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Abstract—We analyze the impact of data retrieval pattern on the
reconstruction performance of a one-dimensional homogeneous
random field measured by a large-scale sensor network. From
a networking perspective, we connect data retrieval protocols
and different sampling schemes. Specifically, we show that the
data retrieval pattern affects the efficiency of reconstruction;
as the number of received packets increases, the determin-
istic retrieval pattern that schedules sensors to transmit from
equally spaced locations results in a faster decay of distortion
than the random pattern does. In particular, we show that the
ratio of the excess reconstruction distortion under the random
retrieval pattern to that under the deterministic one grows as
log + (log log ). Comparing the reconstruction perfor-
mance directly, we further show that, in the high measurement
signal-to-noise ratio (SNR) regime, the benefit from carefully
scheduling sensor transmissions from specific locations instead
of collecting in a random fashion is substantial. In the low SNR
regime, however, using the random pattern results in little recon-
struction performance loss. Finally, as , we show the
strong convergence property of reconstruction distortion under
the random pattern.

Index Terms—Data retrieval, estimation, random field, sam-
pling, sensor network, signal reconstruction.

I. INTRODUCTION

A. Motivation

WE consider the problem of reconstructing a homoge-
neous random signal field using data collected from a

sensor network. From a signal processing perspective, this is
the classical problem of signal reconstruction from possibly
random samples, and the literature is extensive. There is, how-
ever, a communication and networking aspect of the problem
unique to sensor networks. That is how the data are collected
from a sensor network, and whether one kind of data collection
is better than another. Here we would be concerned about
the simplicity of the collection protocol, whether it is energy
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efficient, and whether the reconstruction performance will be
adequate for the specific application.

Take, for example, two different collection strategies. The
first is to schedule transmissions from specific locations of the
sensor field. A designer can carefully choose the sensor loca-
tions to collect data based on the properties of the signal ( e.g.,
temporal and spatial bandwidths, statistical correlations, etc.) so
that the reconstruction error is minimized. While the reconstruc-
tion performance is optimized, the complexity of such a cen-
tralized scheduling approach can be prohibitive. Specifically,
sensors have to be addressed individually, and the collection
schedule must be disseminated. Furthermore, centralized sched-
uling may not be robust against sensor errors; if the batteries of
some scheduled sensor run out, the optimization has to be per-
formed again among sensors. The scheduling will be different,
and it has to be redistributed.

An alternative is to consider a simple and distributed col-
lection strategy. For example, the collection can be based on
a random selection of sensors using simple protocols such as
ALOHA and CSMA. Such a strategy can be implemented easily,
especially for sensor networks with mobile access [1], [3]. Here
a simple ALOHA strategy will result in the random sampling of
the signal field. While the communication and networking pro-
tocol is simple, the reconstruction performance is affected.

For a network designer who, on the one hand, would like to
reconstruct the signal field as accurately as possible and, on the
other hand, must design the network that uses simple and en-
ergy efficient protocols, tradeoffs have to be made between per-
formance and complexity. Such a tradeoff must be made with
a cross-layer perspective, which connects application layer at-
tributes such as the mean square error of the signal reconstruc-
tion with medium access control (MAC) layer functions.

B. Contributions

We present in this paper an analysis of the impact of data col-
lection on the performance of signal reconstruction. We make
the abstraction that different data collection (or MAC) protocols
result in different sampling patterns, which in turn affect the re-
construction performance. While such an abstraction masks the
details of physical and MAC layer implementations, it is valu-
able for the designers to gain insights.

We consider the reconstruction of a signal field using de-
terministic and random sampling schemes. By deterministic
scheme we mean that samples from fixed sensor locations in
the signal field are collected. For the random sampling scheme,
in contrast, the origins of received samples are random in the
sensor field with uniform distribution. One example of the
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MAC rendering such pattern is ALOHA, in which each sensor
transmits with a certain probability. Therefore, a sample at
one location is received with a certain probability. To make
the problem more tractable, we study the performance in a
one-dimensional (1-D) signal field, which provides insight into
the two-dimensional problem.

