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Abstract—The problem of designing and placing pilot symbols
for the estimation of frequency-selective random channels is con-
sidered. The channel is assumed to be a block-fading model with
finite impulse response (FIR). For both single-input single-output
(SISO) and multiple-input multiple-output (MIMO) channels,
under the assumption of independent and identical distributed
channel taps, the Cramér–Rao Bound (CRB) on the mean square
error (MSE) of semi-blind channel estimators is derived and
minimized with respect to pilot symbols and their placement.
It is shown that the optimal strategy is to place pilot symbols
satisfying certain orthogonality condition in such a way that data
and pilot symbols with higher power are in the middle of the
packet. The results also indicate that the optimal pilot placements
are independent of channel probability distribution. For constant
modulus symbols, we show that the quasi-periodic placement and
its generalization in the multiuser case turn out to be optimal.
We further consider estimating channels with correlated taps and
show that the previous placement strategy is also optimal among
orthogonal pilot sequences.

Index Terms—Channel estimation, Cramér-Rao bound, optimal
design, pilot symbols, placement schemes, semi-blind.

I. INTRODUCTION

CHANNEL estimation plays a critical role in
packet-switched wireless systems where it is often

necessary to acquire the channel state for each packet. To
facilitate channel estimation and synchronization, pilot sym-
bols are usually embedded in a data stream. Consequently, it
is important to fully utilize these symbols to obtain optimal
estimation performance, and the placement of these pilot
symbols can affect significantly the overall performance of a
wireless system [1]–[4].

The optimization of pilot symbols and their placement has
not been investigated until recently, although the design of
optimal pilot sequence for training-based channel estimators
is an old problem and has been investigated by many [5]–[8].
In [4] and [9], optimal pilot tone selection that minimizes
the mean square error (MSE) of the minimum MSE (MMSE)
channel estimator for orthogonal frequency division mul-
tiplexing (OFDM) systems are considered. In [10], Ling
analyzed optimal performance of two pilot-assisted schemes
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in various aspects of code division multiple access (CDMA)
systems. Adireddy and Tong considered the optimal placement
problem for decision feedback equalization (DFE) [1]. From
an information-theoretic perspective, they also optimized the
known symbols placement for maximizing channel capacity
or minimizing outage probability [2]–[11]. Sadleret al. [12]
developed Cramér-Rao Bounds (CRBs) for estimating source
and deterministic channel under the availability of side in-
formation by employing the constrained CRB formulation
[13] and evaluated performance under different placements
of known symbols through simulations. Carvalho and Slock
[14] obtained expressions of CRBs for deterministic channels
and examined the placement of pilot symbols via computer
simulations. In their case, no optimal strategy was found as
the CRB for the deterministic channel model is also a function
of channel coefficients. For orthogonal space-time codes, the
placement of superimposed pilot symbols for memoryless mul-
tiple-input multiple-output (MIMO) channels is considered in
[15]. Aside from these previous results, however, the problem
of pilot symbols placement for channel estimation in a wireless
transmission system has yet to be fully studied, and optimal
placement strategy is still unknown.

In this paper, we consider the optimal design and placement
of pilot symbols for channel estimation. Since mobile users may
choose different channel estimators, in searching for the optimal
placement, it is desirable to use a criterion that is independent of
any specific estimation technique used by individual receivers.
A natural choice is the CRB on the MSE of channel estimators,
and the objective of designing the pilot sequence and its optimal
placement is to minimize the CRB.

The main contributions of this paper are as follows. For both
single-input single-output (SISO) and MIMO finite impulse re-
sponse (FIR) random channels, under the assumption of inde-
pendent and identical distributed (i.i.d.) channel taps, we first ob-
tain an expression of the CRB as a function of pilot symbols and
their placement. It is then shown that the CRB is minimized by
placing pilot symbols withsmaller magnitudescloser to twoends
of a packet and those with larger magnitudes closer to the center
while satisfying certain orthogonality conditions. We show that,
although the CRBs are functions of channel distributions, the op-
timalpilotplacementsare independentofprobabilitydistribution
of the channel. This is especially important inbroadcastingappli-
cations, where the pilot design should be optimal for channels of
all users. We further consider estimation of channels with corre-
lated taps and show that the previous placement strategy is also
optimal among orthogonal pilot sequences.

For constant modulus pilot symbols with sufficient power, we
show that the optimal strategy is to place pilot symbols, possibly
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in multiple clusters, in the middle of a packet. Although this re-
sult confirms the advantage of using the midamble placement
as in the Global System for Mobile communication (GSM),
it also suggests that some other placements are also optimal.
One of such optimal placements is the quasi-periodic placement
(QPP)- scheme , which, under mild conditions, was shown to
be optimal for DFE [1], as well as optimal in terms of maxi-
mizing channel capacity .1

This paper is organized as follows. In Section II, we introduce
the basic SISO channel model and pilot symbol placement. In
Section III, the CRB for the random channel vector as a func-
tion of pilot symbols and their placement is derived. In Sec-
tion IV, we obtain optimal design and placement schemes that
minimize the CRB, followed by discussions of the placement
strategies and tradeoffs. In Section V, we extend our results to
MIMO channels and obtain corresponding optimal placement
schemes for the multiuser case. In Section VI, optimal place-
ments of orthogonal pilot sequences for random channels with
correlated taps are obtained. Numerical results are presented in
Section VII.

