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Abstract—In mobile asynchronous ad hoc networks, multiple
users may transmit packets at the same time. If a collision occurs,
then in current systems both packets are lost and need to be re-
transmitted, reducing the overall throughput. To mitigate this, we
consider to extend the receiver with a small antenna array, so that
it can suppress interfering signals. To characterize the signal of
interest, we propose to modulate it at the symbol rate by a known
amplitude variation. This allows the corresponding multichannel
receiver to estimate the beamformer weights that will suppress the
interfering sources. We introduce “known modulus algorithms”
to achieve this. We also derive synchronization algorithms to
estimate the offset of the desired packet in an observation window,
among interfering data packets. The algorithms are illustrated via
simulations.

Index Terms—Ad hoc networks, blind source separation, known
modulus algorithm (KMA), packet offset estimation, synchroniza-
tion.

I. INTRODUCTION

AKEY limiting factor on the throughput of wireless
networks is packet collisions among uncoordinated

transmitters. Conventionally, medium access control (MAC)
protocols are used to schedule transmissions either in a deter-
ministic fashion [e.g., time-division multiple access (TDMA),
frequency-division multiple access (FDMA), or code-division
multiple access (CDMA)] or by random access protocols such
as Aloha and carrier sense multiple access (CSMA). For ad hoc
networks, however, the absence of base stations and the neces-
sity of distributed MAC requires some form of random access,
and avoiding collisions is difficult. Even more challenging is
the so-called hidden/exposed terminal problem that severely
limits the effectiveness of techniques based on carrier sensing.
Although the use of clear-to-send–ready-to-send (CTS-RTS)
exchange along with busy tone [3] can eliminate collisions
[4], such protocols are vulnerable to interference from other
services.

Recent advances in antenna array processing and space–time
coding challenge the fundamental premise of the classical ap-
proach to MAC that prohibits the simultaneous transmission of
different users. Specifically, various algorithms have been de-
veloped in the past decade that allow the separation of multiple
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Fig. 1. Wireless ad hoc communication scenario.
p
c is a known modulus

variation used to recognize user 1.

signals, sometimes even without prior knowledge of the prop-
agation channel (blind detection, e.g., [5]). The new possibili-
ties call for new approaches in MAC protocols that exploit the
ability to separate colliding packets by signal processing [6], by
so-called cross-layer design.

Signal separation was first applied to the design of MAC
protocols in [7], where an -fold collision is resolved by a
special retransmission protocol. This technique is only appli-
cable in cellular networks. In [8], the problem of packet sepa-
ration is formulated as one of signal separation in a multiple-
input–multiple-output (MIMO) system. While this technique is
applicable in ad hoc networks, it is restricted to a slot-synchro-
nized network, which means that the network cannot cover a
large area and all nodes in the network must be synchronized to
the slot structure.

In this paper, we present a technique that allows packet sepa-
ration in asynchronous ad hoc networks. As illustrated in Fig. 1,
the user of interest transmits a constant modulus signal multi-
plied by an amplitude modulating code known at the receiver.
This unique “color code” allows the antenna array at the re-
ceiver to detect and filter out the desired user among the other
interfering signals that may or may not have a similar structure.
The modulation code can be a random binary sequence deter-
mined either by the transmitter or the receiver, or it can be a
common pseudorandom long code with different offsets for dif-
ferent users. The separating beamformer is computed using one
of the known modulus algorithms (KMAs) developed in this
paper.
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The idea of modulus variations to assist capture of the desired
user goes back to Treichler and Larimore [9], who also derived
the first (iterative) KMA. More recently, the idea was picked up
again in [10] and [11] for the purpose of multiuser interference
cancellation, and, independently, by us in [1] and [2] for the
separation of finite duration packets.

In general, KMA requires neither slot synchronization nor
any coordination among transmitters, which makes its appli-
cation in an uncontrolled environment such as wireless local
area network (WLAN) or mobile ad hoc networks (MANETs)
particularly attractive. In the context of WLANs, it is inter-
esting to note that the required amplitude modulations can be
so small that they are not perceived by legacy receivers, making
the system upward compatible.

From a source separation point of view, amplitude modu-
lation is just one way to mark users of interest, and several
other techniques could play a role. Spread-spectrum techniques
such as CDMA would be possible but reduce the data rates.
User-specific training sequences have disadvantages in asyn-
chronous systems. For instantaneous channels, general blind
techniques such as iterative least-squares with projection (ILSP)
[12] and ACMA [13] are applicable, but not efficient since we
are interested in only one user. Several modulation approaches
have been proposed in the literature. Stochastic techniques such
as “transmitter induced cyclostationarity,” initially derived for
single user blind equalization [14]–[16] have recently been ex-
tended to multiuser convolutive channels [17] and orthogonal
frequency-division multiplexing (OFDM) [18]. A deterministic
version of such a technique, using phase modulation codes, was
proposed for source separation in MANETs [19] (this paper re-
lates to several ideas proposed in [1] and also offers a throughput
analysis which, therefore, we omit here). Another example of a
deterministic source separation technique is [20], but it needs
multiple transmit antennas per source (spatial redundancy).