Comparing the two sampling schemes analytically for a fixed
number of received samples (packets) is difficult. Instead, we
use asymptotic techniques by analyzing the scaling behavior of
the reconstruction error with respect to the number of received
samples . Using the expected maximum reconstruction dis-
tortion as the performance metric, we obtain several asymptotic
results.

We show first that the deterministic scheme that collects
packets from equally spaced sensors is more efficient than the
random scheme. This is not surprising. We provide, however,
a quantitative characterization of the ratio of excess max-
imum distortions. In particular, the ratio of excess maximum
distortion under the random sampling to that under the deter-
ministic one grows with the number of collected packets as

. In other words, the gain grows slowly
with . Next, we compare the reconstruction performance
as a function of signal-to-noise ratio (SNR). We show that, in
the high measurement SNR regime, the benefit from carefully
scheduling transmission location instead of random sampling
is substantial. At low SNR, however, using the random sam-
pling results in little performance loss. Finally, we show the
strong convergence of the random sampling scheme. That is, as

, the maximum distortion in any realization converges
to a deterministic value both with probability one and in mean
square sense.

C. Related Work and Organization

While the mathematical problems considered in this paper are
discussed in the context of sensor networks, they have close ties
to the classical sampling problems. A key difference, however,
is that we are more interested in the problem of data collection in
a large but finite field. Thus the problem of signal reconstruction
in a sensor network needs to be treated under the finite window
setup, whereas in the classical sampling problem, the signal re-
construction window is usually infinite.

The sampling problem has been extensively studied in the lit-
erature. Many studies and performance analyses on the interpo-
lation methods based on a periodic or random sample scheme
have been conducted. See [4]–[6] and references therein. In-
terpolation, sequential estimation, or prediction using random
sampling has also been studied [6]–[9]. The comparisons of pe-
riodic sampling with Poisson sampling, and time-jittering effect
on periodic sampling, have been considered for some special
cases [6], [10], [11].

Since the pattern of data collection is generated by the MAC
protocol used in the data collection, our problem is indirectly
related to the MAC design for sensor networks. Many MAC
protocols have been proposed aiming to the special needs and
requirements for both ad hoc sensor networks [12]–[15] and
reachback sensor networks [2], [3]. Among these protocols,

system throughput and energy efficiency are the major consid-
erations. For applications such as estimating the signal field
using a sensor network, how the underlying sampling pattern
of these MAC schemes actually affects the estimation and
reconstruction performance has not been addressed.

This paper is organized as follows. In Section II, we intro-
duce models for the source and data collections followed by
the descriptions of the estimator and distortion measure for
signal reconstruction. In Section III, we obtain the formulas for
the reconstruction distortion under both schemes for a given
number of received data packets. We then provide the asymp-
totic performance comparison under the two retrieval schemes
in Section IV. Numerical results are presented in Section V.
We conclude in Section VI with comments on limitations of
our result.

II. PROBLEM STATEMENT

A. Source Model

Consider a one-dimensional field of length denoted by
. Let ( ) be the source of interest in at

time . We assume that the spatial dynamic of is a one-di-
mensional homogeneous Gaussian random field1 governed by
the following linear stochastic differential equation:

(1)

where and are known. The process is a
standard Brownian motion, and the source signal is the
stationary solution of (1) with . Further-
more, it can be shown that is both Gaussian and Mar-
kovian (details can be found in [16]). Given , we have

(2)

Being homogeneous in , has the autocorrelation

(3)

which is only a function of distance between the two points
and . The process described in (1) is also called Orn-
stein Uhlenbeck process. It is often used to model many physical
phenomenons such as temperature, vibration, etc.

At a preprogrammed time , every sensor measures the signal
field, and the measurement of a sensor at location is given by

(4)

where is spatially independent and identically distributed
(i.i.d.) zero-mean white Gaussian measurement noise with vari-
ance , and it is assumed to be independent of . Each
sensor then stores its local signal measurement in the form of
a packet. Without loss of generality, we assume one measure-
ment at is contained in a packet. Also included in the packet

1It is in general also called stationary Gaussian stochastic process. Here, we
emphasize the parameter of the process being location instead of time.
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Fig. 1. A 1-D signal field sampled by a sensor network.

is the location information of the sensor obtained through some
positioning method. Note that we reconstruct the source signal

at time based only on the sensor measure-
ments at time . Therefore, we drop the time index for brevity
in the following presentation.