Notation used in this paper are standard. Upper and lower-
case bold letters denote matrices and vectors, respectively.
denotes the conjugation and the Hermitian transpose. We
use to denote a matrix with size and the

th element of matrix . The Kronecker product of matrix
and is denoted as . Matrix stands for identity matrix.

II. PROBLEM STATEMENT

A. Model

We assume a frequency-selective block-fading model where
the random channel remains constant for one data packet and
changes to an independent value for the next packet. We further
assume that channel estimation is performed within one trans-
mitted packet. The estimation of an SISO FIR channel is first
considered. Results for MIMO channels are presented in Sec-
tion V.

Within one data packet, the channel is modeled by an FIR
linear system with order

(1)

where is the received signal, is the
channel vector, is the input symbol, and is the i.i.d.
circular complex Gaussian noise with zero mean and variance

.
We assume that each data packet consists ofdata sym-

bols denoted as and pilot sym-
bols as . The vector channel model
is used for the entire packet corresponding todata symbols
and pilot symbols. Denoting ,

, we have

(2)

1In , the channel capacity is maximized under the constraint that certain per-
centage of input symbols is used for training.

Fig. 1. Input data packet with multiple pilot clusters.

where is a Toeplitz matrix generated fromand a
Hankel matrix from input

...
... (3)

... Hankel
...

(4)

The channel is to be estimated using the observationof the
entire packet, i.e., the estimation is semi-blind.

We also make the following assumptions:

A1) Data symbols are drawn from an i.i.d. sequence that
has probability density function (pdf) with zero
mean and variance . The power of pilot symbols is
defined as .

A2) Taps of the channel are i.i.d. random variables with
pdf .

A3) The data , channel , and noise are jointly indepen-
dent.

Assumption A2 may be restrictive in practice when specific
pulse shaping filters are used. In Section VI, this assumption
is relaxed to deal with correlated channel coefficients.

B. Pilot Symbol Placement

In general, the placement ofclusters of pilot symbols can be
described by , where is the data
block length vector, and the pilot cluster length
vector, as illustrated in Fig. 1. Constraining the total number of
data and pilot symbols, we have and

. Moreover, for those placements starting with pilot symbols,
, and for those ending with pilot symbols, .

We also define the edge and midamble positions for each
packet, as shown in Fig. 2. Edge positions are defined as the
first and last positions in a packet. The rest of the parts within
interval [ , ] are midamble positions.

For a training-based channel estimation, only those parts of
the observations corresponding to pilot symbols are used. If
there is a pilot cluster of length less than , no pilot symbols
corresponding to this cluster can be used for channel estimation.
Therefore, it is intuitive that all pilot symbols should be grouped
into a single cluster. This intuition, however, is not valid if all
observations are used for channel estimation. Indeed, the use of
multiple clusters results in a simpler design of pilot symbols as
shown in Section IV and better detection performance (see [1]).
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Fig. 2. Edge and midamble positions of one data packet.

The input symbol vector can be decomposed into the pilot
and data parts

(5)

where is obtained by setting the data part ofto zero. This
introduces a similar decomposition of the input symbol matrix

(6)

For convenience, we define their “autocorrelation” matrices as

(7)

Note that quantities and their corresponding autocorrela-
tion matrices are functions of placement. It follows that
and are functions of and .

III. CRAMÉR–RAO BOUND

The CRB for random channels is used as a performance mea-
sure for the design and placement of pilot symbols. The fol-
lowing theorem provides the expression of the CRB as a func-
tion of pilot symbols and their placement.

Theorem 1: Under the assumptions A1-A3 and the regularity
conditions [16], [17], the MSE matrix of any channel estimator

, which is defined as

(8)

satisfies the following inequality:

(9)

where is the complex CRB, and
with the expectation taken with re-

spect to .
Proof: See Appendix A.

The objective is to minimize the CRB of channel estimators,
jointly with respect to pilot symbols and their placement under
the pilot power constraint, i.e.,

tr (10)

From (9), we note that the CRB for channel estimators de-
pends on channel distribution through. We show later in Sec-
tion IV that, fortunately, the minimization of CRB with respect
to and turns out to be independent of the channel distribu-
tion.

We also note that defined above completely deter-
mines the real CRB [18] under the circular complex Gaussian
noise assumption, and

(11)

The regularity conditions require that the joint distribution
be absolutely continuous with respect to . An

example of such data sequences that satisfies the conditions
is the sequence with Gaussian distribution.2 For those drawn
from discrete symbol constellations, the above theorem gives
an approximation.