Our objective here is to derive a system that is simpler than
ACMA and other blind techniques, does not reduce the capacity,
and only finds the desired user. We consider a scenario where
users can transmit packages at arbitrary moments, and assume
that the receiver knows the modulation code and packet length
of the user of interest. We collect a block of data from an obser-
vation window, and aim to detect the presence of a packet from
the user of interest, estimate its offset within the window, and
estimate the beamformer by which this packet can be received
while suppressing the interfering packets. Some of these results
were presented by us at conferences [1], [2]; the present paper
offers a more in-depth discussion.

The structure of the paper is as follows. In Section II, we in-
troduce the communication scenario and resulting data model.
Section III derives the basic KMA algorithm, assuming syn-
chronization is available, and corresponding simulations. Sub-
sequently, in Section IV, we present algorithms for estimating
the packet offset, and corresponding simulations.

II. DATA MODEL

We assume the situation in Fig. 1 where several users occupy
a common wireless channel. For simplicity, the channel is as-
sumed to be narrowband. The potential number of users is un-
limited, but the offered network load is fixed. User 1 is the de-

Fig. 2. Slot structure.

sired user, it is supposed to be received by receiver 1, but there
will be interference from the other users. To suppress the inter-
ference, the receiver is equipped with an antenna array of
elements.

The transmission is modeled by a linear data model of the
form

(1)

where C is the data vector received by the array of
antennas at time is the signature vector of source and

C its transmitted symbol at time , and C an
additive noise vector. In this model, as a useful abstraction each
source is assumed to transmit only once a data packet and for
the rest to be silent. Hence, each has finite support. A phys-
ical user with several data packets counts as several independent
sources, each with independent -vectors, hence, the model al-
lows for a slowly changing (fading) channel.

The modulation of source 1 is assumed to be constant mod-
ulus [e.g., quaternary phase-shift keying (QPSK)], i.e.,

. The modulation of the other users is arbitrary.
We will consider two types of transmission scenarios (see

Fig. 2).

1) Slotted With Fixed Slot Length : The situation in a slot
is stationary: the number of active users is constant inside
a slot, and their spatial signature vectors are constant.

2) Unslotted With Fixed or Variable Packet Lengths:
Packets can have arbitrary starting times, hence, the
number of active users changes throughout the slot. The
packet length of user 1 is denoted by .

Initially, we assume that we are synchronized to the user of
interest: the start time and length of his packet is known. We
collect samples in a data matrix .
In Case 1, we take and contains the first sample of
the packet. In Case 2, we take a slightly larger analysis window
to avoid certain edge effects, samples. In Section IV, we
consider the estimation of the packet offset.
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Fig. 3. Constant modulus signal with coded amplitude variations which are used to identify the user of interest.

Let be the maximal number of active users in the anal-
ysis window, and assume for notational simplicity that these are
users 1 to . Defining

and , we obtain

(2)

, and are unknown. The objective is to reconstruct
the nonzero part of using linear beam-
forming, i.e., to find a beamformer such that ap-
proximates . Here, denotes the Hermitian
transpose.

Several algorithms for source separation are applicable at this
point (e.g., CMAs), but they all have the problem that they
cannot distinguish one user from another. To distinguish the de-
sired source, we give it a “color code,” in the form of a known
pseudorandom modulus variation (Fig. 3). Instead of transmit-
ting , we transmit , where is a real and
positive scaling that induces a small modulus variation, without
changing the average transmission power. For notational conve-
nience, we assume that outside the support of the packet.
The data model (2) is replaced by

(3)

Recall that we assume that , so that .
Similar to CMA, the objective of the beamformer will be to
recover based on its modulus, i.e., such that

With noise, we try to minimize the difference and can obviously
recover the source only approximately.

III. KNOWN MODULUS ALGORITHMS

In this section, we consider receiver algorithms, assuming the
receiver is synchronized to the user of interest and knows his
code.

A. Iterative Solutions

The usual iterative CMA can easily be adapted for the present
case: one only has to define the instantaneous modulus error as

. This leads to the updating step

This is the known modulus algorithm (KMA) introduced by
Treichler and Larimore in [9], and used more recently in [10]

and [11]. Apart from the usual stability and initialization issues,
the resulting algorithm would not be very useful for the cur-
rent purpose since we do not want to track the beamformer; we
require a block solution where also the initial symbols are de-
tected correctly. This is provided by an alternating projection
algorithm: iterate until convergence

(4)

where denotes the Moore–Penrose pseudoinverse. Note that a
candidate solution is alternatingly projected onto the row span
of (via the projection ), and entry-wise scaled to fit the
modulus condition. With a sufficiently accurate initial point of

, this algorithm is stable and converges usually nicely (similar
to the LS-CMA, see [21]).

B. AKMA for Case 1

Assume Case 1 in Fig. 2, i.e., all packets in a slot are synchro-
nized. We will derive a closed-form solution to the problem of
estimating , in the style of ACMA [13]. This can be used to
obtain an initial point for the iteration (4). Given a block of
samples, we try to minimize

(5)

where denotes a Kronecker product, stands for complex con-
jugate, , and denotes a
column-wise Kronecker product:

. The size of is . We follow the strategy of ACMA
and split this optimization into two steps (hence, suboptimal)

If is full column rank, the first problem has a unique solution
in terms of the pseudoinverse
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With this solution and setting , where “unvec”
denotes an unstacking of a vector into a square matrix, we can
solve the second problem as

the solution of which is given in terms of the dominant eigen-
vector of , scaled by the square root of the corresponding
eigenvalue.