B. Two Types of Retrieval Schemes

When the access point is ready for data collection, sensors
transmit their packets to the access point. Each received data
is a (noisy) sample of the signal field. Based on the resulting
received sample location pattern in the field, we consider deter-
ministic and random retrieval (sampling) schemes.

A deterministic scheme schedules transmissions according to
a fixed sampling pattern. In other words, the access point draws

samples from predetermined locations. One particular de-
terministic retrieval scheme is to schedule equally spaced sen-
sors to access the channel. It turns out that this is the best deter-
ministic scheme for the distortion measure defined below (see
Section III), and we will refer to this as the deterministic scheme
and denote it as . Here we assume that sensors are densely de-
ployed, and the deterministic scheme can always find sensors at
desired locations.

For the random retrieval scheme, the origins of the re-
ceived samples, denoted as , are random with
uniform distribution. This appears as if the access point ran-
domly samples the sensor measurement data in . We denote
this scheme as . Again, we assume that the sensor density is
high enough that the access point can always receive a suffi-
ciently large number of samples.

C. Data Retrieval

We assume that the access point receives a total of sam-
ples originated from some points in . To avoid the boundary
effect for signal reconstruction, we assume that, during the data
collection, the access point always obtains the samples from
the two boundaries of . We denote the locations of this two
edges by and . The locations from which
these ( 2) packets are received are then denoted by

. Fig. 1 shows an example of resulting
sampling of signal field in . The signal field is then recon-
structed based on the received data samples.

D. Source Estimation Distortion

Let the measurement signal-to-noise ratio be SNR
. Denote the reconstructed signal by . We define

the maximum field reconstruction distortion by the maximum
mean square estimation error in

SNR (5)

A retrieval scheme specifies how data packets should
be transmitted. It, therefore, determines how the signal field

is sampled. Consequently, specifies the
distribution of sample points . Under a given retrieval
scheme , the expected maximum distortion of the signal field
is then given by

SNR SNR (6)

where the expectation is taken over for a given .
We note that the reason to chose maximum mean squared

error (MSE) rather than average MSE as the performance mea-
sure is that, in some sensor applications such as environmental
monitoring, one may be more interested in areas that significant
changes occur, and the use of average may conceal important
change from detection. Thus it is justified to minimize the max-
imum distortion.

E. The Choice of Estimator

Given the 2 received samples from location
, we denote the corre-

sponding order statistics of the sample generation locations
by . We estimate the signal

at by MMSE smoothing based on all received data
samples

(7)

Let be the
source signal of which the noisy measurements are received at
the access point. The minimum MSE (MMSE) of is
given by

SNR

where and .
Then, we have

SNR SNR (8)

The optimal MMSE estimator is in general difficult to analyze.
To find the maximum distortion, one needs to search among the
MSEs at all locations in , which does not result in a simple
and clear solution.

We consider from now on a suboptimal estimator that uses the
two immediate neighbor samples. Specifically, the estimator is
given by

(9)
When there is no measurement noise, this simple estimator is
indeed optimal thanks to the Markovian nature of the source.

Our goal next is to analyze the signal field reconstruction
performance under the two types of retrieval schemes. Specif-
ically, we analyze how the expected maximum distortion

SNR varies with and . For this goal, we adopt
the suboptimal MMSE estimator in (9) for signal reconstruc-
tion which is optimal in the noiseless measurement case. By



DONG et al.: IMPACT OF DATA RETRIEVAL PATTERN ON HOMOGENEOUS SIGNAL FIELD RECONSTRUCTION 4355

analyzing its performance under different schemes, we wish to
shed some light on how the fundamentally different retrieval
approaches and measurement SNR affect the reconstruction
performance.

