
OPTIMAL PILOT PLACEMENT FOR TIME-VARYING CHANNELS

Min Dong and Lang Tong

School of Electrical and Computer Engineering

Cornell University, Ithaca, NY 14853�
mdong,ltong � @ece.cornell.edu

Brian M. Sadler

Army Research Laboratory

Adelphi, MD 20783

bsadler@arl.army.mil

ABSTRACT

Two major training techniques for wireless channels are the time-
division multiplexed (TDM) training and the superimposed train-
ing. For the TDM schemes with regular periodic placements (RPP),
the closed-form expression of the steady-state minimum mean square
error (MMSE) is obtained as a function of pilot placement for
Gauss-Markov fading channels. We show that the single cluster
RPP scheme (RPP-1) minimizes the maximum steady-state chan-
nel MMSE. For BPSK and QPSK signaling, we then show that
the optimal placement that minimizes the maximum bit error rate
(BER) is also RPP-1. We next compare the MMSE and BER
performance under the superimposed training schemes with those
under the optimal TDM scheme. It is shown that while RPP-1
scheme performs better at high SNR and for slow varying chan-
nels, the superimposed scheme outperforms RPP-1 in the other
regimes. This demonstrates the potential for using superimposed
training in relatively fast time-varying environments.

1. INTRODUCTION

Channel estimation is a major challenge for reliable wireless trans-
missions. Often in practice, pilot symbols known to the receiver
are multiplexed with the data symbols for channel acquisition.
Two major types of training for single carrier systems are the time
division multiplexed (TDM) training and the superimposed train-
ing. Pilot symbols in a TDM system are inserted into the data
stream under certain placement pattern, and the channel estimate
is updated using these pilot symbols. For the superimposed train-
ing, on the other hand, pilot and data symbols are added and trans-
mitted together, and the channel estimate is updated constantly.
The way that pilot symbols are multiplexed into the data stream
affects the system performance for time-varying channels. Under
the TDM training, the presence of pilot symbols makes channel
estimation accurate at some time and coarse at others. What is the
optimal placement that minimizes the mean square error (MSE)
of the channel estimator? Does the MSE-minimizing training also
minimize the bit error rate (BER)? In choosing the optimal training
scheme, do we need to know the rate of channel variation and the
level of signal-to-noise ratio? How does TDM training compare
with the superimposed training?
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In this paper, we aim to address these issues systematically.
We model the fading channel by a Gauss-Markov process and use
the minimum mean square error (MMSE) channel estimator along
with the symbol-by-symbol maximum likelihood (ML) detector.
For the TDM training, we show that, among all periodic place-
ments, the regular periodic placement with cluster size one (re-
ferred to as the RPP-1) minimizes both maximum channel MMSE
and BER of BPSK and QPSK signaling, regardless of the level
SNR or the rate of channel variation. Performance comparison
between the optimal TDM scheme and the superimposed scheme
is given numerically. We show that the TDM scheme performs
better at high SNR and for slowly varying channels whereas the
superimposed scheme is superior for many situations of practical
importance. In the process of establishing the optimality of RPP-
1, we also provide closed-form expressions of steady-state channel
MMSE at each data symbol position, which is useful to evaluate
the performance of coded transmissions.

Optimal training has been previously considered for block fad-
ing channels from a channel estimation perspective under both
TDM and superimposed trainings [9, 5, 2] and from an informa-
tion theoretic angle in [10, 1]. For time-varying channels, Cavers
first analyzed the pilot symbol assisted modulation (PSAM) [3]
that includes the periodic TDM training with cluster size one—the
RPP-1 placement. While the optimality of RPP-1 has never been
shown for either MMSE or BER until now, it has been applied in
various settings. Furthermore, existing results tend to assume the
RPP-1 placement and optimize parameters such as power and rate
allocations [13, 8, 11]. In [4], we considered the problem of op-
timal placement of pilot symbols for packetized transmission over
time varying channels at high SNR.

This paper is organized as follows. In Section 2, we optimize
placement for the TDM schemes in terms of both channel tracking
and BER performance. In Section 3, we derive the steady-state
channel MSE for channel tracking and the bit error rate under the
superimposed training. In Section 4, we provide the numerical
performance comparison under the optimal TDM scheme and the
superimposed scheme. Finally, we conclude in Section 5.

