
OPTIMAL RECONSTRUCTION OF GAUSS MARKOV FIELD

IN LARGE SENSOR NETWORKS

Min Dong and Lang Tong†

School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14853

{mdong,ltong}@ece.cornell.edu

Brian M. Sadler

Army Research Laboratory
Adelphi, MD 20783

bsadler@arl.army.mil

ABSTRACT

We consider the problem of reconstructing a one-dimensional Gauss
Markov field measured by a large-scale sensor network. Two data
retrieval strategies are considered: the scheduling that collects data
from equally spaced sensors locations and random access. Assum-
ing the sensors in the field form a Poisson field with density ρ, we
examine the reconstruction performance of the signal field based
on the data retrieved under the two strategies. Our comparison
shows that, the performance under the optimal scheduling is sen-
sitive to the outage probability Pout of sensors in a given region.
If Pout is large than the threshold, the performance of scheduling
suffers from missing data samples, and simple random access out-
performs optimal scheduling.

1. INTRODUCTION

Sensor network with mobile access points (SENMA), shown in
Fig. 1, is proposed in [1] as a reachback network architecture for
large-scale low power sensor networks. In SENMA, Sensors are
low-powered operating nodes in the field that perform simple func-
tions such as sensing/measurements. The access points are a few
more powerful mobile nodes responsible for collecting data from
sensors and handling sophisticated processing tasks. One type of
applications in SENMA is to provide measurements of some phe-
nomena of interest in a field, such as temperature. At a prearranged
time, sensors take local measurements forming a snapshot of the
field information. When the access point is ready, they transmit
their packets back to the access point through a common wireless
channel according to a specified medium access control (MAC)
protocol. Based on received data samples, the access point recon-
struction the original signal field.

In sensor networks, medium access control (MAC) governs
the phase of data retrieval from a sensor field to the access point.
In a dense sensor network, data among sensors are highly corre-
lated. Every packet received at the access point provides a (noisy)
data sample of the signal field at the sensor location where the
packet was generated from. Intuitively, collecting data from uni-
formly spaced locations is better than collecting data from a con-
centrated sub-area because highly correlated measurements pro-
vide less information about the source. In the ideal case when
there exists a sensor at any location, we have shown in [2] that,
the optimal scheduling scheme which extracts data from uniform
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Fig. 1: a 1-D reachback sensor network with a
mobile access point

spaced locations provides higher efficiency on reconstruction than
the ALOHA-like random access in the sense that the reconstruc-
tion distortion decay faster than that of the latter one. In terms of
reconstruction performance, we have also shown that the optimal
scheduling always gives better performance than random access,
although the performance gain depends on the level of measure-
ment SNR: for the high SNR regime, the performance gap is sub-
stantial; at low SNR, however, random access is shown to result in
little performance loss.

In practice, however, due to finite sensor populations, there al-
ways exists areas void of sensors. The scheduling scheme in this
case may not find sensors at a desired location, even at a small
neighborhood of that location. Hence, it loses a data sample from
this area. In such situation, scheduling may have performance lim-
itation because of missing data samples. In contrast, such problem
does not exist for the random access. How the reconstruction per-
formance is affected by different data retrieval strategies in this
case needs careful examination. To this end, we consider the per-
formance of reconstructing a one-dimensional random signal field
measured by a large-scale sensor network using different data re-
trieval strategies. The relative performance is shown to depend
on the value of outage probability Pout of sensors in a given region.
Our comparison shows that, although the scheduling is designed to
collect data in the field using an optimal data retrieval pattern, its
performance is sensitive to the outage probability Pout of sensors in
a given region. If Pout is large than a threshold, the performance of
scheduling suffers from missing data samples, and simple random
access outperforms optimal scheduling.

The MAC design problem for sensor networks has attracted
a growing interest. Many MAC protocols have been proposed
aiming to the specific requirements for both ad hoc sensor net-
works [3–5] and reachback sensor networks [6, 7]. Among these
protocols, system throughput and energy efficiency are the major



considerations. For applications such as estimating the signal field
using a sensor network, how these MAC schemes actually affect
the estimation and reconstruction performance has not been ad-
dressed. Perhaps the most relevant work is [8], where the problem
of random sampling of a dynamic system is discussed, and sequen-
tial estimation of a dynamic source is considered using random
sampling in time.