III. CALCULATING RECONSTRUCTION DISTORTION

In this paper, we consider the case when the sensor density
goes to infinity. In other words, there exists a sensor at any de-
sired locations of . As we have mentioned earlier, under the
random sampling, the sample from each sensor has equal prob-
ability to be received. Therefore, given received samples2

at the access point, their original locations , can
be modeled as i.i.d. random variables with uniform distribu-
tion . In contrast, for a deterministic scheme, location
points are fixed. In particular, for , we have

.

A. The Expected Maximum Distortion

By the Gaussian property of the process , the MMSE
estimator in (9) is obtained as

(10)

where , , and

. Using the correlation of in
(3), the MSE of can then be obtained by

(11)

where

(12)

2The actual number of received packets is M+2. For convenience, we only
count those samples not from the two boundaries of A.

for .3 The superscript of denotes the total
number of received data samples.

Finding the maximum distortion SNR in (5) can be
then broken down to finding the maximum distortion of in
each interval , for

SNR

(13)
From (11), the maximum MSE of , for ,
is obtained at the midpoint of and . It is only a func-

tion of and is given by (14) at the bottom of the page.
Since , SNR in (14) is an increasing function of

. Therefore, the maximum distortion SNR in (13)
is determined by the maximum of distance between any two ad-
jacent data samples

SNR SNR

(15)

SNR (16)
where

The average maximum distortion in (6) is then given by

SNR SNR (17)

where the expectation is now taken over for a given and
.
For a deterministic scheme, the locations from which the

samples are drawn are predetermined, and therefore is
fixed. Notice that . It is clear that re-
sults in the minimum , and thus the min-
imum distortion SNR , among all deterministic re-
trieval schemes. Therefore

SNR

(18)

In contrast, under the random sampling, is random with
a certain distribution. In this case, to calculate SNR ,

3We denote P = 0 and P = D.

SNR

(14)
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Fig. 2. The distribution of d under � (M = 15,D = 1): (a) cumulative
distribution function of d and (b) probability density function of d .

we need to find the probability distribution of the maximum
sample distance , denoted by . It is given by
the following proposition and is plotted in Fig. 2 for as
an example.

Proposition 1: The probability distribution of the maximum
sample distance in the random retrieval scheme is given
by (19) as shown at the bottom of the page.

Proof: See Appendix I.
Using (17) and Proposition 1, SNR can be then

obtained by4

SNR SNR

SNR
SNR

SNR

(20)

where is such that SNR .

B. The Distortion Decay Ratio

We now compare the reconstruction performance under
with that in the random retrieval scheme . Let

SNR SNR (21)

be the limiting distortion under a specific SNR and , as the
number of received samples . For , it is easy to see
from (18) that

SNR SNR

(22)
For , we show in the proof of Theorem 1 in Section IV, (71),
that SNR has the same expression as SNR ,
i.e.,

SNR

Having the same expression for the limiting distortion under
and is expected. As the number of samples goes to in-

finity, we obtain the measurements of the whole field. The lim-
iting distortion is therefore determined only by the accuracy of
sensor measurements, i.e., the measurement SNR, not the spe-
cific scheme used.

The retrieval schemes, however, determine the value of the
excess maximum distortion SNR SNR . As

increases, the number of received samples increases, and the

4We use the fact that, for X � 0, E(X) = P (X > t)dt.

if

if , for

if
if

(19)
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maximum distortion under both retrieval schemes decreases, but
at different rates. Define the ratio of excess maximum distortion
under to that under as

SNR
SNR

(23)

Because is the smallest under , we have

SNR

For any given number of received samples , from (18)
and (20), SNR can be calculated. As a function of ,

SNR indicates the difference of the decreasing rate under
and .

IV. ASYMPTOTIC BEHAVIOR

In this section, we address three issues relating to the
asymptotic behavior of reconstruction distortion under the two
sampling schemes. In Section IV-A, we consider the decay
rate of the average maximum distortion under the two schemes
when the number of received data samples is large but finite.
This analysis reveals which scheme retrieves the data more
efficiently. Specifically, by increasing , the distortion under
which the scheme reaches the limit, i.e., the limiting distortion,
faster. In Section IV-B, we compare the actual distortions under
the two sampling schemes, again, for finite but large . This
tells us the performance gap under the two schemes at a fixed
SNR and . In Section IV-C, we show the strong convergence
of the random sampling scheme: as increases, the maximum
distortion in any realization converges to a deterministic ex-
pression both with probability one and in mean square sense.