IV. OPTIMAL DESIGN AND PLACEMENT FORSISO CHANNELS

A. Optimal Design and Placement

In this section, we consider the design and placement of
clusters of pilot symbols, as shown in Fig. 1. The placement of
the clusters is specified by . For pilot symbols all
placed in midamble positions, the following lemma concludes
the shift invariant property of the CRB.

Lemma 1: For any , the midamble placement is shift in-
variant, i.e., for any

(12)

where vector denotes the unit row vector with 1 at theth
entry and 0 elsewhere.

Proof: See Appendix B.
Before we present the optimal pilot placement and design in

Theorem 2, we first make some heuristic arguments and illustrate
the idea in Fig. 3. With the invariance property given in Lemma
1, we know that placements in midamble positions are invariant
with respect to shifts. Therefore, one should pay special attention
to placements at the edge positions. Note that the channel model
given in (3) assumes no knowledge about the channel input for

, and those observations relating to
these unknown input symbols are discarded in channel estima-
tion.However, are relatedto inputsymbols ,
and discarding them prevents us from fully utilizing the first
inputsymbols. It is therefore logical thatoneshouldallocatemin-
imum power to symbols at edge positions.

Fig. 3 illustrates the optimal placement given in Theorem 2.
When there are many pilot symbols, i.e., , the
optimal design calls for setting zeros to symbols at two edges
of a packet and putting the rest pilots in the midamble part in
such a way that they satisfy certain orthogonality condition. On
the other hand, when there are only a few pilot symbols, i.e.,

, it is no longer possible to set all symbols at the edge
positions zero. In such a case, it depends on how much power
is allocated to the pilot symbols. If the total power of pilots is
higher than the power of data symbols, then all the pilot power
should be concentrated on one symbol placed in the midamble
part of the packet. Otherwise, two pilot symbols, each with half
of the total power, should be placed at the edge positions as

2We know that the capacity-achieving input distributions for known chan-
nels are Gaussian. In practice, the symbols may be shaped to approximate the
Gaussian distribution.
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Fig. 3. Optimal pilot designs and placements for SISO channels.

close to the center as possible. The specification of the optimal
placement and design of pilot symbols is given in Theorem 2.

Theorem 2: Given data symbols with power and
pilot symbols with power . Let be the th diagonal
entry of . Under assumptions A1-A3, we have the fol-
lowing.

1) For , the optimal placement and design of
pilot symbols given by

(13)

(14)

The minimum CRB is given by

(15)

2) For :
i) If , the optimal placement and design of pilot

symbols are given by

(16)

if
otherwise.

(17)

The minimum CRB is given by

tr

(18)

where is the unit step function

ii) If , the optimal placement and design of pilot
symbols are given by

(19)

if
otherwise.

(20)

The minimum CRB is given by

tr

(21)

Proof: See Appendix C.
Notice that while the value of the minimum CRB depends

on the channel distribution through , the optimal design and
placements described in Theorem 2 are independent of, and
therefore, it is independent of the probability distribution of the
channel. In other words, the placements are optimal for any
channel distribution. For a sufficient number of pilot symbols,
i.e., , the denominator of the minimum CRB in
(15) shows the total power of data and pilot symbols in-
dicating that under the optimal placement, all power in the data
packet is included in the estimation. Although Theorem 2 con-
cludes that concentrating all the data and pilot power in the mi-
damble positions leads to the minimum CRB, in the case when

, there is no specification on how many clusters
of those midamble pilots should have or how they should be
placed, as long as the orthogonality condition is
satisfied. Since the optimal placement mandates the first and
last symbols in being zeros, we only consider the mi-
damble pilot symbols , which are denoted as .
Notice that there always exists satisfying the orthogonality
condition in (14)—an obvious choice is the-sequence

. However, such a sequence may not
be a desirable choice in practice; it requires transmitters to have
high peak-to-average power ratio. The design of orthogonal se-
quences for a single cluster is also not trivial, and for general
and , there may not exist constant modulus pilot symbols.

For multiple clusters, the orthogonality requirement involves
the joint pilot symbols and cluster design. Unlike the single
cluster case, it is easier to find pilot symbols and their place-
ment satisfying the orthogonality condition. An interesting case
is the placement using only one single pilot symbol in each
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Fig. 4. Optimal multiple clusters placement scheme.

Fig. 5. Optimal placements of CM pilot symbols for SISO channels.

cluster, i.e., , . In such a case, all
the pilots in the midamble positions are at leastaway from
each other, as shown in Fig. 4. In this placement scheme, since
each row of contains only one nonzero element, we have

, regardless of the values of these pilot symbols.
Thus, the requirements for optimal placement and pilot design
in part 1) of Theorem 2 are satisfied. This placement scheme is
concluded in the following corollary.