We see that, if is full rank, the algorithm becomes partic-
ularly simple, and in the noise-free case will produce the exact
separating beamformer to recover the desired packet. If is not
of full column rank, then there will exist additional solutions

to (where is an all-zero vector), which will add
to the desired solution , producing a result that
cannot be factored. We, thus, need to study the rank properties
of . This is done in Section III-D.

C. AKMA for Case 2 (Known Offset)

In Case 2 in Fig. 2, users are not slotted. We first assume
for simplicity that the base station is synchronized to user 1.
Estimation of the offset is done in Section IV.

If the analysis window length is chosen to be the same
as the packet length , then the algorithm is the same as in
Section III-B. If is larger than , the packet has leading and/or
trailing zeros. This can be modeled by defining

where the total number of zeros is and the offset of the
code matches the offset of the packet in the analysis window.
After this, the algorithm is as in Section III-B.

D. Rank of for Case 1

We consider the rank of for Case 1 (all users synchronized)
in the noise-free case, where . To recover using
linear beamforming, we need to be tall and full
rank. In this case, has rank . has size , and

, where has size and
is full rank, and has size . The rank of is equal
to the rank of , therefore, it cannot exceed . A necessary
condition for to have rank is .

If and , then can be full rank. If ,
then is not full rank, but can be made full rank by a prefiltering
step (cf. [13] and [22]). Compute the singular value decomposi-
tion (SVD) of , i.e., , where is unitary,

is positive diagonal, and is unitary, then we
can replace by

which has rows and is of full rank. Note that due to the
prewhitening, satisfies a model , where is
and asymptotically unitary (for large ). From now on, we
assume that the prewhitening has been performed and that,
therefore, (we omit the underscore from the notation).

Even after the prefiltering, there are cases where is singular,
namely, when at least two other sources are constant modulus
(or equal-modulus). Indeed, if and

are constant-modulus, then ,
and

Here, is a vector with all entries equal to “1.” To avoid this
nullspace solution, all sources (except perhaps one) should have
amplitude modulations. In Case 1, this level of cooperation is
reasonable to assume.

We can show that if the sources are statistically indepen-
dent constant modulus sources, all modulated by binary random
power modulations , then as becomes large,
converges to its expected value

(6)

where

where is the identity matrix. For the proof, see the Appendix.
The eigenvalues of are

(7)

For the proof, see again the Appendix. These are also the
eigenvalues of since is asymptotically unitary after
prewhitening. Thus, the singular values of converge to

(8)

The smallest singular value of is raised by the modulation
from 0 to . If is not too small, will be left invertible,
so that will lead to the correct solution. It can also be
verified that these singular values carry important information:
truncating them to zero leads to the wrong result.

E. Rank of for Case 2

In Case 2, there are additional situations, where becomes
singular, namely, when two sources are nonoverlapping in time.
Indeed, suppose are such that

. Then, , hence

Thus, solutions to can be written as

for arbitrary scalars , and an arbitrary selected from
the solution space cannot be factored into . We see two
solutions for this problem. First, we can write
as
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Fig. 4. Summary of AKMA and the complexity of the algorithm. L is the
packet length.

where is a permutation of . Similarly, if we take a basis
of the null space of , it can be written as

where are diagonal matrices (with their first entry equal
to 0). The problem boils down to a joint diagonalization of un-
symmetric matrices, or a joint Schur decomposition, which can
be solved using Jacobi iterations [13].

Alternatively, we try to avoid the joint diagonalization step.
If we have sufficiently large and do prewhitening, then is
approximately unitary, and the are approximately orthogonal
to each other. Hence, the desired solution is orthogonal
to the null space of . In this case, we can simply set

With noise, will not be exactly singular, and we will have to
set a threshold on the pseudoinverse: compute the SVD of
as , let be the submatrix containing the
singular values of larger than a threshold, and let be
the corresponding left and right singular vectors. The solution
to which is orthogonal to the (approximate) null space
of is then given by . As is clear from (8),
the threshold on the singular values of should be smaller than

.
In Case 2, it may also happen that only a few samples of

the desired packet are disturbed by the head or tail of another
source, but with insufficient samples present to estimate that
source reliably. A convenient solution that avoids this problem is
to increase the analysis window to be larger than the packet
length , with the desired packet located in the center of the
analysis window. In that case, if a disturbing source overlaps
the desired packet, it will have at least samples in
the analysis window, sufficient to detect it.

Fig. 4 lists the algorithm as used in the simulations.

F. Simulations-Known Timing

We test the algorithm on simulated data. In these simulations,
the receiver knows the code of the desired user, and it knows the
timing of this user.

