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Over Time-Varying Flat Fading Channels
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Abstract—Two major training techniques for wireless channels
are time-division multiplexed (TDM) training and superimposed
training. For the TDM schemes with regular periodic placements
(RPPs), the closed-form expression for the steady-state minimum
mean square error (MMSE) of the channel estimate is obtained as
a function of placement for Gauss–Markov flat fading channels.
We then show that among all periodic placements, the single
pilot RPP scheme (RPP-1) minimizes the maximum steady-state
channel MMSE. For binary phase-shift keying (BPSK) and
quadrature phase-shift keying (QPSK) signaling, we further
show that the optimal placement that minimizes the maximum
uncoded bit error rate (BER) is also RPP-1. We next compare the
MMSE and BER performance under the superimposed training
scheme with those under the optimal TDM scheme. It is shown
that while the RPP-1 scheme performs better at high SNR and for
slowly varying channels, the superimposed scheme outperforms
RPP-1 in the other regimes. This demonstrates the potential
for using superimposed training in relatively fast time-varying
environments.

Index Terms—Channel tracking, Gauss–Markov, Kalman
filter, pilot symbols, placement schemes, PSAM, superimposed,
time-varying.

I. INTRODUCTION

CHANNEL estimation is a major challenge for reliable
wireless transmissions. Often, in practice, pilot symbols

known to the receiver are multiplexed with data symbols for
channel acquisition. Two major types of training for single
carrier systems are time division multiplexed (TDM) training
and superimposed training. Pilot symbols in a TDM system are
inserted into the data stream according to a certain placement
pattern, and the channel estimate is updated using these pilot
symbols. For superimposed training, on the other hand, pilot
and data symbols are added and transmitted together, and the
channel estimate is updated at each symbol.

The way that pilot symbols are multiplexed into the data
stream affects the system performance for time-varying chan-
nels. Under TDM training, the presence of pilot symbols
makes channel estimation accurate at some periods of time
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and coarse at others. If the percentage of pilot symbols is
fixed, we then have to choose between obtaining accurate
estimations infrequently or frequent but less accurate estimates.
Is it better to cluster pilot symbols as in the case of the Global
System for Mobile Communications (GSM) systems or to
spread pilot symbols evenly in the data stream as in the pilot
symbol assisted modulation (PSAM) [1]? What is the optimal
placement that minimizes the mean square error (MSE) of the
channel estimator? Does the MSE-minimizing training also
minimize the bit error rate (BER)? In choosing the optimal
training scheme, do we need to know the rate of channel
variation and the level of signal-to-noise ratio (SNR)? How
does TDM training compare with superimposed training?
Intuitively, superimposed training may have the advantage
when the channel fades rapidly, but the superimposed data
interferes with pilot-aided channel estimation, which may lead
to an undesirable performance floor in the high SNR regime.

In this paper, we address these issues systematically. We
model the time-varying flat fading channel by a Gauss–Markov
process and use the minimum mean square error (MMSE)
channel estimator along with the symbol-by-symbol maximum
likelihood (ML) detector. The MMSE channel estimator is
implemented using the Kalman filter. For TDM training we
show that, among all periodic placements, the regular periodic
placement with pilot cluster size one (referred to as RPP-1)
minimizes the maximum steady-state channel MMSE and
uncoded BER for both binary phase-shift keying (BPSK) and
quaternary phase-shift keying (QPSK) signaling, regardless
of the SNR level or the rate of channel variation. Given the
constraint of the minimum length of pilot clusters , we show
that RPP- is optimal. Performance comparisons between
the optimal TDM scheme and the superimposed scheme are
given both analytically and numerically. We show that the
optimal TDM scheme performs better at high SNR and for
slowly varying channels, whereas the superimposed scheme
is superior for many situations of practical importance. In
the process of establishing the optimality of RPP-1, we also
provide the closed-form expression for steady-state channel
MMSE at each data symbol position, which is useful to evaluate
the performance of coded transmissions.

Pilot symbol-assisted modulation (PSAM), which has been
proposed in [2] and [3], includes the periodic TDM training with
cluster size one—the RPP-1 scheme. Cavers first analyzed the
performance of PSAM [1]. Although the optimality of RPP-1
has never been shown for either channel MMSE or BER until
now, it has been applied and studied in various settings [4]–[8].
The optimality of RPP-1 may not be surprising in retrospect,
but the fact that the optimality holds uniformly across all fading
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and SNR levels may seem unexpected. Establishing the opti-
mality formally and uniformly across a wide range of channel
conditions, however, does not come from a direct application of
the standard Kalman filtering theory. In particular, we need to
examine all possible training patterns and their corresponding
maximum steady-state MMSEs, which would not have been
possible without characterizing the MSE behavior with respect
to the placement pattern. Under TDM training, the channel es-
timator switches between the Kalman updates using pilot sym-
bols and the Kalman predictions during data transmissions, and
the switching occurs before the steady-state in either phase has
been reached.