Corollary 1: Assume . Any satisfying power
constraint with

is optimal. Under the optimal and , the
minimum CRB is given in (15).

Although the optimal design benefits from the use of multiple
clusters, existing estimation algorithms, on the other hand, favor
single cluster placement. Multiple-cluster placement schemes,
especially the scheme in Corollary 1, give an easy optimal de-
sign but make estimation harder. One expects such schemes to
increase the difficulty and complexity in terms of channel esti-
mation algorithms. Thus, a tradeoff between the choice of single
cluster and multiple clusters exists.

B. Pilot Symbols With Constant Modulus Constraint

In many communication systems, pilot symbols
with constant modulus (CM) property are used, i.e.,

. We now consider the optimal
placement and design of pilot symbols under such constraints
following the same heuristic arguments. The optimal place-
ments are illustrated in Fig. 5 and formally given in Theorem 3.
For pilot symbols with sufficient power, placing pilot clusters
all in the midamble positions leads to the lowest CRB. When
pilot symbols have equal power to that of data symbols, optimal
strategy is to design pilot symbols and placement jointly to
satisfy the orthogonality condition. On the other hand, for
sufficient amount of pilot symbols with low power, putting 2
pilot symbols at two edge parts leads to the lowest CRB.

Theorem 3: Given data symbols with power and
CM pilot symbols with . Under
assumption A1-A3, we have the following.

1) For , the placements and pilot sequences satisfying
the following are optimal:

(22)

(23)

The minimum CRB is given by

(24)

2) For , any placement with pilot symbols satisfying
(23) is optimal. The minimum CRB takes the same formula as
in (24).

3) For , if , the placements and pilot se-
quences satisfying the following are optimal:

(25)

(26)

The minimum CRB is given by

(27)

Proof: See Appendix D.
For pilot symbols with , the optimal placement is

more complicated and varies with and . Due to the CM
constraint, putting all pilot symbols into two clusters at two ends
of a packet cannot satisfy the orthogonality requirement. Thus,
this scheme is not guaranteed to be optimal. However, finding
a placement to make a multiple of identity does not ensure
the optimality over all possible pilot symbol placements and
designs. Thus, an exhaustive search among all these possible
placements may be necessary to achieve the minimum CRB.

Design of Orthogonal Sequences—Single Cluster vs. Mul-
tiple Clusters: For , we again encounter the problem
of choosing between the single cluster or multiple clusters.
As discussed earlier, the use of multiple clusters makes
the orthogonality condition easy to satisfy. An interesting
simple optimal placement where pilot symbols are scattered
throughout the packet is shown in Fig. 6 and described by

. The actual values of
CM pilot symbols are nonessential, provided that they satisfy
the power constraint.

A generalization of the above scheme is the so-called QPP in
a certain sense. In a QPP-scheme, under the constraint that
each pilot cluster length is no less than, the pilot symbols
are divided into as many clusters as possible. These clusters are
then placed such that the data block lengths are as equal as pos-
sible. The QPP family is divided into different classes. The class
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Fig. 6. Optimal multicluster placement scheme of CM pilot symbols.

of schemes for which is the smallest allowable pilot symbol
cluster length is denoted as QPP-.

Definition 1: Given an and a frame with unknown sym-
bols and known symbols, let . A placement
scheme belongs to QPP- if and only if

1) , and ;
2) , and .
The QPP is a family of placement strategies that is shown

to be optimal in the sense of maximizing mutual information
. It is also optimal in the sense of minimizing average MSE
associated with transmitted symbol when a decision feedback
equalizer is used, again, assuming known channel [1]. In terms
of minimizing the lower bound for channel estimation, it turns
out that the orthogonality constraint on pilot symbols for QPP-1
is the easiest to satisfy. For , the scheme described in
Fig. 6 indicates that if , then QPP-1 is also
optimal for channel estimation.

V. OPTIMAL DESIGN AND PLACEMENT FORMIMO CHANNELS

A. Model

A multiuser channel can be modeled as a-input -output
FIR linear system. The system inputs correspond to packets
from users, and the outputs come fromdiversity channels
that may result from temporal sampling or antenna array, etc.
Denote as the channel order for theth user and

as the channel impulse response vector for
the single-input multiple-output channel between theth user
and the received -dimensional data vector . The MIMO
channel can then be described by

(28)

where the data packet from useris denoted by , and
, the correspoding input symbol matrix from user, is

defined the same as in (4). Stacking the corresponding vectors
, , respectively, we have the vector model

(29)

where is the overall input symbol matrix including both
data and pilots from all the users

(30)

Let , be the number of data and pilot symbols of each
packet from user, respectively. The pilot symbols from theth
user is denoted by , and is the total
pilot symbols from users. In addition to A1-A3, we assume
the following.

A4) The packet transmission system is slotted, i.e., for each
time slot, each user transmits one packet through the
channels.

A5) , for , where and
are the pilot and data power for user.