2. PROBLEM STATEMENT

2.1. Source Model

Consider a one-dimensional field of length D denoted by A =
[0, D]. Let St(x) (x ∈ A) be the source of interest in A at time t.
We assume that the spatial dynamic of St(x) is a one-dimensional
homogeneous Gaussian random field governed by the following
linear stochastic differential equation:

dSt(x) = −fSt(x)dx + σdWt(x) (1)

where f > 0 and σ are known; The process Wt(x) is a standard
Brownian motion, and the source signal St(x) is the stationary

solution of (1) with St(x) ∼ N (0, σ2

2f
). Furthermore, it can be

shown that St(x) is both Gaussian and Markovian [9]). Being
homogeneous in A, St(x) has the autocorrelation

E{St(x0)St(x1)} =
σ2

2f
e−f(x1−x0), (x0 < x1) (2)

which is only a function of distance between x1 and x0.

2.2. Sensor Network Model

Consider that a large number of sensors are randomly deployed in
A. We assume that the distribution of sensors in A forms a one-
dimensional homogeneous spatial Poisson field with local density
ρ nodes/unit area. For an interval of size l in A, the number of
sensors N(l) is a Poisson random variable

P [N(l) = k] = e−ρl (ρl)k

k!
. (3)

Given N(l) = k, the k sensors are uniformly distributed. The
number of sensors in any two disjoint intervals are independent.

The measurement of a sensor at location x and time t is given
by

Yt(x) = St(x) + Nt(x) (4)

where Nt(x) is spatially independent and identically distributed
(iid) zero mean white Gaussian measurement noise with variance
σ2

N . It is assumed to be independent of St(x). Each sensor then
stores its local measurement, along with its location information,
in the form of a packet for collection. Note that we will reconstruct
the source signal {St(x) : x ∈ A} at time t based only on the
sensor measurements at time t. Therefore, we drop the time index
for brevity in the following presentation.

2.3. Two Types of MAC Schemes

We assume sensors transmit packets to the access point through a
common wireless channel. We consider two MAC schemes: de-
terministic scheduling and random access.

A deterministic scheduling collects data from predetermined
locations. One particular scheme is to schedule equally spaced
sensors to transmit their packets. When there exist sensors at all

desired locations, it turns out that this is the best scheduling for
the distortion measure defined below [2]. For finite sensor den-
sity, such scheme may schedule transmission from empty sensor
spots. To circumvent this, we consider the scheme that enable a
small interval centered at each desired location in A. Details of
this scheme is given in Section 3.1. We refer to this as the deter-
ministic scheduling, and denote it as πu.

For the random access MAC, in contrast, sensors contend to
access the channel with equal priority, and their packets have equal
chance to get through. Under this type of MAC, the origins of
the M received packets, denoted as {P1, · · · , PM}, are random.
This appears as if the access point randomly samples the sensor
measurement data in A. We denote this type of MAC as πr .

2.4. Source Estimation and Reconstruction Distortion

Assume the access point receives a total of M packets (data sam-
ples) originated from some points in A. To avoid the boundary
effect for signal reconstruction, we assume that, during the data
collection, the access point always obtains the packets from the
two sensors closest to the two boundaries of A. We denote the lo-
cations of this two “edge sensors” by P0 and PD . The locations
from which these (M + 2) packets are received are then denoted
by pM = {P0, P1, · · · , PM , PD}.

