P(U = i∗|X) = 1

for

i ∗ = γ (X) = arg min
i∈{0,1,... ,M−1}

Di(X),

i.e., index i∗ is what the sensor will transmit. Comparing Di(X)

and Dj(X) with i �= j, we get, from (2),

Di(X) <Dj(X) ⇐⇒ π1(P(U0 = 0|U = i ) − P(U0 = 0|U = j))(
p(X|H1)

p(X|H0)
− π0

π1

)
<0.

Notice that the term π1(P(U0 = 0|U = i ) − P(U0 = 0|U = j))
is independent of the sensor observation X. Therefore, even with
m-bit signaling, the local sensor signaling is an LR quantizer
with only a single threshold π0/π1, which corresponds to the
optimum Bayesian detection at the remote sensor and is inde-
pendent of the channel state. It follows from [38] and [39] that
only two output indices out of a total of M = 2m will be used by

the quantizer. Given that there are a total of m bits to be used to
transmit the quantized output, the optimal encoder structure at
the remote sensor is therefore a binary quantizer followed by an
(m, 1) code. An intuitive choice is an (m, 1) repetition code,
which is optimal, for example, for the Gaussian channel. This
structure, as well as the LRT threshold, are independent of the
channel state P(Y|U). We remark here that even with the opti-
mal sensor quantization rule being channel blind, the optimal
fusion rule γ0(·) is still channel aware.

Unfortunately, this is the only known instance where sepa-
ration of “source quantization” and “channel encoding” is opti-
mal for HT problems involving remote terminals. In all other
cases, including the single-sensor M-ary (M > 2) HT problem,
or the multiple sensor case, optimal sensor signaling is invari-
ably channel-aware. (This result parallels in some sense that of
[40], where it was shown that, for a single remote sensor case,
estimation and quantization decouple for optimal quantizer
design for a noisy source under a quadratic distortion measure.
With multiple sensors, decoupled structure is no longer optimal
for the distributed estimation problem with noisy sources [41],
[42].) In particular, in a typical WSN where two or more sen-
sors are engaged in the detection problem, channel-aware
design always leads to performance improvement under given
resource constraints [38]. The need for channel-aware design
is also attractive from the energy efficiency viewpoint. To the
extent that an improved detection performance may result
from an integrated design approach, the transmitter power can
be conserved by signaling at a reduced power level.

CHANNEL-AWARE SIGNAL PROCESSING FOR DD
At the core of the channel-aware processing concept is the fact
that any signal processing design for the underlying detection
problem, whether at the fusion center or distributed sensors,
needs to include the effect of transmission channels. In a strict
sense, the channel-aware approach refers to the integration of
the knowledge of the channel state information (CSI) into the
design of signal processing algorithms. However, the concept
of channel-aware processing discussed in the sequel can be
broader than that of simply incorporating CSI into the signal

processing design. It also encompasses
the design approach that addresses the
effect of transmission channels even in
the absence of the precise knowledge of
CSI. In the following, we categorize
various channel-aware signal process-
ing design approaches for detection in
sensor networks, each designed specifi-
cally under a particular assumption
regarding the knowledge of transmis-
sion channels.

The basic model to be considered in
this section is depicted in Figure 6. As
with the classical DD problem, two dif-
ferent problems need to be addressed:
the design of a channel-aware fusion
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[FIG6] A canonical DD system involving the channel layer.
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rule at the fusion center and the design of distributed signal
processing algorithms at the local sensors. The former is con-
ceptually simple: given the local sensor decision rules, the
fusion rule design is a centralized detection problem and classi-
cal detection theory applies [43]–[46]. The major issue is that
the degree of knowledge
regarding the channels will
affect the transmission
schemes and the ensuing
fusion rule. For example,
without channel phase
information, incoherent
transmissions have to be
used which result in totally different fusion statistics [45], [47],
[48] compared with those for coherent systems [43], [44].

We will focus in the following on the design of distributed
channel-aware signal processing algorithms. For concreteness,
in all the examples presented below, we restrict ourselves to the
case of binary HT with K = 2 or 3 sensors. Most of the ensuing
discussions directly apply to the general K sensor case, although
for large K, one is confronted with the issue of increased com-
putational complexity.