Assumption A4 ensures that channel estimation is performed
within transmitted packets: one from each user. Assumption
A5 is introduced primarily because sufficient pilot power is gen-
erally guaranteed in communication systems.

B. Optimal Placement

In this section, we consider the optimal pilot design and place-
ment for packet transmissions involvingusers. Allowing pilot
symbols to be placed independently for each user and assuming
the number of pilot clusters for useris , the placement

is defined by , ,
where ( , ) is the placement for user. Given a place-
ment and the decomposition as in (5), the “au-
tocorrelation” matrices associated with input symbols and pilot
symbols are defined by

(31)

where is, again, a function of and .
Extending from Theorem 1 in the SISO model, the CRB for

channel estimators under the MIMO model is given by

diag (32)

Again, the CRB has the shift invariant property in midamble
positions.

Lemma 2: For any with power , the midamble place-

ment is shift invariant, i.e., for any

(33)

where is related to by

(34)

where and are the unit vector for theth user.
Proof: The proof is similar to the one for Lemma 1.
The optimal designs and placements in a two-user case is il-

lustrated in Fig. 7, and that for the general MIMO channel is de-
scribed in Theorem 4, where it indicates that under the MIMO
model, the optimal placements are, again, independent of prob-
ability distributions of channels. The theorem concludes that
within a packet from each user, the single-user optimal place-
ment strategies should be used. Furthermore, the optimal place-
ment involves the orthogonality design of pilot symbols among
all users. For , which indicates very small amount of
pilot symbols, this orthogonality condition can be easily satis-
fied by the optimal placement described in Theorem 4. For the
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Fig. 7. Optimal placements of pilot symbols for the MIMO channel.

other case when , which is usually satisfied, the
optimal design is nontrivial in general and is discussed in Sec-
tion V-C

Theorem 4: Given data symbols with power and
pilot symbols with power from the th user, .

Let be the CRB for theth channel coefficient of
user . Under assumptions A1-A4, we have the following.

1) For , , the optimal placement
and design of pilot symbols are given by

(35)

diag

(36)

The minimum CRB is given by

(37)

2) For , , under assumption A5, the
optimal placement and design of pilot symbols are given
by

(38)

if
otherwise

(39)

The minimum CRB is given by

tr

tr

(40)

where is the unit step function.
Proof: See Appendix E.

C. Multiuser Placement Strategies

In this section, we only consider the case when .
As discussed in Section IV, it is difficult to design orthogonal
sequences for those pilot symbols in the midamble positions
if they are grouped in a single pilot cluster. Multiple clusters
should be considered. Then, the next question follows: Should
we align pilot clusters from each user at the same position? The-
orem 4 indicates that as long as the pilots between users are
orthogonal, the placement is still optimal. However, by doing
this, we should consider all pilot sequences jointly, which
increases the difficulty of the sequence design. An easy way
to simplify the problem is to place the pilot clusters staggered
among users. As an example shown in Fig. 8, two users are
present in the system. Clusters from users 1 and 2 are offset to
each other so that in (31) is block diagonal. The orthogo-
nality condition between users are automatically satisfied. Note
that the pilot sequence design can now be done independently.
Moreover, smaller cluster size also simplifies the pilot design.

Furthermore, the easiest way to satisfy the orthogonality con-
dition, perhaps, is the scheme described in Fig. 4 extended for
the multiple-user case as illustrated in Fig. 9. The lowest CRBs
can be obtained if pilot symbols in the midamble positions are
scattered in such a way that they are at least apart.
By this way, the actual values of pilot symbols are nonessential
as long as they satisfy the power constraint.

D. Pilot Symbols With Constant Modulus Constraint

Consider all users using CM pilot symbols, i.e.,
, for all . The optimal placements are il-

lustrated in a two-user case in Fig. 10 and described in the
following theorem.

Theorem 5: Assume CM pilot symbols. Under assumption
A1-A4, we have the following.
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Fig. 8. Optimal placement for two-user case.

Fig. 9. Optimal placement for three-user case.

1) For , the optimal placement
and design of pilot symbols are given by

(41)

diag

(42)

The minimum CRB is given by

(43)

2) For , any placement with pilot
symbols satisfying (42) is optimal. The minimum CRB takes
the same formula in (43).

Proof: The proof is similar to the one in Theorem 3.
For , the optimal placement should satisfy the

single-user optimal placement requirement and, at the same
time, satisfies cross-user orthogonality condition. However,
such pilot sequences satisfying both conditions might not exist.
Thus, finding an optimal placement scheme may follow an
exhaustive search among all possible placements. The resulting
optimal placement then depends on each specific situation.

For sufficient pilot power, the easiest scheme perhaps is
QPP-1 scheme extended for multiple users as illustrated in
Fig. 11, which can be summarized by the following corollary.

Corollary 2: For any satisfying ,
, the placement is optimal if

satisfies

1) ;

2)
.