Given the M + 2 received packets (samples) from location
pM = [P0, P1, · · · , PM , PD], we denote the corresponding order
statistics of the packet generation locations {P1, · · · , PM} by P(1)

< · · · < P(M). We estimate S(x) at x by MMSE smoothing using
its two immediate neighbor samples: for P(i) < x < P(i+1),

Ŝ(x) = E[S(x)|{Y (P(i)), Y (P(i+1))}]. (5)

Let the measurement SNR be SNR = σ2/2fσ2
N . We define

the maximum field reconstruction distortion given pM by the max-
imum mean square estimation error in A

E(pM , SNR)
∆
= max

x∈A
E{|Ŝ(x) − S(x)|2 | pM}. (6)

A MAC scheme π specifies how packets should be transmit-
ted, i.e., how the signal field {S(x) : x ∈ A} is sampled. There-
fore, π specifies the distribution of sample points pM . Under a
given MAC scheme π, the average maximum distortion of the sig-
nal field is then given by

Ē(M, SNR; π)
∆
= E{E(pM , SNR); M, π}. (7)

where the expectation is taken over pM for a given M .
Our goal is to examine the signal field reconstruction perfor-

mance under the two types of MACs. Specifically, we analyze
Ē(M ; π) under πu and πr .

3. RECONSTRUCTION DISTORTION: CALCULATION

3.1. Data Retrieval By Scheduling

In stead of scheduling transmissions from the exact equally spaced
locations in A, the deterministic scheduling πu enables a small
interval ε centered at the desired location, and let one sensor in
this interval to transmit. If there is no sensors in the interval, an
outage occur. Let Pout be the outage probability of sensors. Then,
the smallest possible interval ε, as a function of Pout, should satisfy

Pout = P [N(ε) = 0] = e−ρε. (8)



i.e., ε = ln 1/Pout/ρ. For Poisson distributed sensors, in none
overlapping intervals, the sensor outage in each interval ε are iid
with probability Pout. The maximum number Mmax of disjoint
intervals πu can enable is determined by

Mmax = D/ε =
Dρ

ln 1/Pout

. (9)

In summary, according to the targeted sensor outage probabil-
ity Pout and interval length ε, the scheme πu divides the field into
M intervals centered at iD/(M −1) for i = 0, · · · , M −1. Then,
the access point collects one data sample from in each interval.

3.2. The Average Maximum Distortion

Suppose we want to retrieve M data samples using each MAC
scheme. The average maximum distortion of π is then given by

¯̄E(M, SNR; πu) = E{Ē(Mo, SNR; πu)} (10)

where the expectation is taken over Mo, the actual number of re-
ceived samples.

Assume the access point receives total Mo packets. By the
Gaussian property of the process {S(x)}, the MMSE estimator in
(5) is given by

Ŝ(x) = E{S(x)S(i)
p

H
}(E{S(i)

p S
(i)
p

H
} + σ2

nI)−1
S

(i)
p (11)

where Y
(i)
p = [Y (P(i), Y (P(i+1)]

T , S(i)
p = [S(P(i)), S(P(i+1))]

T ,
and P(i) < x < P(i+1). Finding E(pMo

, SNR) in (6) can then be
broken down to finding the maximum distortion of S(x) in each
interval P(i) < x < P(i+1), for i = 0, · · · , Mo.

For P(i) < x < P(i+1), we can show that the maximum MSE
of Ŝ(x) is obtained at the mid-point of P(i) and P(i+1). More-
over, it is only a function of the distance between P(i) and P(i+1).
Therefore, the maximum distortion E(pMo

, SNR) in (6) is deter-
mined only by the maximum of distances between any two adja-
cent data samples

E(pM , SNR) =

1

SNR + 1 − e−fd
(Mo)
max

1

SNR + 1 + e−fd
(Mo)
max

σ2

2f

∆
= E(d(Mo)

max , SNR)

(12)
where d

(Mo)
max = max0≤i≤Mo+1 P(i) − P(i−1). Then, the average

maximum distortion in (7) is given by

Ē(Mo, SNR; π) = E{E(d(Mo)
max , SNR); π} (13)

where the expectation is now taken over d
(Mo)
max .

For random access MAC, the locations of the Mo received
packets {P1, · · · , PMo

} are iid random variables with uniform
distribution U(0, D). In this case, the probability distribution of
the maximum sample distance d

(Mo)
max , denoted by Fdmax(x; Mo)

is given by the following [2]

Fdmax(x; Mo)

=















0 if 0 ≤ x < D
Mo+1

g(Mo, x) if D
Mo−k+1

≤ x < D
Mo−k

, k = 0, · · · , Mo − 2

1 − (Mo + 1)(1 − x
D

)Mo if D
2

≤ x ≤ D

1 if x > D.

where

g(Mo, x) =
k
∑

i=0

(−1)i

(

Mo + 1

i

)

[

(Mo − i + 1)
x

D
− 1
]Mo

.