Optimal training has been previously considered for block-
fading channels from a channel-estimation perspective under
both TDM and superimposed trainings [9]–[11], as well as from
an information theoretic viewpoint [12], [13]. For time-varying
channels, existing results tend to assume the RPP-1 scheme and
optimize parameters such as pilot symbol spacing and power
and rate allocations [1], [6], [7]. In [6], for flat Rayleigh fading
modeled by a Gauss–Markov process and the PSAM scheme,
the optimal spacing between the pilot symbols is determined nu-
merically by maximizing the mutual information with binary in-
puts. In [7], with the flat fading channel modeled by a bandlim-
ited process, under some assumptions on the channel and data
symbols, optimal parameters for pilots, including pilot symbol
spacing and power allocation, are determined by maximizing a
lower bound on capacity. In [14], the performance in various as-
pects of code division multiple access (CDMA) systems under
two pilot-assisted schemes is analyzed. In [15], we addressed
the problem of optimal placement of pilot symbols in TDM
schemes for packetized transmission over time-varying chan-
nels at high SNR.

This paper is organized as follows. In Section II, we study the
optimal pilot placement for TDM schemes. We first introduce
the system model and formulate the problem and then obtain
the optimal placement for both channel tracking and uncoded
BER performance. We then consider superimposed training in
Section III, where we derive the steady-state channel MSE with
Kalman tracking and the BER. In Section IV, we provide both
analytical and numerical performance comparison under the op-
timal TDM scheme and the superimposed scheme. Finally, we
conclude in Section V.

II. OPTIMAL PLACEMENT FOR TDM TRAINING

A. Channel Model

We model a time-varying flat Rayleigh fading channel as

(1)

where is the received observation, the transmitted symbol,
the zero mean complex Gaussian channel state

with variance , and the complex circular
additive white Gaussian noise (AWGN) at time . We assume
that data , channel , and noise are jointly independent.

The dynamics of the channel state are modeled by a first-
order Gauss–Markov process

(2)

Fig. 1. Data streams with periodic placements.

where is the white Gaussian driving noise. Parameter
is the fading correlation coefficient that characterizes

the degree of time variation; small models fast fading,
and large corresponds to slow fading. The Gauss–Markov
model is widely adopted as a simple and effective model
to characterize the fading process [16]–[19]. The first-order
Gauss–Markov model is parameterized by the fading cor-
relation coefficient . The value of can be determined by
the channel Doppler spread and the transmission bandwidth,
where the relation among the three is found in [19]. It can be
accurately obtained at the receiver for a variety of channels [6],
[17], [18]. Here, we assume that is known.

B. Periodic TDM Placements

We consider the class of periodic placements, as shown in
Fig. 1, where the placement pattern of pilot symbols repeats pe-
riodically in the data stream. The restriction to periodic place-
ments is mild; a system with aperiodic training will not reach
a steady state and is seldom considered in practice. We define
the period of a placement, denoted by , to be the length of
the smallest block over which the placement pattern repeats.
Note that the starting point of a period can be arbitrarily chosen.
Without loss of generality, we assume that each period starts
with a pilot symbol and ends with a data symbol.

In general, any periodic placement with clusters of pilot
symbols in a period of length can be specified by a 2-tuple

, where is the pilot cluster length
vector and the data block length vector, as
illustrated in Fig. 2. Note that . We further
denote as the index set containing positions (relative to
the beginning of the period) of the pilot symbols within one
period.

For different placement schemes, we also assume the fol-
lowing.

A1) All pilot symbols have equal power and are denoted by
; the power for data symbols is denoted by .

A2) The percentage of pilot symbols in a data stream
is fixed.

C. Receiver

We consider a typical receiver structure shown in Fig. 3,
where the channel estimator provides the channel estimate
to the demodulator, and the data symbol is detected based
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Fig. 2. Representation of placement within one placement period.

Fig. 3. Receiver structure.

on the received sample and using the symbol-by-symbol
ML detector.1

For a given placement , the observations over pilot symbols
are given by . We consider
the MMSE channel estimator based on the current and all past
pilot symbols and their corresponding observations. The MMSE
channel estimator at time , which is denoted by ,
is then given by

which, for a channel with Gaussian statistics, is equivalent to
the linear MMSE (LMMSE) estimator. The direct use of the
MMSE estimator requires information storage on all the past
pilot symbol observations at the receiver, as well as computing
a matrix inversion at each time to estimate the channel. As the
number of observations grows, this excessively burdens the
receiver with both storage and computation. In practice, an
adaptive filter is desired, especially for time-varying channels.
The above MMSE estimator can be implemented recursively
by the Kalman filter. At each time, one only needs to store the
most recent channel estimate and estimates the channel with
simple scalar operations. The Kalman filter has been widely
used due to its optimality and adaptivity. For the transmission
with TDM pilot placements we consider in Fig. 1, the Kalman
filter switches between two modes: It updates the channel
estimate using the pilot symbols during the training period and
predicts the channel state during data transmission.