2. OPTIMAL TDM TRAINING PLACEMENT

2.1. The Channel Model

We model a time-varying flat Rayleigh fading channel given by
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where ��� is the observation sequence, ��� the transmitted symbols,
 �"!$#&%�')(��+*-,.�/ the zero mean complex Gaussian channel state



with variance * ,. , and � � ��� ��� ���! #&%�')(&� * ,� / is the complex circular
AWGN at time � . We assume data ��� , channel 
 � and noise � �
are independent.

The channel state 
 � is modeled by a first-order Gauss-Markov
process


�� ���&
 ��	�
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where � � is the white Gaussian driving noise. Parameter ���� (&����� is the fading coefficient characterizing the degree of time-
variation. The value of � can be determined by the channel Doppler
spread and the transmission bandwidth, where the relation among
the three is found in [7]. The Gauss-Markov model has been
widely adopted as a simple and effective model to characterize the
fading process [6, 7, 12].

2.2. The Periodic TDM Placements

We consider the class of periodic placements, as shown in Fig. 1,
where the placement pattern of pilot symbols repeats periodically.
The restriction to periodic placements is mild; a system with ape-
riodic training will not reach a steady state, and is seldom con-
sidered in practice. We define the period of a placement, denoted
by � , to be the length of the smallest block over which the place-
ment pattern repeats. Note that the starting point of a period can
be arbitrarily chosen. Without loss of generality, we assume that
each period starts with a pilot symbol and ends with a data sym-
bol. In general, any periodic placement with � clusters of pilot
symbols in a period of length � can be specified by a 2-tuple� � '�� ��� / , where � � � � 
 ��������� �! � is the pilot cluster length
vector and � � � " 
 ��������� "  � the data block length vector, as illus-
trated in Fig. 2. Note that � ��# � ' � �  " � / . We further denote$&% ' � / as the index set containing positions (relative to the begin-
ning of the period) of the pilot symbols within one period. For
different placement schemes, we assume the following:
A1) All pilot symbols have equal power, denoted by * ,% ; the power
for data symbols is denoted by * ,� .
A2) The percentage of pilot symbols in a data stream ' �(# � � �*) �
is fixed.
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Fig. 2. Representation of placement within one placement period

2.3. The Receiver

We consider a typical receiver structure where the channel estima-
tor provides the channel estimate .
 �&' � / to the demodulator, and

the data symbol � � is detected based on the received sample � �
and .
 �&' � / using the symbol-by-symbol ML detector.

For a given placement
�

, the observations over pilot symbols
are given by

� �0/21&3 �54 �6� $ % ' � / �87 ��(&����������� � . We consider the
MMSE channel estimator based on the current and all past pilot
symbols and their corresponding observations. The MMSE chan-
nel estimate at time '�7 �  � / , denote by .
 /2193 � is given by

.
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� 
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which can be implemented recursively by Kalman filtering. The
Kalman filter switches between two modes: it updates the chan-
nel estimate using pilot symbols during each training period and
predicts the channel state during data transmission.

Given the channel estimate .
 � , the optimal detection is given
by the ML detector. Conditioned on any data symbol ��� , ��� and .
 �
are jointly Gaussian. For any phase-shift keying (PSK) signaling,
we have : � � : , � *-,� , and the ML decision rule is given by

.� � � F�G8HJIKF�LMONQPSRET0UVXW 	 T0UV�Y
--' � � � .
 � : � � / ��FXG8HZIKFXLMON Re

� �X[� .
\[� ' � / � � �
��FXG8H]I_^a`MEN : � � � .
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which shows that the same ML detector for the known channel can
be used by substituting the estimated channel.

2.4. The Optimization Criteria

Although for the long term behavior the system converges to a
periodic steady state, within one placement period, the MSE and
BER performance of TDM schemes are not stationary.