Using above and (13), Ē(M, SNR; πr) can be calculated by

Ē(Mo, SNR; πr) =

∫

E(x, SNR)dFdmax(x; Mo). (14)

The average maximum distortion of πr in (10) is then obtained by

¯̄E(M, SNR; πr) =

M−1
∑

m=0

E(Mo, SNR; πr)P (Mo = m)

+E(M, SNR; πr)P (Mo ≥ m) (15)

where the first term corresponding to the case when the number
of sensors in A is M < Mo; therefore, we can only collect M
packets. Otherwise, as in the second term, we are always able to
collect Mo packets.

For deterministic scheduling πu, combining (10) and (13), the
average maximum distortion ¯̄E(M, SNR; πu) is then given by

¯̄E(M, SNR; πu) = E{E(d(M)
max, SNR); πu} (16)

where d
(M)
max is determined by the largest number of consecutive

intervals that the sensor outage occurs. We denote this number by
LM ; it is random and depends on the sensor outage probability
Pout. Then, (16) is bounded by

E[E(
DLM

M + 1
, SNR); πu] ≤

¯̄E(M, SNR; πu) ≤ E[E(
D(LM + 2)

Mo + 1
, SNR); πu] (17)

where

E[E(
DLM

M + 1
, SNR); πu] =

M
∑

k=0

E(
DLM

M + 1
, SNR)P [LM = k].

Calculating the distribution of LM is essentially equivalent to find-
ing the distribution of the longest head run (consecutive heads) in
a sequence for a biased coin tossing. The distribution FLM

(x) is
given by

FLM
(x) =

M
∑

k=0

C
(k)
M (x)P k

out(1 − Pout)
M−k (18)

where C
(k)
M (x) is the number of realizations in which k sensor

outages occur, but no more than x of these occur consecutively. It
can be shown that C

(k)
M (x) satisfies the following recursion

C
(k)
M (x) =











0 if k = M, x < M
(

M

k

)

if k ≤ x
∑x

i=0 Ck−i
M−1−i(x) ifx < k < M.

(19)

4. RECONSTRUCTION DISTORTION: PERFORMANCE
COMPARISON

We now compare the reconstruction performance under πr and πu

for different outage probability and various of Mmax (i.e., sensor
density). Fig. 2 show the probability distribution of LMmax for



Mmax = 200 and Pout = 0.4. We see that LMmax is typically
concentrated on several values. Fig. 3 plots the average maximum
distortion for various Mmax under πr and πu, respectively. We set
Pout = 0.4, D = 5, and σ2/2f = 1. We observe that as Mmax in-
creases, the received data samples at the access point increases, and
Ē(Mmax, SNR; π) under both πr and πu decreases. However, for
the sensor outage probability we set, the random access πr always
results in better reconstruction performance than the deterministic
scheduling πu does. In Fig. 4, we plot Ē(Mmax, SNR; π) for var-
ious sensor outage probability Pout, for Mmax = 200, D = 5, and
σ2/2f = 1. We observe that clearly there exist a threshold Pth

on Pout, such that for all Pout > Pth, the performance loss under
the optimal scheduling πu due to missing data samples does not
justify the effort of scheduling desired retrieval pattern, and simple
random access outperforms optimal scheduling. Indeed, using the
theory of extreme statistics, for all sufficiently large Mmax (i.e.,
high but finite sensor density), we can show that this threshold is
Pth = 1/e.

5. CONCLUSION

In this paper, we consider reconstruct the Gauss Markov field un-
der two different data retrieval strategies: the deterministic schedul-
ing designed to collect data from equally spaced locations and the
ALOHA-like random access. We have shown that, the relative
reconstruction performance depends critically on the outage prob-
ability Pout of sensors. Our comparison demonstrates for relatively
high Pout, the performance loss due to missing data samples does
not justify the effort of scheduling desired retrieval pattern, and
simple random access results in better performance.
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Fig. 2: PDF of LMmax (Mmax = 200)
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