Given the estimated channel state , the optimal detection
for equally probable data symbol alphabets is given by the ML
detector. For a fixed placement , let

1Note that the globally optimum detector is the ML sequence detector.

be the MMSE of the channel estimate at time produced by
the Kalman filter. Conditioned on any data symbol , and

are jointly Gaussian with zero mean and covariance

For any phase-shift keying (PSK) constellation, we have
. The ML decision rule is given by

Re

(3)

which shows that the same ML detector for the known channel
can be used by substituting the channel estimate.

D. Optimization Criteria

The MSE and BER performance of TDM schemes are not
stationary. During a training block, the Kalman filter uses pilot
symbols to produce increasingly more accurate channel esti-
mates until the data transmission starts, during which time, the
Kalman filter can only predict the channel state based on the
Gauss–Markov model and, therefore, produces increasingly in-
accurate estimates.

The Kalman filter update algorithm can be obtained from the
standard Kalman filter theory [20], [21] and is detailed in Ap-
pendix A. Here, we only present the channel MMSE update
needed for analysis.

During a training block, we obtain the recursive expressions
for the channel MMSE as, for and all integer

(4)

Once the th training cluster in a placement period ends, of
which the index (relative to the beginning of the period) is
denoted by , as shown in Fig. 2, the Kalman filter predicts
the channel state during data transmissions of duration . This
MMSE is given by

(5)

for .
As , the system converges to a periodic steady state,

and we are naturally interested in the steady-state performance

(6)
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Furthermore, we will only be interested in the MSE of the
channel estimator during data transmission. Thus, from (5) and
(6)

(7)

which monotonically increases with .
In a placement period, let be the index of the

position of the last symbol in the th data block, as shown in
Fig. 2. Then, the maximum steady-state MMSE in this block is
reached at . The maximum steady-state channel MMSE over
data symbols is then given by

(8)

The optimal placement that minimizes the maximum
steady-state channel MMSE can then be obtained by2

(9)

The BER performance is directly affected by channel MMSE,
and our goal is to find the optimal placement that minimizes the
maximum steady-state BER. Specifically, let be the
steady-state BER at the th position relative to the beginning of
the placement period. We are interested in the following opti-
mization:

(10)

We show next that for the BPSK and QPSK
constellations.

Proposition 1: Under the Gauss–Markov channel model
with BPSK or QPSK input symbols, if the MMSE channel
estimator is used along with the ML detector, then

Proof: See Appendix B.

E. Optimal TDM Placement

We first find the optimal placement for a special class of
placements called regular periodic placements. The extension
to the general class follows.

The regular periodic placement RPP- has only one pilot
cluster of size and one data cluster of size , with . In
Fig. 1, the second and third examples are placements belonging
to this class.

From (8) and (9), it follows that for RPP- , the optimal place-
ment is obtained by

(11)

2We assume there are n pilot clusters for a given placement PPP .

Our problem now is to find the explicit expression of the steady-
state MMSE and analyze its behavior as a function of
pilot cluster size .

A useful quantity in the sequel is the steady-state MMSE
when all symbols are pilots. It is the solution to the steady-state
Riccati equation

SNR SNR SNR

(12)

where the signal-to-noise ratio SNR . Obviously,
is a lower bound on MMSE for any placement.

The following Lemma provides the closed-form MMSE ex-
pression for the RPP- scheme.

Lemma 1: For any RPP- scheme, the steady-state channel
MMSE is given by

(13)

(14)

where is computed as follows:

(15)

(16)

(17)

SNR

SNR SNR (18)

(19)

Proof: See Appendix C.
From (13), because is not a function of , the optimiza-

tion in (11) can now be rewritten as

where the explicit expression of is obtained in (15) as a
function of . By analyzing the behavior of as a function
of , we obtain the optimal placement for RPP schemes in the
following theorem.

Theorem 1: For the class of RPP schemes, under A1) and
A2), the maximum MMSE of the channel estimates during
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data transmission is a monotone increasing function of . Thus,
RPP-1 is optimal among all RPP placements, and the minimum

is given by

(20)

where

SNR SNR SNR

(21)
Proof: See Appendix D.

Theorem 1 demonstrates that decreasing the training cluster
length and training the channel more frequently results in de-
creased steady-state maximum channel MMSE and, thus, lower
BER. This immediately implies that if there is a constraint on
the minimum pilot cluster size , RPP- is optimal.