Given
�

with period � , let b � 7 � ��9c � � be the MMSE of
channel estimate at time '�7 �  � / . During any training cluster,
from the standard Kalman filter theory, we obtain the recursive
expression for the MMSE as: for ��� $9% ' � / and all integer 7 ,
b � 7 �  �9c � � � * ,�ed � , b � 7 �  �f� �Qc � ���' ���g� , / * ,.ih

* ,�  '�� , b � 7 �  �f� �Qc � �&�' ���g� , / * ,. / * ,%
Once the j th training cluster in a placement period ends, of which
the index (relative to the beginning of the period) is denoted by- � as shown in Fig.2, the Kalman filter predicts the channel state
during data transmissions of duration

" � . The MMSE is given by

b � 7 � J- � ��9c � � ��� , � b � 7 � J- � c � �  * ,. ' �k�l� , � / � � ������������� " �Em
We are naturally interested in the steady state performance as 7onp . Furthermore, we are only interested in the MSE of the channel

estimates during data transmission. Let b �&' � /Cq�sra^tI /tuwv b � 7 � �9c � � , then

b %yx 3 � ' � / �z� , � b % x ' � /  ' �l�e� , � / * ,. � � ������������� " �
which increases with � . Let

, � q�J- �  " � be the index of the position
of the last data symbol in the j th block, as shown in Fig.2. Then,
the maximum steady-state MMSE in this block is reached at

, � .
The optimal placement that minimizes the maximum steady-state
channel MMSE over data symbols during one placement period
can then be obtained by{ ' � / � IKF�L�X| �S}P�~C� ? � B b � ' � / ��IKFXL
O� � �  b � x ' � / (3)

� [
MMSE

��FXG8HJI_^t`� IKFXL
O� � �  b � x ' � / m (4)



The BER performance is directly affected by channel MMSE, and
our goal is to find the optimal placement that minimizes the max-
imum steady-state BER. Specifically, let Pe

� �9c � � be the steady-
state BER at the � th position of a period. We are interested in the
following optimization� [

BER
��FXG8HZI_^a`� IKF�L
O� �X� 1 Pe

� �\c � � m (5)

We show next that
� [

MMSE
� � [

BER for the BPSK and QPSK signal-
ing.

Proposition 1 Under the Gauss-Markov channel model with BPSK
or QPSK input symbols, if the MMSE channel estimator is used
along with the ML detector, then� [

MMSE
� � [

BER
m

Proof: Define snr � q� * ,� ) * ,� . For BPSK, we can show that the BER
for data symbols at the � th position of a period is given by
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which is a function of the steady-state channel MMSE with place-
ment

�
. It immediately follows that, to optimize the placement in

(5) is equivalent to that in (4). For QPSK, similar argument can be
followed. H
2.5. The Optimal TDM Placement

We first study the optimal placement for a special class of place-
ments called regular periodic placement. The extension to the gen-
eral class follows.

The regular periodic placement RPP-
�

, defined as the place-
ments satisfying

� � ' � � " / , has only one pilot cluster of size
�

and one data cluster of size
"

with � � � ) ' . In Fig. 1, the second
and third examples are placements belonging to this class. From
(3) and (4), it follows that for RPP-

�
, the optimal placement is ob-

tained by � [ ��FXG8HJI_^t`I { ' � / ��FXG8HJI_^t`I b 1 ' � / m (7)

Our problem now is to find the explicit expression of the steady-
state solution b 1 ' � / and analyze its behavior as a function of
pilot cluster size

�
.

A useful quantity in the sequel is the steady state MMSE when

all symbols are pilots, defined as b v q�srt^tI I uwv b I ' � / . Its ex-
pression can be obtained as the solution to the steady-state Ric-
cati equation for the channel MMSE update. Due to the limited
space, we won’t elaborate here. The following Lemma provides
the closed-form MMSE expression for the RPP-

�
placement.