Although the extended QPP-1 scheme is the easiest to satisfy
the orthogonality condition, it requires each user’s packet length
to be sufficiently long to allow pilot symbols to scatter out. On
the other hand, the longer pilot cluster length, the shorter packet

Fig. 10. Optimal placements of CM pilot symbols for the MIMO channel.

Fig. 11. Optimal QPP-1 placement for three users.

size is required; this is especially tractable for short packet com-
munication scenarios. Therefore, there again exists a tradeoff
between the choice of short and long pilot clusters.

VI. PLACEMENT FORCHANNELS WITH CORRELATEDTAPS

In the previous sections, we discussed the design and
placement of pilot symbols for random channels with taps
being i.i.d. In this section, we look into a more general case
where channel taps are correlated. The SISO channel model
is considered. Specifically, the channel is the combination of
the pulse shaping filter and propagation channel. Although
the propagation channel appears random changes from packet
to packet, due to the pulse shaping filter, channel taps are
correlated to each other in general. Thus, channelappears
random but is restricted within a certain subspace. Therefore,
assuming A1 and A3, we relax A2 to the following assumption.

A2’) The channel can be represented by

(44)

where has orthonormal
columns, and vector consists of i.i.d. zero mean random
variables with pdf and variance .

When , channel taps are correlated with covariance
. In the special case when ,

assumption A2’ reduces to A2.

A. CRB

The complex CRB for transformations of deterministic
parameters was derived in [19]. For linear transformation of
random parameters, the complex CRB becomes

(45)
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where is a random parameter vector, and ; is the
CRB for . Given the channel model in (44), the complex CRB
for channel estimators is then derived as

(46)

B. Placement

It is not hard to see that for general random channels, Lemma
1 still holds. Our objective is to find and among all or-
thogonal pilot sequences such that

tr (47)

Theorem 6: Assume . Among all orthogonal
pilot sequences, i.e., { diagonal}, the optimal placement
is given by

(48)

(49)

The minimum CRB is given by

tr (50)

Proof: See Appendix F.
For pilot symbols with CM property, following Theorem 6

and using the similar proof, we see that when , among
all orthogonal pilot sequences, placing all pilot symbols in the
midamble positions is optimal:

(51)

and the minimum CRB is given by

tr (52)

When , is invariant under among orthog-
onal sequences, i.e., different placements result in equal perfor-
mance.

All the above show that the optimal placement strategy for
channels with i.i.d. taps is also optimal, among all orthogonal
pilot sequences, for channels with correlated taps. Note that our
results of optimal placements are confined in searching among
all possible orthogonal pilot sequences. It does not imply that
this placement minimizes tr for all choices of pilot
sequences. Indeed, in general, the placement that gives the min-
imum tr depends heavily on and each specific re-
alization of pilot sequences.

VII. N UMERICAL RESULTS

A. Placement Schemes in Single User Case

We first compared the CRBs of channel estimators under op-
timal and nonoptimal pilot design and placement schemes in
the SISO model. Channel order was . We assumed that

(a)

(b)

Fig. 12. (a) CRBs of different placements versus percentage of pilot symbols
at SNR= 10 dB. (b) CRBs versus different placements under low pilot power
at SNR= 20 dB.

channel taps are i.i.d. complex Gaussian with zero mean and
variance . The data packet length was
100. Data and pilot powers were and , respec-
tively. Four placement schemes were considered:

1) the optimal placement allowing power allocation;
2) the optimal placement for pilot symbols with CM con-

straint;
3) a single cluster with CM pilot symbols used in 2) placed

in the middle of the packet and the pilot sequence violated
the orthogonality requirement;

4) the same single cluster placed at one end of packet.

In the first optimal scheme, we used the placement described
in Corollary 1. For the second one with CM constraint, QPP-3
placement was used with each pilot cluster being [, ,

]. Fig. 12(a) shows the traces of CRBs of these four
schemes under increasing percentage of pilot symbols per
packet at SNR dB. We observe that the gain of the
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Fig. 13. CRBs of different placement schemes in a two-user case.

optimal scheme increases with increasing percentage of pilot
symbols.

Finally, for pilot symbols with CM constraint, we give an ex-
ample when pilot symbols with low power . Two
schemes were compared: 1) optimal placement for pilot sym-
bols with CM constraint and 2) single cluster with the same pilot
sequence placed in the middle of the packet. Fig. 12(b) plots the
CRBs versus the percentage of pilot symbols at dB.
We can see that in this case, putting pilot symbols at two ends
of the frame resulted in lower CRBs. Notice that because the
total power from data and pilot symbols decreases with the per-
centage of pilot symbols increasing, the corresponding CRBs
increases.

B. Placement Schemes in Multiple-User Case

We next consider the placements in the multiuser case, where
. The channels, data, and pilot powers used were

still the same as in the single-user case. Two users were consid-
ered with the same packet length of 100. Each packet consisted
of 20 pilot symbols. Three schemes were compared:

1) optimal placement;
2) optimal placement under the CM constraint;
3) conventional single cluster with the CM pilot symbols

used in 2) aligned in the middle of the packet from each
user.