We next show that RPP-1 is in fact optimal among all periodic
placements. We outline a few steps required to prove the opti-
mality of RPP-1, leaving the details to Appendix E. Consider
first the case with two pilot clusters of lengths and
two data blocks of lengths present in each period.
Let and be the end posi-
tions of the two data blocks, where the MMSE reaches
the maximum. Intuition suggests that moving the second pilot
cluster away from the first, i.e., increasing and decreasing ,
increases and decreases . (This is not obvious,
however, because moving the second pilot cluster will also af-
fect the initial MMSE .) It follows that to minimize the
maximum MMSE for the entire period suggests that the equal-
ization rule that forces , which leads to
making pilot clusters equal and eventually results in the reduc-
tion to the RPP- scheme. Extending to any placement with
pilot clusters in a period, using the similar equalization rule and
applying the above result to each two consecutive pilot clusters
repeatedly, leads to the same reduction to RPP- . Combining
Theorem 1 and Proposition 1, we then have the optimality of
RPP-1.

Theorem 2: Given a fixed percentage of pilot symbols , the
optimal placement for periodic TDM training that minimizes
the maximum steady-state MMSE and BER for any first order
Gauss–Markov channel is RPP- , where is the minimum
pilot cluster size allowed.

Proof: See Appendix E.
We point out that this optimality holds, regardless of the

values of SNR and .

III. SUPERIMPOSED TRAINING SCHEME

The pilot design for superimposed training takes the form of
allocating power to pilot and data symbols at each time index.
For the stationary Gauss–Markov channel considered here, it
is reasonable to consider the time-invariant power allocation
where the transmitted symbol is the superpo-
sition of pilot and data symbols. The observation is given by

(22)

where is the pilot sequence, and is the data sequence
that is drawn from an independent and identically distributed
(i.i.d.) zero mean sequence. We assume that and have unit
powers, i.e., , and we denote and as
the pilot and data power allocation coefficients, respectively.

A. Kalman Tracking with Superimposed Training

A complication of superimposed training is that and
are not jointly Gaussian. Therefore, the MMSE

channel estimator based on the conditional expectation is
difficult to compute and implement. Instead, we consider the
LMMSE channel estimator implemented via the Kalman filter.
Rewrite (22) as

where . Because is i.i.d. zero mean and
independent of , we have

Let be the LMMSE estimator of based on the current
and all past observations ; then, the Kalman filter
can again be used as the optimal LMMSE estimator to track the
channel. Let . Following the Kalman
filter derivation [20], [21], we then have the Kalman filtering al-
gorithm for channel tracking under superimposed training with

(23)

(24)

Combining (23) and (24), we have

The steady-state MSE, which is defined as
, is then given by

where

(25)

is the received signal-to-interference plus noise ratio (SINR).
The solution of the above equation is

(26)
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Note that at the steady-state, in contrast to the periodic place-
ment scheme, the channel MSE in this case is time-invariant.

B. BER Performance

We again consider BPSK signaling. The detector estimates
based on and by

sign Re (27)

Notice that this detector is not the true ML detector based on
and ; it is a pseudo ML that assumes the estimated has no
error.

If are transmitted, and are
correlated, zero mean complex Gaussian random variables.
Therefore, from the error probability calculation in [22, App.
C], for a system using BPSK at the steady state, the bit error
probability conditioned on is

Pr Pr

Re

Im
(28)

where

The terms in the denominator and the numerator are derived as
follows.

where , and it can be obtained from (24)
as

The BER is then given by

Pr

(29)

IV. TDM VERSUS SUPERIMPOSED SCHEMES:
PERFORMANCE COMPARISON

In this section, we compare the optimal TDM training
(RPP-1) with superimposed training under the same transmis-
sion power . We thus need to impose the following power
constraints:

(30)

The first constraint keeps the transmission power used in each
scheme the same, and the second one keeps the ratio of power
allocated to pilots and data in each scheme the same. Then, for
a TDM scheme with the percentage of pilot symbols , pilot
power , and data power , the corresponding power allo-
cation coefficients and for the superimposed scheme are
given by

and in (25) can be rewritten by

SNR

(31)

The normalized MMSEs (NMMSEs) corresponding to those
in (20) and (26) are given by (32) and (33), shown at the
bottom of the page. We note that for the superimposed
scheme, channel tracking benefits from constant presence
of pilot symbols. However, it is affected by both noise
and the interference from data. This effect is evident from
(33), where SNR is a function of ,
which indicates the SINR level. The higher is, the smaller

SNR will be. On the other hand, the

SNR

SNR SNR SNR

(32)

SNR (33)
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RPP-1 scheme has the advantage of updating the channel
state during training with no data interference, but there is no
information sent to facilitate tracking during data transmission.
For a given , differing from the RPP-1 scheme where the
NMMSE in (32) is only affected by SNR , the NMMSE
for the superimposed scheme is also a function of data/pilot
power ratio . Thus, the performance under superimposed
training varies with data power, whereas that under RPP-1 does
not.