A. Asymptotic Analysis of Decay Rate

As mentioned earlier, when , we expect that the ex-
cess maximum distortion SNR SNR de-
creases to zero under both and , but at different rates. We
now compare the decay rates of distortion under the two sam-
pling schemes by analyzing the asymptotic behavior of the ratio

SNR .
We show below that the asymptotic behavior of the ratio

SNR is . We outline a few steps
required to prove the result, leaving details to Appendix II.
First, under the random sampling scheme , we show that the
probability distribution of the order statistics of the origins of

received samples is the same as the joint
distribution of random variables, where each variable is a
scaled summation of some i.i.d. exponential random variables.
This allows us to link to the maximum of i.i.d. exponential
random variables. By the extreme value theory, as increases,
the maximum of i.i.d. exponential random variables grows
like . Along with the strong law of large numbers, we
show that converges to a constant with proba-
bility of one. Since the maximum distortion is determined by

, it follows that the excess maximum distortion under
scales like . Since the excess maximum distortion
under scales like 1 , we then have the scaling behavior of
the ratio SNR .

Theorem 1: For reconstructing the one-dimensional homo-
geneous Gaussian random field described in (1), as ,
the ratio of the excess maximum reconstruction distortion under
the random sampling scheme to that under the deterministic
scheme , defined as SNR in (23), is given by

SNR (24)

Proof: See Appendix II.
The intuition behind the growth rate of SNR being

approximately is the following. The excess maximum
distortion is determined only by the maximum distance
between any two adjacent sample locations (origins of re-
ceived samples). Asymptotically, under decreases as

, while under the uniform sampling , it decreases
as 1 . Therefore, the distortion ratio SNR scales like

, as grows large.
Theorem 1 shows that the ratio of excess maximum distortion

under to that under has a logarithmic growth rate. This in
turn indicates that the retrieval pattern affects the decay rate of
reconstruction distortion as the number of received samples in-
creases, and therefore the efficiency of the reconstruction. Using
the deterministic sampling results in the fastest decreasing
rate of distortion over . This scheme efficiency can also be
interpreted in another way. The following corollary shows how
many samples the access point needs to collect under each type
of sampling scheme to reach the same reconstruction distortion
level.

Corollary 1: Let and be the number of samples
needed under and at the access point, respectively, to re-
construct the signal field with the same level of average max-
imum distortion. Then, as SNR SNR ,

(25)

Proof: See Appendix III.

B. Asymptotic Analysis of Distortion Ratio

The previous comparison on the decay rate of distortion re-
veals the sampling efficiency on signal reconstruction under the
deterministic and random sampling schemes. Another factor
influences the reconstruction performance is the measurement
SNR. As we will see, how sensitive the performance is to the
variation of SNR is affected by the choice of retrieval pattern.
This makes the performance gap under and appear to have
different behaviors in different SNR regime. We now compare
the actual average maximum distortion SNR under
and directly in different SNR regimes. As mentioned earlier,
the deterministic scheme is optimal in the sense that it results
in the minimum signal reconstruction distortion. Define the ratio
of average maximum distortion as

SNR (26)

Then SNR (in dB) indicates the performance gap be-
tween and . We have the following result on the asymptotic
behavior of SNR .
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Theorem 2: As , the ratio of average maximum
distortion SNR is given by

SNR

(27)

where

SNR SNR (28)

Proof: The proof is similar to that of Theorem 1 and is
omitted.

1) High SNR Regime: For high SNR, the behavior of ratio
SNR in Theorem 2 becomes the following.

Corollary 2: , such that for , , such
that for SNR

SNR

(29)
Proof: See Appendix IV.