Case 1: Fig. 5 shows signal-to-interference and noise ratio
(SINR) performance plots of the beamformer of the first source
for a simulation with sources, antennas in a
uniform linear array, equal source powers, and source angles

, for varying SNR, packet length ,
and power modulation index . All sources are QPSK-mod-

Fig. 5. Case 1 beamformer performance: SINR of user 1 after beamforming.

ulated constant modulus sources with code-modulated ampli-
tudes. The reference line is the performance of the minimum
mean squared error (MMSE) receiver with knowledge of ,
namely, . The solid line is the performance of
AKMA, the dashed line the performance of 15 iterations of the
alternating projection algorithm, initialized by the AKMA. It is
seen that the performance of the AKMA is generally quite good,
but that it can be improved for small modulation indices and
small (i.e., ). This is due to the squaring involved
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Fig. 6. Case 2 beamformer performance: SINR of user 1 after beamforming.
Asynchronous sources with equal-length packets.

in the construction of , and the presence of additional kernel
solutions for small modulations.

The convergence of the AKMA to the MMSE is expected:
similar to ACMA, it is caused by the prewhitening and the fact
that the algorithm is unbiased in the noise-free case [22].

Case 2: Fig. 6 shows similar performance curves, but for
Case 2 (unsynchronized users). In these plots, the analysis
window is equal to the packet length ; the packet of user

Fig. 7. Case 2 beamformer performance: SINR and BER of user 1 after
beamforming. Asynchronous sources with equal-length packets L = 50, and
an analysis window (b) N = 50 or (a), (c) N = 70.

1 falls completely in the analysis window, whereas the three
other users have arbitrary arrival times. The performance is
virtually identical to that in Case 1.

In Fig. 7, we investigate the choice . This is moti-
vated by the bit-error rate (BER) curve in Fig. 7(b), which (for

) shows a saturation of the performance for large
SNRs. This is because the head and tail of the desired packet
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can be disturbed by the tail of another source, but with insuffi-
cient samples present to estimate that source reliably. Fig. 7(c)
shows that increasing the analysis window to im-
proves the BER for large SNRs. Fig. 7(a) shows the SINR per-
formance for , which can be compared with Fig. 6(a),
where .

IV. JOINT OFFSET AND BEAMFORMER ESTIMATION

In the previous section, we assumed that the receiver was syn-
chronized to the user of interest. Now, we consider the situation
where the receiver is not synchronized, e.g., the users transmit
packets at random moments. We assume that the receiver col-
lects a batch of samples, where , and introduce an
algorithm to estimate the offset of the packet of the desired user
within this analysis window, as well as a beamformer to cancel
the interference. Introduce as the unknown packet offset. Sim-
ilar to (5), we now have to compute a beamformer and offset

such that

(9)

For simplicity, we first assume that is an integer, and derive
corresponding algorithms in Section IV-A. In Section IV-D, we
extend this to arbitrary noninteger delays, which can be esti-
mated if oversampling is considered.

A. Integer Offset Estimation

Let user 1 with code be the user of in-
terest. We consider the case where the packet falls completely
within the analysis window, , and the packet offset is
an integer. Our aim is to compute

Here

is a vector of length , and the matrix is constructed from the
received data in the same way as in Section III-B. As before, we
continue with a two-step optimization problem

and solve the first problem, which asks for joint estimation of
and . Similar to the derivation of the SI-JADE algorithm [23],
we exploit the fact that a delay in time domain corresponds to a
phase progression in frequency domain. This can be expressed
as

where is the discrete Fourier transform (DFT) matrix,
represents an entrywise multiplication (Schur–Hadamard

product)

and . The vector is the unshifted code vector
followed by zeros. Our objective will be to estimate
based on the shift-invariance structure exhibited by the vector

. This then immediately determines the offset . A similar ap-
proach was considered in the SI-JADE algorithm [23] for joint
angle-delay estimation.

Thus, apply to the equation to obtain

(10)

where and . Dividing the rows of with
the corresponding entries of the vector , we arrive at

(11)

where is known and the vector is a
known function of the unknown delay . Here, “diag” maps a
vector into a diagonal matrix. The above pointwise division puts
a design constraint on the code: it should be chosen such that
(after zero padding to length ) it does not contain small values
in the DFT domain.

Equation (11) can be treated in several different ways. Es-
sentially, we have to search for a vector in the column span of

that has the structure exhibited by , i.e., a shift invariance
structure. Obviously, a MUSIC-type search is applicable: if
is a basis for the dominant column span of , then

(12)

The optimum is found by searching over a coarse grid, selecting
the best interval, and subsequently refining if a higher resolu-
tion is required. For integer values of , the rows are actually
rows of the inverse fast Fourier transform (FFT) matrix and,
hence, we can implement the coarse search over integer values
of by applying an inverse FFT to . Hence, we simply have
to find the row of with maximal norm. Essentially, the
algorithm has at this point performed a deconvolution with the
desired code, implemented in frequency domain. The MUSIC-
type algorithm shows good performance in simulations. Besides
the processing steps described in Fig. 4, the additional com-
plexity due to the synchronization step is given by the FFT of
and inverse fast Fourier transform (IFFT) of ,
division by the user’s code , and computation of the norm
of the first rows . The complexity of the synchroniza-
tion part is, therefore, of order .