A. Limiting Cases

To gain insights into the fundamental differences of the two
schemes, we consider the limiting performance in various cases.

1) Fast Fading : For this case, we have almost i.i.d.
fading. For fixed SNR

SNR

SNR (34)

As expected, due to the constant presence of pilot symbols in the
data stream, the superimposed scheme provides a better tracking
ability than that of the RPP-1 scheme.

2) Slow Fading : As , the channel becomes
constant. In the limit, channel estimation becomes perfect for
both schemes, and we have

SNR (35)

SNR (36)

For constant channels, it is intuitive that both of the schemes
should give perfect estimation at the steady state. However, it
is evident from (35) and (36) that, as becomes less than 1,
the variation rate of SNR is faster than that of

SNR . In other words, the NMMSE of
TDM training deteriorates at a much more rapid rate than that of
superimposed training, as the channel varies faster. This again
demonstrates that the superimposed scheme provides better
tracking performance by constant presence of pilot symbols.

3) High SNR SNR : This corresponds to the noise-
less case. For RPP-1, the channel state over each pilot symbol
can be perfectly estimated. Estimation errors during data trans-
mission are due to the tracking ability of the Kalman filter, and
we have

SNR
SNR

(37)

For the superimposed scheme, although there is no noise, the
interference from data is always present. Therefore, the tracking
error is due to the data symbol interference, and we have

SNR

SNR
(38)

Fig. 4. (a) Maximum steady-state channel MMSE E(
) versus a. (b)
Maximum steady-state BER versus a. (� = 20%; SNR = 20 dB).

where in this case is given by

The NMMSEs for both schemes vary with SNR on the same
order. The limiting NMMSEs depend on the channel fading rate,
which is characterized by . Because it is difficult to directly
compare (37) and (38), we resort to numerical comparisons.

B. Numerical Comparisons

1) Optimal versus Suboptimal TDM Schemes: We com-
pare the performance under different TDM RPP- placement
schemes. The received SNR is defined as SNR . The
MMSE and BER were calculated using MMSE expressions
in Lemma 1 and the BER expression in (40), respectively.
Fig. 4(a) and (b) shows the maximum steady-state MMSE and
BER performance, respectively, under the variation of for
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Fig. 5. Maximum steady-state BER versus SNR (a = 0:985; � = 20%).

SNR 20 dB. The percentage of pilot symbols in the stream
was %. The power of data and pilot symbols were
set to be equal . We observe that the largest gain
obtained by placing pilot symbols optimally occurs when is
in the range from 0.9 to 1, which is a common range of channel
time variation.3 Fig. 5 shows the maximum steady-state BER
performance under the variation of SNR at . Note
that the gain of the optimal placement increases with SNR.
Furthermore, placing pilot symbols optimally can result in a
several decibel gain and achieve a much lower error floor.

2) Superimposed versus RPP-1 Schemes: Under the power
constraints in (30), we calculate the MMSE and BER under su-
perimposed training using expressions in (26) and (29), respec-
tively, and compare them with those under RPP-1.

Figs. 6 and 7 show the MMSE and BER performance versus
fading rate for superimposed and RPP-1 schemes with

% when SNR 20 and 5 dB, respectively. We set half of the
total transmission power to pilot symbols, i.e., . As a
comparison, average BER is also shown for the RPP-1 scheme.
It is obtained by averaging the steady-state BER at all data po-
sitions in one placement period. Again, the steady-state BER at
any data position can be calculated by MMSE expressions in
Lemma 1 and the BER formula in (40).

For high SNR (20 dB), we observe in Fig. 6(b) that RPP-1 per-
forms better than the superimposed scheme for slowly varying
channels ( above 0.98). For such cases, the TDM scheme gives
more accurate channel estimates during training than the super-
imposed training. However, as the channel varies more rapidly,
the TDM training deteriorates at a more rapid rate than that
of the superimposed scheme. It is apparent that even for the
common fade rates of , the superimposed
scheme that offers better tracking is preferred. The advantage
of the superimposed training is more pronounced when SNR is
lowered to 5 dB, as shown in Fig. 7(b), where the effect of in-
terference from data is less significant compared with the noise.

3For bandwidths in the 10-kHz range and Doppler spreads of order 100 Hz,
the parameter a typically ranges between 0.9 and 0.99 [6].

Fig. 6. (a) Maximum steady-state MMSE versus a. (b) Maximum steady-state
BER versus a. (SNR = 20 dB, � = 10%. Dotted line: Average BER for RPP-1.)