The above shows that for large , when SNR is sufficiently
high, the ratio SNR is . In the extreme case, when
SNR , i.e., the measurements become noiseless, the lim-
iting distortion SNR decreases to zero. In this case, from
Theorem 1, as increases

(30)
This indicates that the reconstruction performance gap between

and increases as increases. Thus, in the high SNR
regime, as the number of received samples becomes large, the
efficiency of the deterministic scheme translates to a large
performance gain over the random sampling. Thus it may be
justified to schedule carefully for a desired retrieval pattern in-
stead of random sampling.

2) Low SNR Regime: In the low SNR regime, SNR
is large. As increases, SNR decreases and is soon
saturated to SNR . Therefore, SNR . This
can be also seen from Theorem 2. For low SNR, as becomes
large, SNR in (27) becomes

SNR (31)

Comparing with the performance gain at high SNR, this in-
dicates that the performance under is more sensitive to the
measurement noise than that under . For the latter, when the
measurement SNR is low, despite the lower efficiency of the

random sampling, it results in very little reconstruction perfor-
mance loss, compared with . In this regime, the reconstruc-
tion performance is dominated by the measurement noise and is
less affected by the choice of different sampling schemes. The
implementation simplicity of random sampling over scheduling
sensor transmissions to form a desired pattern makes the former
one more favorable.

C. Strong Convergence of the Random Sampling

Unlike the deterministic sampling , where the maximum
distortion for a given is fixed, under the random sampling ,
since is random, the maximum distortion SNR
in each realization is random. One can only evaluate the
performance statistically. Our previous comparison of the
two sampling schemes is based on the average performance
evaluation. However, as becomes large, we show that the
maximum distortion SNR under converges to its
mean, which has a deterministic expression. Therefore, for the
distortion measure we consider, the random sampling can be
viewed asymptotically as a deterministic sampling.

Theorem 3: As increases, the maximum distortion
under converges to its mean with

probability one. See (32) as shown at the bottom of the page,
where for all large

(33)

Proof: From the expression in (16), SNR is a
continuous function of . Under , from the almost sure
convergence property of in (68) of the proof of Theorem
1, the result in (32) immediately follows.

Furthermore, since the maximum distortion is upper bounded

SNR SNR

following Theorem 3, we have the mean square convergence of
SNR in the following corollary.

Corollary 3: As increases, the maximum distortion
SNR under converges to SNR in mean

square sense, i.e., the variance

SNR SNR
(34)

Proof: Since SNR is bounded, by Theorem 3 and
Scheffé’s theorem [20], 5 the result immediately follows.
Therefore, although our previous comparison of the sampling

5If X ! X and jX j � g 2 L , then EjX �Xj ! 0.

SNR SNR (32)
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Fig. 3. r(M; SNR) versus M (noiseless). f = 0:2, � = 1, D = 5.

efficiency SNR is based on the average maximum distor-
tion SNR , the ratio of excess maximum distortion for
any instance of realization of received data samples, i.e.,

SNR

converges to SNR with probability of one and in
mean square sense. The same applies to the distortion ratio

SNR .

V. NUMERICAL RESULTS

A. The Distortion Decay Rate

We compute the ratio of excess maximum distortion
SNR under various . The ratio SNR is calcu-

lated based on (18), (20), and (23). To ease the computation,
we can also use bounds on SNR . Since SNR is a
concave function, the excess maximum distortion under can
be bounded by the following inequality:

SNR SNR SNR SNR

for (35)

where

SNR
SNR

(36)

SNR SNR (37)

The upper and lower bounds on the ratio of the maximum dis-
tortion are then computed using (18), (19) in Proposition 1, and
(35).

Fig. 3 plots the ratio SNR and its upper and lower
bounds versus for a small range of in the noiseless mea-
surement case. We set , , and . We see

Fig. 4. Bounds of r(M; SNR) versus M (noiseless). f = 0:2, � = 1,
D = 5.

Fig. 5. Distortion ratio versus M . f = 0:2, � = 1, D = 5.

that the growth behavior of SNR can be well approxi-
mated by that of the two bounds. For a large range of , we
plot the upper and lower bounds of SNR in Fig. 4. Be-
sides the bounds, we also plot the logarithm function

as a comparison. We observe that, with greater
than 200, the growth rate of SNR is already approxi-
mately , matching the asymptotic behavior of SNR
in Theorem 1.