Lemma 1 For any RPP-
�

scheme, the steady-state channel MMSE
is given by

b 1 ' � / �KJ 1 ' � /  b v (8)

b � ' � / � b 1 ' � / � * ,. ' ���g� , ? 1 	 �yB /� , ? 1 	 �yB � � � �  ����������� � � �

where J 1 ' � / is computed by the following equations:L 1(MON�PRQTSVU IXW<Y U ,I W[Z\I (9)

U I qQ^]_`Xa SbMdc U B\egffh P Ia S 
hi j\klnm:o S aprqts S M a Svu , Bwegff I Pp x vzy ,.
Z I&qQ ]` a Svu�, Bwegff Ia S 
hi jl m o S aq s x v y ,.|{ snr

% qQ y ,%y ,� { x v qQ a SK} vy ,.
o qQ au , M a W M a Svu , x v P y ,. snr

% P , { q qQ snr
% M a W M a Svu , x v P y ,. snr
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From (8), because b v is not a function of

�
, the optimization in

(7) can now be rewritten as� [ ��FXG8HZI_^a`I J 1 ' � /
By analyzing the behavior of JC1 ' � / as a function of

�
, we obtain

the optimal placement for RPP schemes in the following theorem.

Theorem 1 For the class of RPP placements, under A1-A2, the
maximum MMSE of channel estimates during data transmission,{ ' � / , is a monotone increasing function of

�
. Thus RPP-1 is opti-

mal among all RPP placements, and the minimum
{ ' � / is given by

{ TDM q� I_^t`I { ' � / � { ' � / � * ,. �g� , B\egff�' * ,. � b 
 /
where

b 
 � * ,.


, ' � �* ,. snr

% / �� � 
, ' �  * ,. snr
% /	� ,  c Uf
O	 c Uf * ,. snr

%
m

We next show that RPP-1 is in fact optimal among all periodic
placements. Due to the limited space, we only outline a few steps
required to prove the optimality of RPP-1. Consider first the case
with two pilot clusters of lengths � � ' � 
 � � , / and two data blocks
of lengths ��� ' " 
 � " , / . To minimize the maximum MMSE for
the entire data blocks suggests the equalization rule that forcesb � B ' � / � b � U ' � / , which leads to making pilot clusters equal,
and eventually, results in the reduction to the RPP-

�
placement.

This result can then be generalized to any � -cluster placement.
Combining Theorem 1 and Proposition 1, we then have the opti-
mality of RPP-1.

Theorem 2 Given a fixed percentage of pilot symbols ' , the opti-
mal placement for periodic TDM training that minimizes the maxi-
mum steady-state MMSE and BER for any first order Gauss-Markov
channel is RPP-1.

We point out that this optimality holds regardless of the values of
snr
%

and � . Note also that our results immediately implies that if
there is a constraint on the minimum cluster size

�g�
, RPP-

�g�
is

optimal.

3. THE SUPERIMPOSED TRAINING SCHEME

We consider the time invariant power allocation where the trans-
mitted symbol � � ���g��� � �� � , � is the superposition of pilot
and data symbols. The system equation in (1) is then given by��� � '�� � � � �� � , � / 
 �  ��� , where

� �+� � is the pilot sequence
and

� , � � is the i.i.d. zero mean data sequence. We assume � � and, � have unit powers, i.e., E
� � ,� � � E

� , ,� � � � . Also, we de-
note � � and � � as the pilot and data power allocation coefficients,
respectively.



Under superimposed training, 
 � and ' � � �+� �X	�
 ������� / are not
jointly Gaussian. Therefore, the MMSE estimator is difficult to
implement thus intractable. We choose instead the linear MMSE
(LMMSE) channel estimator implemented by the Kalman filter.
Let .
 � be the LMMSE estimator of 
 � based on current and all
the past observations

� ����� � �X	�
�������� � , then the Kalman filter can
be again used as the optimal LMMSE estimator to track the chan-

nel. Let b � �S� q� E
� : 
 ��� .
 �@: , � . Define the steady-state MSE{ sup q�ert^tI � uwv b � �S� , then solving the steady-state Riccati equa-

tion of the channel MMSE under the Kalman update, we have

{ sup � * ,.

, ' � �� /  � � 
, ' � �� / � ,  c U
O	 c U � m

where � q� *-,. � ,� ) ' *-,. � ,�  * ,� / is the received signal-to-interference
plus noise ratio. Note that at the steady-state, in contrast to the
TDM training scheme, the channel MSE in this case is time-invariant.