Fig. 8(a) and (b) shows the BER performance against SNR for
and , respectively. Similar performance gain

regimes for each scheme can be seen. For (very slow
variation) at low SNR, we see that there is little difference in the
performance under the two schemes. At high SNR, the RPP-1
scheme provides better performance. For , however,
we see that the superimposed scheme uniformly performs better
than RPP-1 at different SNR.

Under the power constraints in (30), Fig. 9 shows the BER
versus the percentage of pilot symbols in the RPP-1 scheme,
with SNR 20 dB, and . Notice that RPP-1 bene-
fits from a high percentage of pilot symbols, resulting in small
tracking error. Therefore, in a high regime, the BER is lower
than that of the superimposed scheme.

Finally, we notice from the comparisons that the difference
of the BER under different pilot-insertion strategies does not
appear as big as that of the channel MMSE. This is due to the
large decision region for BPSK signals (only the sign of the deci-
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Fig. 7. (a) Maximum steady-state MMSE versus a. (b) Maximum steady-state
BER versus a. [SNR = 5 dB, � = 10%. Dotted line: Average BER for RPP-1.)]

sion variable matters); therefore, BPSK is more forgiving with
respect to a relatively inaccurate channel estimate. For higher
order signal constellations, however, as the decision region be-
comes smaller for each symbol, we expect the channel MMSE
to be more tightly coupled to the BER performance, and the
difference in pilot-insertion strategies will result in a larger dif-
ference of BER performance.

3) Kalman Filter Convergence Rate: The comparison
of pilot-insertion strategies in this paper is focused on the
steady-state analysis. A practical issue arises on how long it
takes for the receiver process to converge to its steady state. For
continuous data transmissions, the process will eventually reach
the steady state, and the beginning process has a negligible
impact on the performance. For a packet transmission system,
however, this question is particularly relevant.

For TDM periodic training, the time for convergence is the
limit over the number of placement periods. From the Kalman
filter analysis, similarly as in the training case [as in (42)], for
the TDM training, the convergence rate over placement periods

Fig. 8. (a) Maximum steady-state BER versus SNR. (a = 0:99; � = 10%:)
(b) Maximum steady-state BER versus SNR. (a = 0:95; � = 10%. Dotted
line: Average BER for RPP-1.)

is exponential. However, the time for reaching the steady state
depends on the fading rate , SNR, and the initial values and,
therefore, varies from application to application. We have tested
the convergence time for different levels of fading rate and SNR
(the typical range of fading rate , and SNR from
0 to 20 dB), and the process converges typically within three
to five placement periods. Therefore, the steady state can be
reached in a short time. For a packet transmission system, such
as GSM, if a packet contains 150 symbols with 20% pilots,
there can be as many as 30 placement periods. The receiver
often receives multiple packets continuously at a time. There-
fore, our steady-state analysis is suitable for the system. Further-
more, from the above observations, we point out that besides the
steady-state performance, the RPP-1 scheme has the additional
advantage of faster convergence than other RPP- schemes, be-
cause it has shorter placement periods. Compared with TDM
training, the steady state under the superimposed training can
be reached within a few iterations (ten to 20 steps in our sim-
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Fig. 9. BER versus � for a = 0:9; SNR = 20 dB. (Dotted line: Average BER
for RPP-1.)

ulations). Thus, the convergence for the superimposed training
can be faster than that of TDM training, where it needs several
placement periods, especially for the case with longer periods.4

V. CONCLUSION

In this paper, we have studied two different forms of training
schemes, using the MMSE of channel estimation and uncoded
BER as the figures of merit. For Gauss–Markov fading chan-
nels, we have established the optimality of the single-pilot
periodic training (RPP-1) among all periodic TDM training
schemes. The optimality of RPP-1 holds uniformly across all
SNR levels and all fade rates. This result allows us to compare
the best TDM training with superimposed training. We showed
that while the traditional TDM training performs better for
slow fading channels at high SNR, the superimposed scheme
outperforms the best TDM scheme in regimes of practical
importance.

The performance metrics chosen in this paper are practical but
limited from an information theoretic perspective. Although we
have shown the connection between MMSE and BER, we have
not considered coding. To this end, the work by Medard et al.
[6] is the most relevant. In their work, adaptive modulation and
coding for channels with PSAM is considered, and the spacing
between the pilot symbols is optimized numerically by maxi-
mizing the mutual information with binary inputs, resulting in
improved channel capacity. From our results, the complete char-
acterization of MMSE and BER performance should provide
guidelines on code design, rate allocation, and power allocation.

APPENDIX A
KALMAN FILER FOR TDM TRAINING

• During the pilot cluster transmissions ):

4Due to space limitations, we do not provide plots on the MMSE update tra-
jectory over iterations but only the result on convergence time, which is the
information needed here. The plots can be found in the technical report in [23].