B. The Expected Maximum Distortion SNR

Fig. 5 shows the distortion curves SNR versus at
SNR and dB, respectively. They are computed based
on (18) and (20). We see that the decay of the distortion per-
formance under is faster than that under . On the other
hand, for a given target distortion tolerance level, we see that
the required number of received samples under is much less
than that under . However, the performance of is sensitive
to the noise level; it deteriorates faster. The performance gap
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Fig. 6. Distortion versusM using the optimal MMSE estimator in (7).

under the two different sampling schemes becomes smaller as
the measurement noise become higher.

We have investigated the noise effect on the estimation per-
formance using the simple suboptimal estimator. To see how the
optimal estimator in (7) performs in the noisy case, we numeri-
cally calculate the average maximum distortion SNR
using (8) and compare it under and .

Fig. 6 shows the distortion curve versus at SNR
and dB, respectively. The same setup as in Fig. 3 is used.

Notice that, similar as in the suboptimal estimation case, the
distortion performance under is sensitive to the noise level.
The performance gap under the two different sampling schemes
becomes smaller as the measurement noise become higher.
This matches the intuition that as the measurement noise level
becomes high, the performance is dominated by noise, and
is less affected by the choice of different sampling schemes.
Therefore, although our previous analysis is based on the
suboptimal estimation, we expect that the similar performance
behavior is preserved when the optimal estimator is used.

VI. CONCLUSION

In sensor networks, due to the data correlations among
sensor nodes, the choice of data collection scheme or medium
access protocol and the resulting sampling pattern may sig-
nificantly affect the performance of signal reconstruction. For
reconstructing a one-dimensional dense signal field, we have
shown that the deterministic sampling provides higher
efficiency on reconstruction, i.e., it results in a faster decay rate
of distortion than the random sampling does. In particular,
the ratio of excess maximum distortion under to that under

grows as . For high measurement
SNR, this translates to a meaningful performance gain of
over . We have also shown, however, that when the SNR
is low, the difference on the performance between and
becomes small; random sampling results in little reconstruction
performance loss, and therefore, may be used instead of careful
scheduling due to its simplicity. Finally, the convergence of
the maximum distortion under to its deterministic mean

demonstrates that the previous two asymptotic results apply to
the comparison of the two sampling patterns for any instance
of realization as well.

The analysis presented in this paper has a number of lim-
itations. We have assumed a specific Gauss–Markov spatial
process. Such a model is reasonable for diffusion processes
but may not be appropriate for other types of signal field. The
asymptotic results in this paper are obtained when sensor den-
sity goes to infinity. This ensures that polling data packets
from desired sensor locations is possible under , and we
assume this can be done perfectly. This ideal assumption might
not hold in practice due to imperfect transmission, reception, or
dead sensors. Furthermore, for finite sensor density, there will
exist partitions empty of sensors. All these situations result in
missing data samples. As a consequence, the performance under
the deterministic retrieval scheme may suffer from missing
samples, and random retrieval schemes may result in better
performance. To compare these two retrieval schemes in such
situations, the approach will be different. How the reconstruc-
tion is affected in this case depends on the outage probability
of sensors in a given region, and is under our investigation [21].

APPENDIX I
PROOF OF PROPOSITION 1

Proof: Under the random sampling schemes, given
received data samples, we now find the cumulative distribution
function of the maximum sample distance. For

, have the joint
density given by [17]

if
otherwise.

(38)

By the transformation of random variables, from (12) and
(38), we have the joint distribution of sample distances

given by

if , and

otherwise.
(39)

Since , we have

(40)

where

(41)

and is the indicator function

if
if .
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Fig. 7. Geometric representation of the integration in (40).