We again consider BPSK signaling. The detector detects
, �

based on .
 � and � � by

., ��� sign
�
Re
� .
 [� ' ��� � � � � � .
 � / ��� m

Notice that this detector is not the true ML detector based on ���
and .
 � ; it is the pseudo ML that assumes the estimated .
 � has no
error. At the steady state, we obtain the bit error probability by��� � E

�
Pr ' ., ���� , � : , � / �

� �
� �

�	 
 �� V���� ����� supT UA��� � 
�  � �  ��� V�  � � supT0UA � � 
�� � ��� � supT0UA �
� �	 
 ��� V���� �l��� supT UA��� � 
�  � � � ��� V�  � � supT0UA � � 
�� � � � � supTQUA � m

where


 q� � c U
O	 c U � supT0UA  � �� c U
O	 c U � supT UA  � �  
? 
O	 c U B � � �� � � ,�� ,�"! m
4. PERFORMANCE COMPARISON UNDER TDM AND

SUPERIMPOSED SCHEMES

We compare the optimal TDM training (RPP-1) with the superim-
posed training under the same power constraint. We hence need to
impose that both the transmission power

�
used and the ratio of

power allocated to pilots and data in each scheme are the same.

1) Optimal vs. Suboptimal TDM Schemes: We compare the per-
formance under different TDM RPP-

�
schemes. The received

signal-to-noise ratio is defined by SNR= * ,. � ) * ,� . Fig. 3 (a) shows
the maximum steady-state MMSE vs. � for SNR=20dB, and (b)
shows the maximum steady-state BER performance vs. SNR at� ��( m #%$�& . We set ' ����((' and * ,� � * ,% . From (a), we observe
that the largest gain obtained by placing pilot symbols optimally
is when � was in the range from 0.9 to 1, which is a common
range of channel time variation. From (b) we notice that the gain
of the optimal placement increased with SNR, and placing pilot

symbols optimally could result in several dBs gain and achieve a
much lower error floor.
2) Superimposed vs. RPP-1 Schemes: Fig. 4(a) and (b) show the
BER performance vs. fading rate � for superimposed schemes and
RPP-1 with ' � ��(�' pilots under SNR=20dB and 5dB, respec-
tively. We set half of the transmission power to pilot symbols, i.e.,� ,� �4� ,� . Average BER is also shown for the RPP-1 scheme. For
high SNR (20dB), we observe in Fig. 4(a) that RPP-1 performs
better than the superimposed scheme for slowly varying channels
( � above 0.98). For such cases, the TDM scheme gives more accu-
rate channel estimates during training than the superimposed train-
ing. We will see, however, that as channel varied more rapidly, the
TDM training deteriorated, at also a more rapid rate than that of
the superimposed scheme. It is apparent that even for the common
fade rates at ( m # = � = ( m #�) , the superimposed scheme which
offers better tracking was preferred. The advantage of the super-
imposed training was more pronounced when SNR was lowered
to 5dB as shown in Fig. 4(b). Fig. 5 (a) and (b) show the BER
performance under variation of SNR for �"� ( m #%# and � � ( m #�& ,
respectively. Similar performance gain regime for each scheme
can be seen. For ��� ( m #(# (very slow variation), at low SNR,
we see that there is little difference of the performance under the
two types of schemes. At high SNR, RPP-1 provides better per-
formance. For � � ( m #�& , however, we see that the superimposed
scheme uniformly performs better than RPP-1 at different SNR,
even when comparing the average BER performance.

5. CONCLUSION

In this paper, we have studied two different forms of training schemes
using the MMSE of the channel estimation and BER as the figures-
of-merit. For the Gauss-Markov fading channels, we have estab-
lished the optimality of RPP-1 among all periodic TDM schemes.
The optimality of RPP-1 holds uniformly across all SNR levels
and all fade rates. This results allows us to compare the best TDM
training with the superimposed training. We show that, while the
traditional TDM training performs better for slow fading channels
at high SNR, the superimposed scheme outperforms the the best
TDM scheme in other regimes of practical importance.
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Fig. 4. Max. steady-state BER vs. � . ( ' � ��((' ).
(a) SNR=20dB; (b) SNR=5dB
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Fig. 5. (a) Max. steady-state BER vs. SNR (a=0.99, ' � ��((' );
(b) Max. steady-state BER vs. SNR. (a=0.95, ' � ��(�' )