Kalman Gain:

Channel estimation update:

MMSE update:

• During the data block transmissions ):
Channel estimation update:

MMSE update:

APPENDIX B
PROOF OF PROPOSITION 1

Proof: The ML detection rule is given in (3). For a system
using BPSK, it can be simplified as

sign Re

Under the system equation in (1), the decision statistic is

Re Re

Re Re (39)

where . Conditioned on and , the second and
third terms in (39) are independent zero mean Gaussian random
variables. At the steady state

Therefore, for a system using BPSK, the bit error probability
conditioned on and is

Pr

Define SNR . The BER for data symbols at the th
position of a placement period is thus given by

SNR
(40)
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where to obtain (40), we use the following result:

and .5

For QPSK signaling , the decision
rule is

Re sign Re

Im sign Im

The bit error probability conditioned on and can be de-
rived similarly as in the BPSK case

Pr bit error

and the BER at the th position of a period is given by

SNR

(41)

The BER expressions for BPSK and QPSK signaling are now
obtained as functions of the steady-state channel MMSE with
placement in (40) and (41), respectively. In both cases, it is
clear that increasing results in increased . It
immediately follows that in either case, the optimization in (10)
is equivalent to that in (9).

APPENDIX C
PROOF OF LEMMA 1

Proof: At the steady state of an RPP- scheme, the
channel MMSE attains a periodic steady state. During a
training period obeys the same update
recursion as in (4)

5Note that ^h is zero mean Gaussian random variable, and therefore, j^h j
is exponentially distributed.

where . Define as the difference of
and ; then, we have the equation shown at the bottom

of the page. We then have the following first-order differential
equation for

where and are defined in (18). Note that in the above recur-
sion, when corresponds to the value of
over the end position of the previous placement period, i.e.,

. Therefore, we can express in terms of
by

(42)

During data transmission , the updating recur-
sion for is in (7). Therefore

(43)

From (42) and (43), and satisfy the following rela-
tions:

(44)

where for a given , we have used the relation . The
steady-state equation for is then given by

(45)

Solving the above equation, we have the expression of ,
as a function of , given in (15).

From (7), for any RPP- scheme, the expression of the
steady-state channel MMSE over each data symbol is
then obtained in (13) and (14).
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Fig. 10. Proof of Theorem 1.

APPENDIX D
PROOF OF THEOREM 1

Proof: The algebraic proof of Theorem 1, based on the
expression for in (15) as a function of , can be found
in the technical report in [23]. Here, we give a more intuitive
graphic-aided proof using Fig. 10.

The basic idea in this proof is the following. We first let the
data stream contain larger pilot clusters (thus longer period).
After the process reaches its steady state, we change the pilot
placement to the one with smaller pilot clusters (thus shorter
period). After this rearrangement, we show that the channel
MMSE at the last position of a period (i.e., ) is smaller
in the new placement than it is in the previous placement. This
eventually results in the decreased MMSE when the new process
goes to its steady state.

For a RPP- scheme, during training, from (42), we have

Thus, exponentially decreases with rate . During a
data block, it follows from (43) that exponen-
tially decreases at rate .

Fig. 10(b) and (a) describe the placement pattern
and the corresponding steady-state trajectory of

, respectively. For fixed pilot percentage
, let us consider two schemes: RPP- with

and RPP- with , where . The RPP-
scheme, where the placement period is , is shown in the
left part of Fig. 10(b). Indexes and denote the end
positions of the data blocks in the th and th placement
periods under RPP- , respectively. Index denotes the end
position of the pilot cluster in the th period. Assume that in
the th and th placement periods, the channel MMSE
is at its steady state. The corresponding at and is

. The trajectory curve of is shown
in Fig. 10(a). Because the changing rates of during pilot
and data cluster are exponential, and are both
exponential. If RPP- is still used in the th placement
period, then the trajectory of is the curve
in Fig. 10(a). It is equivalent to . Now, after the th
period, we change the placement to RPP- , which is shown in

the right part of Fig. 10(b), where indexes and denote
the new end positions of pilot and data cluster in the period, re-
spectively. The change of placement results in the new MMSE.
Denote over and, similarly,

over . Note that is still on the trajectory

curve in Fig. 10(a), i.e., . Now,
let in Fig. 10(a) be the point such that the length .
Because for fixed pilot percentage , we have

, which is shown in Fig. 10(a).
Then, because and are exponential, where
the former one is convex and the latter one is concave, from the
geometry, we have

(46)

which is shown in Fig. 10(a). From (43), since

it follows from (46) that . Consequently,

, for . At the steady state of RPP- ,
we have

Because and is not a function of
, we have , for . The minimum

can be obtained using Lemma 1.

APPENDIX E
PROOF OF THEOREM 2

Recall that is the index for the end position of the th data
block relative to the beginning of a period. We have the fol-
lowing lemma.