Again, for the first scheme, pilot symbols in the midamble posi-
tions were placed similarly as in Fig. 9. For the second scheme,
we used the QPP-3 scheme with pilot clusters shifted between
users, which is similar as in Fig. 11. Fig. 13 shows the trace of
the CRBs under these threes scenarios. We observe that about a
1.5-dB gain is obtained by placing pilot symbols optimally. This
shows that the importance of optimal placement in the multiuser
case is more significant than that in the single-user case. Note
also that there is little performance loss by imposing the CM
constraint on pilot symbols.

VIII. C ONCLUSION

In this paper, we presented the optimization of the placement
and design of pilot symbols for semi-blind channel estimation.
We have shown that the CRB is shift-invariant among midamble
positions, and the basic principle of optimal placements is to
concentrate higher power symbols in the midamble positions of
a packet while placing symbols with lower power at two ends.
Our results also indicate that the optimal placements are inde-
pendent of any channel distribution. While the merit of placing
pilot symbols in the middle of a packet is justified by our theory,
we found many other placements that are also optimal. Among
those, the use of multiple clusters makes the design of optimal
pilot sequence simpler. However, placing pilot symbols in mul-
tiple clusters may increase the complexity of channel estima-
tion.

We noticed that under the SISO model, the difference of
CRBs between optimal and nonoptimal placements does
not appear to be significant. Therefore, more consideration
should be given to the placement design for optimal detection
performance. It is reassuring to find that the QPP-scheme
for the detection and maximizing channel capacity is, in our
results, also optimal for channel estimation. Under the MIMO
model, as the number of users in the system increases, much
can be gained from the optimal placements.

Finally, we note that a pilot placement may have effects on the
estimator performance that are different from that on the CRB.
The optimality of placements for a specific class of estimations
may also be of interest.

APPENDIX A
PROOF OFTHEOREM 1

Let . Under the regularity conditions [19], ,
the MSE matrix of any estimator is lower bounded by

with the complex Fisher information matrix (FIM)defined as

(53)

where is the joint distribution of and , and the expec-
tation is taken over and .

Under the regularity condition, we have

(54)
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where is obtained from by deleting columns corre-
sponding to pilot symbols.

By assumptions of and in A1-A3, we have

(55)

Now, we can obtain the expression of the FIM

(56)

Under the regularity conditions and assumptions A1-A3, since
, where and are joint pdf of

and , respectively, the second term in (56) becomes

(57)

where , are defined as

(58)

where the expectation is taken with respect to and ,
respectively.

Therefore, the complex FIM is

(59)

Consequently

Notice that the FIM for is block diagonal, and CRBs for the
channel and data symbols are decoupled. The complex CRB for
the MSE of channel estimators is then given by

(60)

APPENDIX B
PROOF OFLEMMA 1

When , all pilot symbols are placed in the
midamble positions. For the-cluster case, defined in (7)

is a function of and , which is denoted as . Since
is i.i.d. with zero mean, we have

(61)

Substituting the above into (9), the CRB becomes

(62)

Notice that ( ) is corresponding to shifting the
clusters to the right by 1 without changing their relative dis-

tances. From the structure of , it is not hard to see that
when ,

(63)

This means, for fixed and [ ], is invariant
for different and , and we have

(64)

Therefore, is invariant under shifting of the clus-
ters among the midamble positions.

APPENDIX C
PROOF OFTHEOREM 2

From (9), we know that

(65)

where is given by

where and an indicator function, defined
by if pilot symbol appears in theth column
of and otherwise. Note that

. Denoting as the total number of pilot
symbols in the th column of , we have

(66)

Define

(67)

Case 1— : Let , be the total number of pilot
symbols in the two edge parts belonging to the beginning and
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end of a packet, respectively. Note that . We now
bound as follows:

(68)

The equalities hold for all if and only if . There-
fore, the minimum number of pilot symbols in each column is

.
From (66), we have

(69)

with equality if and only if and
, i.e., the total power is allocated on the ( ) pilot

symbols that are in the midamble positions. From Lemma 1, we
note that any midamble placements are shift invariant. Thus, the
placement described in Theorem 2.1 maximizes and
minimizes in (67)

(70)

By the Cauchy–Schwartz inequality,3 , is lower
bounded by

(71)

and

tr (72)

where the equalities hold if and only if . Thus, we
have

(73)

and

tr

(74)

where the equalities hold under the optimal placement described
in Theorem 2.1.

3The Cauchy-Schwartz inequality is that for any positive definite matrixA,
(A ) � 1=A , with equality iffA is a diagonal matrix.

Case 2— : i) : We prove that the place-
ment described in part 2) i) of Theorem 2 minimizes .

a) We first show that for any fixed placement, allocating total
pilot energy on those symbols in the midamble positions, de-
creases .