WITH COMPLETE CHANNEL KNOWLEDGE
The ideal case for channel-aware design is the genie-aided
approach, where the global CSI (i.e., the knowledge about
p(Yk|Uk) for all k) is available to the designer. Particularizing to
wireless fading channels, we denote by h the global CSI. The
design criterion with the knowledge of the global CSI can be
succinctly summarized as 

min
γ0(·),...,γK(·)

Pe0(γ0, . . . , γK; h) (3)

i.e., the decision rules γk(·), k = 0, . . . , K, are optimized for a
given channel realization h. The designer decides the optimal
signaling scheme at the local sensors and the optimal decision
rule at the fusion center. These schemes need to be broadcast to
the sensors and the fusion center through a reliable channel. If
the following two assumptions hold: 

1) the observations at the local sensors are independent con-
ditioned on any given hypothesis

2) the sensors communicate with the fusion center through
independent channels

it is straightforward to show that the set of LRs(
p(X1|H1)

p(X1|H0)
, . . . ,

p(XK|H1)

p(XK|H0)

)

form a sufficient statistic for the HT problem at the local sensor
level. (Without either of the above two assumptions, channel-
aware design becomes computationally challenging. This is
especially the case when conditionally dependent observations
are observed at local sensors. In this case, the set of local LRs is
no longer sufficient for the underlying detection problem and
the problem has not been completely understood even under
the ideal channel assumption [49].) It follows directly that the

optimal local decision rules amount to quantizing the LR and
the channel awareness manifests itself in the channel-dependent
LR quantization thresholds [37]–[39], [50]. A similar argument
can be made for M-ary hypotheses testing though each local
sensor quantizer needs to operate on an M − 1 dimensional suf-

ficient statistic instead of a
scalar one [10], [51].

The advantage of the
channel-aware approach lies
in its inherent adaptivity
[38], [39]: the sensor quan-
tizer is not only driven by
the observation distribution

but is also channel adaptive. This has already been demonstrated
in Example 1, where the quantization thresholds using the
channel-aware approach are channel dependent, which results
in improved detection performance compared with the classical
approach. In Example 2, we provide a more thorough compari-
son to illustrate the inherent adaptivity of the integrated chan-
nel-aware approach. 

EXAMPLE 2
We again consider the detection of a known signal in inde-
pendent Gaussian noise as in (1), but with K = 3 sensors.
Each local sensor employs m = 2 bit quantization. We men-
tion here that the performance advantage of the channel-aware
approach becomes even more pronounced as the number of sen-
sors and or bits/sensor increase. Limiting to the case of m = 2,
however, makes our presentation much easier as only three
quantization thresholds are needed [c.f. Figure 7(b)]. Each
sensor transmits its m bits through m uses of a single BSC
with crossover probability α, and α is assumed to be identical
for all channels.

The channel-aware distributed quantizer design is compared
to the following two alternative approaches:

■ Approach A: optimum quantizer design assuming ideal
transmission channels; i.e., the m bits are presumed to be
fully accessible at the fusion center. 
■ Approach B: separate source-quantization channel-
coding approach. With a total of m bits for each Uk, one
can use an n-bit (n < m) quantizer followed by a block-
channel encoder mapping each n-bit quantizer output to
an m-bit code word. Essentially, each γk(·) in Figure 6 is
divided into two parts: a quantizer followed by a channel
encoder. In the following example, we set n = 1; i.e., a
binary quantizer. This is followed by an (m, 1) repetition
code which is optimal among all (m, 1) block codes for the
BSC as it maximizes the Hamming distance. The binary
quantizer threshold is optimized by taking into account
the aggregate transmission channel; i.e., using the
approach in [37] and [52].
Figure 7(a) plots, for π0 = 0.5, the error probability as a

function of α for the three different approaches. The integrated
approach provides uniformly the best performance among the
three approaches. Figure 7(b) gives the thresholds obtained by

FROM A SYSTEM PERSPECTIVE, DECISION
MAKING IN AN INFERENCE-CENTRIC WIRELESS

SENSOR NETWORK IS AFFECTED BY TWO
LEVELS OF UNCERTAINTY.



the three different approaches; these obtained thresholds turn
out to be identical for all the three sensors. Notice that the
thresholds for Approach A remain constant (i.e., they are chan-
nel blind) while the channel-aware approach adapts its thresh-
olds according to the channel parameter. For Approach B, a
single threshold is used due to the binary quantizer restriction.
An interesting observation is that as α increases, the three
thresholds corresponding to the integrated approach will start
to merge and eventually become identical to that of Approach B.
This is not a coincidence: as the channels become noisier, the
integrated approach adaptively puts more emphasis on combat-
ing channel impairment and eventually reduces to Approach
B—a binary quantizer followed by a repetition code—to provide
maximum protection against the noisy channel.