Lemma 2: Given , with pilot clusters in a place-
ment period, for any

(47)

(48)

where denotes a unit row vector with 1 at the th entry
and 0 elsewhere.

Proof: We use Fig. 11 to assist in our proof. The figure de-
scribes the placement pattern in a period, and the steady-state
trajectory of . Relative to the begin-
ning of a period, let and denote the end positions of the

th and th data block and the end position of the th
pilot cluster. Let be the new placement satisfying

. Then, showing (47) is equivalent to showing

For simplicity, we denote as and as
and, similarly, those of other points. Assume in the th
placement period that the MMSE is at its steady state. In the
th period, we move the th pilot cluster right by one step. Let
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Fig. 11. Proof of Lemma 2.

and . This results in the new MMSE
at and thereafter. Denote

and, similarly, and . Then, from (42) and
(43), we have

(49)

The one-step increment on the trajectory is
. If we can show

(50)

then . Consequently, , and
. Therefore, we only need to show (50). Let

, where . From the first equation of (49),

we have . Let . From
the second and third equations of (49), we have

where the inequalities are due to . Therefore, we have
proved (47). By a similar argument, we can show (48).

Lemma 3: Given , for any
such that

(51)

Proof: Let . For fixed
, let

We first show that

s.t. (52)

where

(53)

It is not hard to see that
and are both continuous function of

when . Therefore, we only need to check if the two
functions and have a
cross point. When ,6 all pilot clusters are
clustered together. Note that

where we recall that is the index of the end of the th pilot
cluster. Because the channel MMSE monotonically decreases
during training, we have

(54)

where the inequality is due to the channel MMSE decrease
during the first pilot cluster. Similarly

(55)

Combining (54) and (55), we have (52).
Now, fixing this , we again show that

, s.t.

(56)

Again, it suffices to check if the two functions have a cross point
by checking the two end point values that can take. Similar
to (55) above, we have

Assume there is no cross point, i.e.,

for . Then,
. By Lemma 2, it follows

that

6We define k


k = 
 .



1416 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 5, MAY 2004

i.e., when all first pilot clusters are together. Then, we
have

This contradicts our earlier conclusion in (52). Thus, we have
(56). From (52) and (53)

(57)

Recursively, for fixed , we can show that
s.t. for

.
Let , where is obtained as above. Then,

similar to (57), we have , for
, and . By

Lemma 2, it is easy to see that

Using the same argument recursively, we finally have
, for . By Lemma 2, it

follows that under , reaches the minimum, and we
have (51).

Proof of Theorem 2: By Lemma 3, we have the optimal
for each choice of , whichis denoted as . The op-

timization of the placement can be rewritten as

(58)

Given and , we fix the number of pilot clusters in a period
and show that the optimal placement is the one that reduces to
RPP- . By Theorem 1, the result eventually follows.

1) Two-Cluster Case : By Lemma 3, for a given
, there exist , such that

(59)

Now, we need to show that for

(60)

This can be shown using an argument similar to that in the
graphic-aided proof of Theorem 1, and we will not elaborate
here. The detail can be found in the technical report in [23].

From (60), because is arbitrary, we have

2) General n-Cluster Case: For a placement period with
pilot clusters, we use the equalizing rule in Lemma 3 and apply
the result in the two-cluster case to the placement of each two
consecutive pilot clusters.

Given any placement , we construct the following
procedure. Denote at the th step by ; then, we
have the following.

1) At step i, by Lemma 3, there exists , such that, for

(61)

Denote .
2) Let . Using the result in the two-cluster case,

we equalize each two consecutive pilot cluster lengths in
order.

i) Define the “averaging” matrix as

otherwise.

We average the lengths of the th and th
pilot clusters and the same for the th and th
data blocks, while keeping the lengths of the rest
of the pilot and data clusters unchanged:

Then, from the two-cluster case, we know that

ii) By Lemma 3, there exists such that, for all

Let . Then, we have

iii) If , then let , and repeat i)–iii).
iv) Let . Then

3) Let . Repeat 1)–3).
Repeat the above procedure. As , we have

If we can show that

(62)

(63)
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then, because is arbitrary, it follows that

and we prove Theorem 2.
Now, we show that (62) is true. For a given , define as

the maximum difference of lengths between the pilot clusters at
step .

The procedure we have described in part 2) tries to even the
lengths of all pilot clusters. After part 2) is finished, we have

Thus, we have

Because the sequence monotonically decreases and
is bounded from below, its limit exists. We now bound the
decrement of . Because there are pilot clusters, at the th
step, there exists at least two consecutive clusters, say th and

th clusters, so that

After times of the pilot clusters averaging process in
part 2), the decrement of the largest pilot cluster length, or the
increment of the smallest pilot cluster length, is lower bounded
by

Then, it follows that

(64)

Recall that . Thus, . The same argument
applies to . Thus, we have (62) and (63).
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