From (67), we have

(75)

with equality if and only if and ,
i.e., there exist pilot symbols in the midamble positions, and
their total power is , whereas the power of those at the edge
parts are all zeros. Since , for any fixed (fixed
placement), (75) gives the minimum .

b) If (75) is satisfied, the only variable in is .
Notice that placing pilot symbols at two ends decreases
for some , thus decreasing in (75). Therefore, to
minimize (75), all ( ) pilot symbols should be placed at
the two ends. In other words, assign to a single pilot in the
midamble position, and split the rest ( ) pilot symbols into
two clusters at two ends of a packet. Furthermore, among all
possible ways of splitting these ( ) symbols, dividing them
evenly ( , ) at two ends minimizes

4 . Thus the placement described in the Theorem
minimizes .

We now calculate . Under the optimal place-
ment, for the th column is given by (76), shown at the
bottom of the page. Substituting into (75), we obtain the
minimum as in (77), shown at the bottom of the next
page. Combining the common terms, we obtain (18). Since, by
this placement, , following the same argument as
in Case 1, we have

tr (78)

ii) : In part i), under the optimal placement

(79)

where is defined in (76). In the case when ,
can be further reduced by removing ( ) from

4This is because the following inequality:(1=a) + (1=(a+ b)) �

(1=(a+ b=2)) + (1=(a+ b=2)), wherea; b > 0.

(76)
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the denominator and reducing the quantity for some . It is
not hard to see that under the optimal placement in part
i), which is shown in (79), monotonically decreases by moving
the pilot symbol with power from the midamble part to the
position next to the pilot, which is in the edge part and is closest
to the center. Therefore, we have

(80)

Thus, all pilot symbols should be placed at two ends while allo-
cating the total pilot power on the two pilot symbols closest to
the center. Finally, by the same argument in part i), allocating
power evenly ( ) to each pilot closest to the center min-
imizes . Thus, the placement described in part 2) ii)
of Theorem 2.2 is optimal. Under this placement, we calculate

as in (81), shown at the bottom of the
page, and the minimum is as in (82), also shown at
the bottom of the page. Rearranging the index, we obtain (21).
Since is diagonal under this placement, we have

tr

APPENDIX D
PROOF OFTHEOREM 3

Case 1— : In this case, since , (65) becomes

(83)

(84)

with equality if and only if for all . In other
words, all the pilot symbols should be placed in the midamble
positions

(85)

Following (71), we have

(86)

with equality when the conditions in (22) and (23) are satisfied.
Case 2— : When pilot and data powers are equal,

we see that (83) becomes

(87)

(77)

if
if

(81)

(82)
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Thus, different placements do not affect , and we
have

with equality if and only if

Case 3— and : From (68), is lower
bounded by . Then, in this case,
in (83) satisfies

(88)

Note that the equality holds when , i.e., all the edge
positions are filled with pilot symbols. Thus

with equality if and only if

APPENDIX E
PROOF OFTHEOREM 4

Given in (32), the CRB under the MIMO model is

diag

Again, as can be decomposed into and , we have

...

(89)

where and are the autocorrelation matrices for the
th user defined under the SISO model.
From the above equation, we can see that the expression of the

th diagonal block (corresponding to theth user) is the same
as that in the SISO case. Thus, we have

(90)

Define (91), shown at the bottom of the page.
Case 1— : Notice that (90) only involves

from the th user; thus, to maximize ,

the placement for the packet from usershould be the same as
described in the SISO case. Therefore, we have

(92)

Using the Cauchy–Schwartz inequality again, we have

(93)

with equality if and only if

diag

Notice the that optimal design and placement involves pilot
symbols among all users. This cross-user effect on placement
can be seen in , where the off-diagonal th block is the
cross “correlation” matrix between userand .

Case 2— : We do not give a detailed proof in
this case since it can be similarly derived from previous results.
Similarly, as in Case 1, we see that by Theorem 2, the placement
described in this case minimizes in (91). Therefore, to
satisfy

tr

we require

diag

APPENDIX F
PROOF OFTHEOREM 6

From the CRB for channel estimators given in (46),
we have

tr tr

tr

(94)

where is upper bounded by

(95)

(91)



DONG AND TONG: OPTIMAL DESIGN AND PLACEMENT OF PILOT SYMBOLS FOR CHANNEL ESTIMATION 3069

with the equality iff the placement described in (48) and (49) is
satisfied, where the total pilot power is concentrated on those
pilots in the midamble positions.

Note that by definition, for any orthogonal pilot sequence,
is diagonal. Consequently, is a diagonal matrix.

Therefore, we have

tr

(96)

where equalities hold when .
Thus, minimizing tr is equivalent to

subject to

(97)

Hence, tr is minimized by making all
equal

and, at the same time, satisfying

Therefore, the placement described in the Theorem gives the
minimum CRB shown in (50).
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