WITH PARTIAL CHANNEL KNOWLEDGE
The clairvoyant case described above has theoretical signifi-
cance as it provides the best achievable detection perform-
ance to which any suboptimal approach needs to be
compared. On the other hand, it lacks practical significance
due to the requirement of exact knowledge of global CSI. This
is further exacerbated by the potential mobility of sensors
that leads to fast fading channels: decision rules for all sen-
sors need to be synchronously updated for different channel
realizations.

To make the channel-aware design more practical, the
reliance on the global CSI in obtaining the local decision rules
needs to be relaxed. Instead, partial channel knowledge can be
assumed. In the context of WSN, a more reasonable assump-
tion is the availability of channel fading statistics, which may
remain stationary during sufficiently long periods of time. As
such, decision rules can be updated at a more realistic rate.

Given the knowledge of channel fading statistics, a sensible
criterion is to use the average error probability at the fusion

center where the averaging is performed with respect to the
channel state. One can summarize this design criterion as 

min
γ0(·),...,γK(·)

∫
h

Pe0(γ0, . . . , γK; h)p(h)dh, (4)

where Pe0(γ0, . . . , γK; h) is the error probability at the fusion
center for the channel state h and the set of decision rules
γk(·), k = 1, . . . , K. Here, the sensor decision rule γk has only
channel fading statistics, instead of the instantaneous channel
state h, as its side information. 

The above integration is, however, not numerically amenable
as Pe0(γ0, . . . , γK; h) is a highly nonlinear function of
γ0, . . . , γK and does not yield a closed-form expression. The
only possible way of finding the optimal (γ1, . . . , γK) appears to
be an exhaustive search, which becomes intractable when either
K or m becomes large.

An alternative approach has been proposed in [53]. Instead of
directly minimizing the average error probability as in (4), one
can first average the channel transition probability with respect
to the fading channel. That is, the channel probability p(Y|U) in
Figure 6 is computed by marginalizing the channel fading: 

p(Yk|Uk) =
∫

h
p(Yk|Uk, hk) f(hk)dhk. (5)

With this marginalization, one can use the channel-aware design
approach that tends to the “averaged” transmission 
channel.

Denote by P0
e0 the average error probability of the channel-

aware approach with global CSI, P1
e0 the average error probability

of the approach using (4), and P2
e0 the average error probability

of the channel-aware approach using the marginalized channel
transition probability, the following inequality holds:
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[FIG7] Error probability and thresholds plots as a function of channel crossover probability for the three different approaches. The
parameters are π0 = 0.5 with K = 3 and m = 2. Hence, three thresholds are needed for the integrated approach and Approach A while
Approach B only uses a single threshold.
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P0
e0 ≤ P1

e0 ≤ P2
e0. (6)

The first half of (6) arises from the fact that P0
e0 can be written

as 

P0
e0 =

∫
h

[
min

γ0(·),...,γK(·)
Pe0(γ0, . . . , γK; h)

]
p(h)dh,

and the inequality follows as minimization is taken inside the
integration for P0

e0. For the second half of (6), we note that

P2
e0 =

∫
h

Pe0(γ
′
0, . . . , γ

′
K; h)p(h)dh, (7)

where γ ′
k, k = 0, . . . , K, are a fixed set of decision rules opti-

mized for p(Yk|Uk) defined in (5). Inequality follows immedi-
ately by comparing (4) with (7).

The performance difference among the three different
approaches depends on various parameters of the system,
including the observation and channel signal-to-noise ratio as
well as the fading channel model. An extreme example is the
case with no channel fading (e.g., an additive white Gaussian
channel between each sensor and the fusion center). In that
case, all three approaches are equivalent to each other.

WITHOUT CHANNEL KNOWLEDGE
There are applications where even partial channel knowledge
may be untenable or highly unreliable. For instance, high
mobility may induce nonstationary fading, i.e., the fading statis-
tics are continuously changing. This renders the previous
approach assuming stationary fading channel statistics imprac-
tical. Applying channel-aware design to such cases may appear
paradoxical: how can one apply channel-aware approach when
there is no tangible information regarding the transmission
channels available?