B. Estimation of Signal Parameters Via Rotational Invariance
Technique (ESPRIT)-Like Algorithms

To avoid the search, we can also implement an ESPRIT-like
algorithm, where the difference is that, here, we expect only a
single column in the column span of with shift-invariance
structure, whereas in ESPRIT all columns have such a structure.
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To this end, split into two matrices and by taking
its first and last rows, respectively. We, thus, obtain

(13)

This can also be written as

(14)

which (because and are tall) is recognized as a ma-
trix pencil problem. To solve it, we must first find the common
column span of and . Equivalently, we can look at the
null space of .

Algorithm 1: The simplest technique to intersect the column
span of and that of is to compute the SVD of .
Indeed, from (13), we see that

(15)

Now, it is clear that after an “economy size” SVD is performed
of , at least one singular value will be zero. The cor-
responding basis for the null space specifies a set of candidate
solutions to (14). If and each have full column rank, then
we can simplify immediately, since we expect only a single so-
lution in the null space, which then will have the form

(16)

After finding , we can estimate the phaseshift as
, which directly specifies a delay estimate . The es-

timate can be improved by performing a MUSIC-type search
(12) in the vicinity of this estimate. This will be referred to as
“Algorithm 1” in the simulations.

At the same time, we can set , and since ,
we can estimate the separating beamformer as indicated be-
fore: set , and let be the dominant eigenvector
of , scaled by the square root of the corresponding eigenvalue.
This is the estimated beamformer for user 1.

The above algorithm assumed that and are full rank.
Alternatively, we can work with a basis of these subspaces, ob-
tained, e.g., after the “economy-size” SVDs

(17)

where we drop the small singular values and corresponding vec-
tors. Similar to (15), we find

(18)

We can compute the vector ( say) in the null space of
, which will have the following structure:

(19)

The vector can be computed as , and follows
from .

Algorithm 2: Another algorithm for subspace intersection is
mentioned in [24]: the common vector in the column span of
and is given by the largest left singular vector of ,
the one corresponding to a singular value . Interestingly, this
vector should have the structure .
By computing the vector in the intersection and matching it to
this shift-invariance structure, we have another way to compute

and, hence, the offset delay.

Let be the largest left singular vector of . Under
noise-free conditions, we have .
We can estimate as in ESPRIT, by constructing and
consisting of the first and last elements of , respectively,
so that . It is possible to obtain a better estimate of

by the additional limited MUSIC search using the complete
known structure of .

In each of the algorithms, the estimated beamformer can be
improved by a few iterations of an alternating projection algo-
rithm as already proposed in Section III-A.

C. Simulations-Integer Timing Estimation

In the following simulations, we consider users and
antennas in a uniform linear array with half-wave-

length spacing. Signals are arriving at the array with angles
with respect to the array broadside, and

with delays samples. The packet length is
, while the analysis window size is . All sources

are transmitting unit amplitude constant modulus signals modu-
lated by a power modulation with index . The amplitude
codes are Gold sequences in order to minimize the cross corre-
lation between the codes of different users. One thousand Monte
Carlo runs for each value of the input SNR were performed.

The power of the th user is defined in the region where
the signal exists, i.e., . is
the power of user 1, the user of interest. In the simulations
presented in Fig. 8(a)–(c), all users have the same trans-
mitting power, whereas in Fig. 8(d), the power of the user
of interest is varied with respect to the power of the in-
terfering sources. The input SNR in decibels is defined as

, where is the power of the
additive white Gaussian noise (AWGN) per receiving antenna.
The SINR after beamforming is computed as

with
,

where is the first column of the array manifold .

Fig. 8(a) presents the root mean square error (RMSE) of the
estimated delay for user 1 for each of the proposed algorithms.
Similarly, Fig. 8(b) shows the percentage of cases where the
delay offset was not estimated correctly. An estimate is labeled
as failure if its rounded value is not equal to the true (integer)
delay offset.

From Fig. 8(a) and (b), we see that the MUSIC search per-
forms very reliable, and much better than the closed-form ES-
PRIT-type algorithms. These algorithms perhaps can be used to
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Fig. 8. Case 2 (asynchronous sources). (a) RMSE of the delay estimate. (b) Percentage of incorrectly estimated delays � . (c) Output SINR of user 1 after
beamforming (cases without failure), all users having equal power. (d) Output SINR of user 1, where its power is varied with respect to the total power of the
interfering users.

obtain coarse estimates of the delays, which can subsequently
be refined using a MUSIC-type search over a limited interval.
(At the same time, the complexity of the MUSIC-search, when
implemented via an inverse FFT, is lower than that of the ES-
PRIT-type algorithms.)

The “jump” in the performance for low SNR is typical for
subspace algorithms. These involve a nonlinear step, namely,
the selection of a subspace which, for low SNR, may exclude
the vector of interest.

For the cases without failure, Fig. 8(c) presents the SINR at
the output, i.e., after beamforming. The dotted line is a theo-
retical reference line showing the performance of the MMSE
beamformer assuming the transmitted signals, codes and offsets
of all users are known. The statistics are computed only over
the cases without failure. The performance of the algorithms
follows that of the MMSE estimator closely, and can be fur-
ther improved with a few iterations of the alternating projection
algorithm.

Fig. 8(d) presents the SINR after beamforming as a
function of the input signal to interference ratio

. All interfering sources have fixed unit
power, while the power of the user of interest is changed in
order to simulate a near/far scenario. The interference to noise

ratio is defined as dB,
where are the total interfering and noise power,
respectively. The INR is kept constant for all the SIR values in
the simulation.

D. Noninteger Offset Estimation

There are two cases where the DFT property of mapping a
delay to a phase progression is accurate. The delay is a mul-
tiple of the sampling period, or the signal is sampled at or above
Nyquist rate. If the signal was sampled below the Nyquist rate,
aliasing occurs which destroys the shift invariance property (cf.
[24]). Up to this point in the paper, we considered sampling at
the symbol rate. Since delays are, in general, noninteger, this
leads to inaccuracies when realistic data is considered. There-
fore, we now consider a Case 2 scenario with noninteger delays

, and where we sample at a rate of times the symbol rate,
assuming that this is above Nyquist. Since there is no need to
sample much faster than Nyquist, typically, is sufficient.

The signal is an analog constant modulus signal,
e.g., a phase modulated data sequence. The amplitude code
sequence is an analog function , and we assume that

is sampled above Nyquist, hence, is
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sufficiently smooth. Under these conditions, we are still in con-
text of the proposed KMAs, hence, the joint delay-beamformer
estimation algorithms proposed in Section IV-A are applicable.

Because of oversampling, the spectrum of the “zero delay
code” vector introduced in Section IV has most of
the power concentrated around the zero frequency, and the spec-
trum decays fast for higher frequencies. Only the samples
centered around the zero frequency are expected to have signif-
icant amplitude. In the computation of , we avoid divisions by
small values by taking only the central rows of corre-
sponding to the significant part of the vector and discarding
the other rows.

The estimated delay will be a rational number. For improved
accuracy, we propose not to round it to the nearest sample in-
stant, but rather to resample the signal after shifting it over .
Using Shannon’s resampling theorem, we can obtain new sam-
ples at exactly , where is the
symbol period, namely

where . These samples are used for detection.

E. Simulations-Noninteger Timing Estimation

In the following simulations, we used phase-modulated
sources that employ minimum shift keying (MSK) modulation.
Even if phase modulation is a nonlinear operation in general,
an MSK-modulated signal can also be represented as a linearly
modulated signal1

(20)

where the symbols satisfy for even
for odd , and the pulse shape is

otherwise

Known modulus variations (the code) are inserted over the
signal as

We consider equal-power users transmitting data packets
of equal size symbols. The receiver has antennas
and employs times oversampling. The analysis window
is samples or 128 symbol periods. The delays of the
two sources were set at .

In Fig. 9(a), the BER versus input SNR performance of the
KMA beamformer for the cases with and without resampling via

1The linear modulation is introduced for simplicity, nonlinear modulations
are certainly also applicable.

Fig. 9. Case 2 beamformer performance (asynchronous sources with
equal-length packets), where MSK modulation scheme is implemented.
(a) BER after beamforming. (b) Standard deviation of estimated delays �̂ using
the MUSIC-type search, compared with the CRB. (c) Delay offset failure rate
for different values of the modulation level � = [0:2; 0:3; 0:4; 0:5].

interpolation are presented. In the case without interpolation,
the estimated is rounded to the nearest sample instant. For
reference, we also show the performance of the linear minimum
mean squared error (MMSE) receiver, where the packet offsets

and the transmitted sequences are known for all users
, and the performance of an MMSE receiver in the
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case where no amplitude modulation code was inserted by the
transmitters.

From the figure, we observe that the performance of KMA
improves due to the interpolation; as before, at higher SNRs the
performance comes close to that of the MMSE. We also observe
a gap between the MMSE receiver for amplitude-modulated sig-
nals and unmodulated constant modulus (CM) signals. The ex-
planation is that for the modulated signal, the bits that happen to
have less power have less protection against noise than
those that have higher power . This motivates the use of
a small . On the other hand, Fig. 5(c) showed that should be
sufficiently large to guarantee a good estimate of . Also, the
packet length enters into this tradeoff because this minimum
value is inversely proportional to .

Since, with oversampling, we require that the pulse shape
is a smooth analog function, we can compute the Cramer–Rao
bound (CRB) of the estimation of for this case. The CRB spec-
ifies a lower bound on the variance of any unbiased estimator for

and is derived in Appendix C. To verify the performance of the
delay estimation algorithm, we performed a simulation using the
same parameters as before. The Cramer–Rao bound for the esti-
mates of the packet offset is depicted in Fig. 9(b) with a dashed
line. The solid line represents the standard deviation of the es-
timates of for the user of interest. The gap between the CRB
and the standard deviation of the MUSIC-type search algorithm
(about a factor 2) shows that the algorithm is not efficient. This
can be explained by the fact that the data is squared in the pro-
posed algorithm, which essentially doubles the noise.

In Fig. 9(c), the packet offset recovery failure rate versus input
SNR is presented. A delay estimate is considered as good if

is satisfied.