The approach presented in [54] is motivated by the multiple
description code (MDC) principle that has been widely used to
combat transmission loss [55], [56]. As illustrated in Figure 8(a)
with two encoders and three decoders, the encoders are so
designed that in the case of loss of one of the two channels, the

two side decoders (Decoders 1 and 2) are guaranteed to attain
certain acceptable performance; while in the case of successful
transmission of both sources, the center decoder (Decoder 0)
will have enhanced performance. While this principle may be
carried over to WSN applications, the distributed nature of the
problem makes it drastically different from the conventional
MDC. In conventional MDC, the two encoders encode a com-
mon source, while in the context of WSN, each encoder encodes
its own observations without access to the other’s input source.
This distributed MD problem is illustrated in Figure 8(b).

Applying the MD principle to the DD problem, one can pose
the following constrained minimization problem:

min π0 P(U0 = 1|H0) + π1 P(U0 = 0|H1)

subject to π0 P(Ui = 1|H0) + π1 P(Ui = 0|H1) ≤ η

for i = 1, 2, (8)

where Ui is the output of Decoder i and the minimization is
with respect to γ1(·) and γ2(·), the local sensor decision rules,
and γ0(·), the fusion rule at Decoder 0 in Figure 8(b) when both
transmissions are successful. Thus we want to minimize the
error probability when both transmissions are successful, under
the constraint that if only one of the two transmissions is suc-
cessful, the error probability is no greater than η. The con-
straints ensure robust detection performance in the presence of
potential channel outages. Example 3 gives a “toy” example to
motivate the use of the MD principle for DD.

EXAMPLE 3
Assume a binary HT problem with a two-sensor parallel fusion
system where each sensor employs a binary quantizer. The two
hypotheses under test, H0 and H1, are a priori equally likely. The
local sensor observations at the two sensors, X1 and X2, are
conditionally independent and identically distributed ternary
random variables with




P(Xk = 0|H0) = 0.95
P(Xk = 1|H0) = 0.05
P(Xk = 2|H0) = 0




P(Xk = 0|H1) = 0.05
P(Xk = 1|H1) = 0.9
P(Xk = 2|H1) = 0.05

[FIG8] (a) Conventional MD problem and (b) distributed MD for decentralized detection. In the conventional MD problem, the two
encoders have access to the common source X, which is to be recovered at the decoders; whereas for the decentralized detection
problem each encoder encodes its own observations without access to the other, and the ultimate goal is to infer about H instead of
recovering the observation X and Y.
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for k = 1, 2. By the monotonicity of the LR in the sensor
observations (i.e., the local sensor LR values are monotone in
Xk), we need to consider only the two binary local decision
rules at each sensor [15]: 

(A) Uk =
{

0 Xk = 0
1 Xk = 1 or 2

(B) Uk =
{

0 Xk = 0 or 1
1 Xk = 2.

Adopting the classical DD approach, it is straightforward to
show that the two sensors should employ different decision
rules to achieve the minimum error probability of 0.04875 at
the fusion center. Without loss of generality, we assume that
sensor 1 uses (A) while sensor 2 uses (B). If the decision of sen-
sor 1 does not reach the fusion center due to a channel outage,
the actual minimum error probability by using the decision
from sensor 2 alone becomes 0.475. This is a significant degra-
dation from the case when both sensor outputs are available.
This error probability essentially renders the detection system
useless as it is close to 0.5. A more robust design is to use deci-
sion rule (A) at both the sensors. In this case, both the fusion
center and each local sensor have an identical error probability
of 0.05, thus there is no degradation in the event of a lost trans-
mission. Compared with the classical DD approach for which
error probabilities at the fusion center and the local sensors are
0.04875 and 0.475 respectively, the alternative approach pro-
vides a more robust performance in the presence of a transmis-
sion loss. This robust solution can be obtained via the
constrained minimization formulation for the constraint
0.05 ≤ η < 0.475. �

The phenomenon that the optimal sensor decision rules
across the sensors may be different even if the sensor observations
have identical distributions has been observed for classical DD
(see, e.g., [15]). Here we provide an intuitive explanation that will
help understand the robustness issue in the event of a transmis-
sion loss. Assuming ideal transmission channels, the design of
local decision rules can be considered as a special case of distrib-
uted source coding with correlated sources, albeit with the ulti-
mate goal of distinguishing the underlying hypothesis instead of
recovering the source at the fusion center. Notice that even in the
case of conditional independence assumption, the observations at
different sensors are still marginally correlated under the
Bayesian framework (i.e., the underlying hypothesis is a random
variable). For the above case where sensor 1 using decision rule
(A) while sensor 2 using (B) constitutes an optimal distributed
quantization configuration, one can treat the decision output sent
from sensor 2 as side information. This interpretation is cog-
nizant of the fact that threshold rule (A) gives the minimum error
probability at a single sensor. Thus in choosing decision rule (B)
at sensor 2, the premise is that the information sent from sensor
1 is always available and the detection performance can be maxi-
mally enhanced by incorporating the side information sent from
sensor 2. In the event of a transmission loss for sensor 1, however,
merely sending the side information to the fusion center will
result in severely degraded detection performance.

The constrained minimization problem in (8) can be solved
using the Lagrange multiplier method. This approach, however,
becomes highly intractable for a WSN with more than two sen-
sors. As the number of sensors increases, the number of con-
straints increases exponentially as one has to take into account
all combinations of channel successes/failures. Alternatively, one
may treat this as a multiobjective optimization problem with the
number of objective functions increasing exponentially. An alter-
native approach is to impose an erasure channel (EC) model for
each channel between the sensor and the fusion center [54], [57].
This EC model was first used in [56] for MD quantizer design for
point-to-point communication. For the detection problem,
imposing the EC model allows one to collapse the multiple
objective functions in the original MD problem into a single
error probability criterion. An added advantage is that the EC
model enables the direct application of the channel-aware
approach [37], [38] in obtaining the sensor thresholds. 

SUMMARY
The most challenging issue in decentralized detection for
WSNs is the need for distributed data compression at the local
sensors. This same challenge is also driving the research efforts
for other inference problems in sensor networks. For example,
a comprehensive coverage on distributed compression for esti-
mation in sensor networks can be found in [58] where a canon-
ical fusion model, similar to the one considered here, is
adopted. Going beyond the parallel fusion model, a graphical
model perspective is presented in [59] that provides a unifying
framework in treating many of the prototypical applications in
sensor networks. 

The problem addressed herein and the associated sensor net-
work structure are also similar to that of distributed source cod-
ing [60]–[62] or distributed joint source channel coding
problems [63], [64]. The distinction lies in that our objective is
the inference of the underlying hypothesis as opposed to data
recovery. Also related to this work is the so-called CEO (chief
executive officer) problem [65]–[68], where multiple agents,
each of them subject to a rate constraint in communicating to
the CEO, are deployed to observe independently corrupted ver-
sions of a common random process. Theoretically achievable
fidelity, either in the form of expected Hamming distance for
discrete processes or mean square error when extended later to
the Gaussian case, as a function of source coding rate was estab-
lished. While the CEO problem is also concerned with the
underlying inference problem, the focus of the present work is
on practical signal processing algorithm design with a strict
delay constraint instead of obtaining performance bounds or
achievable error exponents, which implicitly requires long or
infinite delays. Various channel-aware distributed signal pro-
cessing designs were presented under progressively relaxed CSI
assumptions. These include the clairvoyant case where global
CSI is available for which a channel optimized quantizer design
was developed. The other extreme is when no tangible CSI is
available. A proactive design approach using the MD principle
can be applied for robust detection performance.
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While, in principle, all of these techniques can be generalized
to large-scale sensor networks, this extension is typically hin-
dered by the prohibitive complexity when the size of the net-
work becomes large. Compromises can be made in terms of
performance/complexity tradeoffs by imposing extra conditions
on the optimal solutions (e.g., all sensor nodes use an identical
decision rule). However, other practical constraints in large-
scale sensor networks that can otherwise be neglected in small-
scale networks may call for completely different approaches. For
example, implicit in the canonical fusion model is the orthogo-
nal transmission assumption where each sensor communicates
with the fusion center through an independent channel. This
assumption becomes unrealistic for large-scale sensor networks
in which medium access control needs to be achieved in a dis-
tributed fashion. An alternative to the orthogonal transmission
is the general multiple access channel (MAC), which was first
considered in [50]. This MAC model was also used in some
recent work in decentralized detection and estimation for sensor
networks [33]–[35], [69]–[71]. The interaction between the
underlying inference problem and various networking issues is
examined in [72] through a cross-layer design perspective.
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