V. CONCLUSION

In this paper, we considered an ad hoc network where users
are unsynchronized and send packets at random. An antenna
array is used by the receiver to focus on the user of interest
and suppress unwanted interfering packets. We introduced the
KMA algorithms to estimate the timing offset and separating
beamformer of the packet of a user of interest. The algorithm
recognizes the user of interest from his “color code,” an ampli-
tude modulation of the constant modulus data signal. This color
code does not increase the bandwidth of the signal, and the am-
plitude modulation can be small (e.g., 25% or 1 dB) if the packet
length is sufficiently large (e.g., 50 symbols).

An advantage of the scheme is that it can be used as an up-
grade to existing wireless local area network (WLAN) services
or ad hoc networks (provided they use constant modulus sig-
nals). A transmitter employing a color code will have an advan-
tageous reception at a KMA receiver, but will also be compat-
ible with legacy receivers since the modulation index is small
(around the noise level for sufficiently large packets). The algo-
rithms can tolerate frequency-hopping schemes, since nonsta-
tionary interfering signals, i.e., randomly appearing packets are
admitted.

APPENDIX A
PROOF OF (6)

First, consider a scalar variable, , where is a
constant modulus random variable, , and is
a zero-mean binary random variable. Then,

. The kurtosis of is
.

To prove (6), we use some properties of random CM vector
signals that are listed in [22]. In particular, if is a random vector
whose entries are statistically independent and constant mod-
ulus, then

where the matrix is the kurtosis
of . It is a diagonal matrix with only nonzero entries
at selected locations on its main diagonal, which reflects the
independence of the entries of .

Now, define , where and is diagonal
with independent entries , then

and similarly, . We already showed that the
kurtosis of a single entry of is . Because of indepen-
dence, the kurtosis of is, therefore,

. It follows that:

APPENDIX B
PROOF OF (8)

Inspection of the structure of shows that, after column and
row permutations, it can be written as

where is a vector consisting of entries ‘1’, and is the
identity matrix. Hence, eigenvalues are equal to 1. The
eigenvalues of are , hence, the eigenvalues
of are .

APPENDIX C
CRAMER–RAO BOUND

In this section, we indicate the derivation of the CRB for
the estimates of the packet offset delay. For the derivation, we
slightly redefine the data model as , where

is as before, , where is the signa-
ture vector of source .

, where represents for the th
source the product of a CM data signal and the known
modulation code . We further define a vector of user phase
rotations as . Finally, is a
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column vector of size and is assumed to be circularly sym-
metric zero-mean white Gaussian noise with covariance matrix

, where is the noise variance as received on a
single antenna. As usual, the noise variance can be estimated
separately from the other parameters and, therefore, we can as-
sume it is known in the derivation of the CRB.

The unknown parameters are considered to be deterministic
constants rather than stochastic variables. After sampling with
period , the model becomes

where , and . Note that is a func-
tion of but this is not indicated in the notation for reasons of
simplicity.

With little loss of generality, we assume , i.e., no over-
sampling. In the case of oversampling, the obtained bound will
be slightly pessimistic because the model assumes independent
phases, whereas in the observed data they are dependent.

Based on the model and assuming received sample vectors
collected in a matrix , we can derive the likelihood function
as

(21)

where

(22)

and

(23)

Here, , while .
Let . After omitting con-

stants we obtain the log-likelihood function

(24)

The derivation of the CRB from the log-likelihood function
follows along standard lines [25]. Indeed, the CRB is given by
the main diagonal of the inverse of the Fisher information matrix
(FIM), given by

where is a vector which collects all parameters

To specify the entries in closed form, we partition the FIM as

(25)

where the partitioning follows the partitioning of into fol-
lowed by . Then

. . .

...
...

. . .
...

. . .
...

where and the submatrices can be derived as

(superscript indicates complex conjugate), and matrix is
constructed as

The derivation is straightforward but tedious and, therefore,
omitted.
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To obtain closed-form expressions for the inverse of the FIM,
we exploit the block-diagonality of and part of , and
use the partitioned matrix inversion lemma twice, which leads
to the following result. Define

where is of size
and

(26)

where , and correspond to the block partition of .
The CRB for follows as:

(27)
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Relja Djapić was born in Novi Sad, Yugoslavia, in
1975. He received the M.Sc. degree in electrical en-
gineering from the University of Novi Sad, Novi Sad,
in 2000. He is currently working towards the Ph.D.
degree in electrical engineering at Delft University of
Technology, Delft, The Netherlands.

His research interests include signal processing
for communication systems, blind source separation
and synchronization schemes in wireless ad hoc
networks, and ultra-wideband systems.

Alle-Jan van der Veen (S’88–M’88–SM’02) was
born in The Netherlands in 1966. He received the
M.Sc. degree (cum laude) and the Ph.D. degree
(cum laude) in electrical engineering from Delft
University of Technology, Delft, The Netherlands,
in 1988 and 1993, respectively.

Throughout 1994, he was a Postdoctoral Scholar
at Stanford University, Stanford, CA. Currently, he
is a Full Professor in the Signal Processing Group,
Delft Institute of Microelectronics and Submicron
Technology (DIMES), Delft University of Tech-

nology. His research interests are in the general area of system theory applied
to signal processing, and in particular algebraic methods for array signal
processing, with applications to wireless communications and radio astronomy.

Dr. van der Veen is the recipient of a 1994 and 1997 IEEE Signal Processing
Society Young Author Paper Award. He was an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING (1998–2001). He is currently Editor-in-
Chief of the IEEE SIGNAL PROCESSING LETTERS.



64 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Lang Tong (S’87–M’91–SM’01) received the B.E.
degree from Tsinghua University, Beijing, China, in
1985, and the M.S. and Ph.D. degrees in electrical en-
gineering from the University of Notre Dame, Notre
Dame, IN, in 1987 and 1990, respectively.

He is a Professor in the School of Electrical
and Computer Engineering, Cornell University,
Ithaca, NY. He was a Postdoctoral Research Affiliate
at the Information Systems Laboratory, Stanford
University, Stanford, CA, in 1991. He was also the
2001 Cor Wit Visiting Professor at Delft University

of Technology, Delft, The Netherlands. His areas of interest include statistical
signal processing, wireless communications, communication and sensor
networks, and information theory.

Dr. Tong received the Young Investigator Award from the Office of Naval
Research in 1996 and the Outstanding Young Author Award from the IEEE
Circuits and Systems Society.


	toc
	Synchronization and Packet Separation in Wireless Ad Hoc Network
	Relja Djapic, Alle-Jan van der Veen, Senior Member, IEEE, and La
	I. I NTRODUCTION

	Fig. 1. Wireless ad hoc communication scenario. $\sqrt{c_k}$ is 
	II. D ATA M ODEL

	Fig.€2. Slot structure.
	Fig.€3. Constant modulus signal with coded amplitude variations 
	III. K NOWN M ODULUS A LGORITHMS
	A. Iterative Solutions
	B. AKMA for Case 1
	C. AKMA for Case 2 (Known Offset)
	D. Rank of ${\bf P}$ for Case 1
	E. Rank of ${\bf P}$ for Case 2


	Fig.€4. Summary of AKMA and the complexity of the algorithm. $L$
	F. Simulations-Known Timing
	Case 1: Fig.€5 shows signal-to-interference and noise ratio (SIN


	Fig.€5. Case 1 beamformer performance: SINR of user 1 after beam
	Fig.€6. Case 2 beamformer performance: SINR of user 1 after beam
	Case 2: Fig.€6 shows similar performance curves, but for Case 2 

	Fig.€7. Case 2 beamformer performance: SINR and BER of user 1 af
	IV. J OINT O FFSET AND B EAMFORMER E STIMATION
	A. Integer Offset Estimation
	B. Estimation of Signal Parameters Via Rotational Invariance Tec
	Algorithm 1: The simplest technique to intersect the column span
	Algorithm 2: Another algorithm for subspace intersection is ment

	C. Simulations-Integer Timing Estimation


	Fig.€8. Case 2 (asynchronous sources). (a) RMSE of the delay est
	D. Noninteger Offset Estimation
	E. Simulations-Noninteger Timing Estimation

	Fig.€9. Case 2 beamformer performance (asynchronous sources with
	V. C ONCLUSION
	P ROOF OF (6)
	P ROOF OF (8)
	C RAMER R AO B OUND
	A. van der Veen and L. Tong, Packet separation in wireless ad-ho
	R. Djapic and A. van der Veen, Blind synchronization in asynchro
	P. Karn, MACA A new channel access method for packet radio, in P
	L. Kleinrock and F. Tobagi, Packet switching in radio channels: 
	A. van der Veen, Algebraic methods for deterministic blind beamf
	L. Tong, Q. Zhao, and G. Mergen, Multipacket reception in random
	M. Tsatsanis, R. Zhang, and S. Banerjee, Network assisted divers
	Q. Zhao and L. Tong, Semi-blind collision resolution in random a
	J. Treichler and M. Larimore, New processing techniques based on
	A. Orozco-Lugo and D. McLernon, Blind signal separation for SDMA
	S. Talwar, M. Viberg, and A. Paulraj, Blind estimation of synchr
	A. van der Veen and A. Paulraj, An analytical constant modulus a
	M. Tsatsanis and G. Giannakis, Transmitter induced cyclostationa
	E. Serpedin and G. Giannakis, Blind channel identification and e
	A. Chevreuil, P. Loubaton, and L. Vandendorpe, Performance of ge
	A. Chevreuil and P. Loubaton, MIMO blind second-order identifica
	H. Bölcskei, R. Heath, and A. Paulraj, Blind channel estimation 
	A. Orozco-Lugo, M. Lara, D. McLernon, and H. Muro-Lemus, Multipl
	G. Leus, P. Vandaele, and M. Moonen, Deterministic blind modulat
	B. Agee, The least-squares CMA: A new technique for rapid correc
	A. van der Veen, Asymptotic properties of the algebraic constant
	A. van der Veen, M. Vanderveen, and A. Paulraj, SI-JADE: An algo
	A. van der Veen, S. Talwar, and A. Paulraj, A subspace approach 
	P. Stoica and A. Nehorai, MUSIC, maximum likelihood and Cramér-R