From (39)–(41), the integrations in (40) can essentially be
viewed as the calculation of the volume of an -dimensional
( -dim) hypercube cut by two hyperplanes

(42)

The equivalent volume to (40) is the part between and .
Denote this volume as , then

(43)

Fig. 7 shows the geometric interpretation for the three-dimen-
sional case, where the cube has the volume of . Denote the
volume of the part of hypercube below the hyperplane and

as and , respectively. Then

(44)

The calculation of the volume of the cube between and is
divided into the following cases.

1) For : From geometry we know that,
when , the hypercube is not cut by . In this
case, . The hypercube is
under both and . Therefore

(45)

2) For : In this case, the portion of the hyper-
cube below is a regular -dimensional hyperpyramid
defined by

(46)

(47)

Fig. 8. A three-dimensional example in case 2).

Therefore

The volume of the hypercube below by is simply the
regular -dimensional hyperpyramid with each of its
“edges” another small -dimensional hyperpyramid, cut
off. An example in the three-dimensional case is shown
in Fig. 8, where the shaded volumes are the “edges.”
Therefore, this volume can be obtained by

(48)

Finally, is given by

(49)
Thus, .

3) For ,
:

When , the hypercube is not cut by . Therefore

(50)

For , is given by

(51)

Similarly, is given by

(52)
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Therefore

(53)

We then have (19).

APPENDIX II
PROOF OF THEOREM 1

Proof: From (16), the maximum distortion is only a func-
tion of the maximum sample distance . Under , the av-
erage maximum distortion is given in (18) as

SNR SNR

SNR

SNR

The following expression is used in the later proof.
Fact: Let . Then as

(54)

The above expression can be shown by applying Taylor’s the-
orem to .

For fixed and , as , . By (54),
we have

SNR

(55)

The excess maximum distortion under is then given by

SNR SNR

SNR

SNR

(56)

Under the random sampling , the origins of the re-
ceived samples are i.i.d. with uniform distribu-
tion and . In the following
two lemmas, we connect to the maximum of i.i.d. expo-

nential random variables and state the almost sure behavior of
that is needed to find expression for SNR .

Lemma 1: Let be i.i.d. unit exponential random vari-
ables and , for . Then, the joint
distribution of is the same as that of
the order statistics from i.i.d. random variables with uniform
distribution , i.e.,

if
otherwise.

(57)

Proof: The joint distribution of is

(58)

for , . Note that . For any
, let

By transformation of random variables, we have the joint den-
sity of given by

(59)

Notice that has a gamma density

and thus

(60)

Therefore, from (59) and (60), we have the joint density

(61)

By Lemma 1, if are the origins of the
received samples, then the joint distribution of their

order statistics is the same as that of
. Therefore, the joint distribu-

tion of distances , defined in (12), is the same
as that of ,
where . Thus, the maximum distance can be
represented by

(62)

Therefore, we have

(63)
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By the strong law of large numbers, we have

(64)

Let , which is the maximum of i.i.d.
exponential random variables. From the asymptotic theory of
extreme statistics, we have the almost sure asymptotic property
of as follows.

Lemma 2 (Logarithmic Growth Rate of [18, p. 262],
[19, p. 215]: Let be the maximum of i.i.d. unit expo-
nential random variables. Then

(65)

Therefore6

(66)

Combining (63)–(65), we have

(67)
It follows that

(68)

The maximum distortion SNR in (16) can be
rewritten as

SNR

(69)
Therefore, for all large , the average maximum distortion
under is obtained by

SNR

SNR

(70)

where the last equation is from (67). The limiting distortion
SNR under is then given by

SNR SNR

(71)

6Also, from the theory of extreme value distributions, the limiting distribution
of normalized A is

Pr(A �logM � x)=F (x+ logM)! G (x)=e :

Therefore, the excess maximum distortion under is ob-
tained by

SNR SNR

(72)

where the last equation is by (54).
Finally, combining (55) and (72), for all large , SNR

is obtained by

SNR
SNR SNR
SNR SNR

(73)

APPENDIX III
PROOF OF COROLLARY 1

Proof: We set the ratio of excess maximum distortion
SNR , i.e.,

SNR
(74)

From (72), as becomes large, we have

SNR SNR

(75)

and from (56)

SNR SNR

(76)

Therefore

(77)
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It follows that

APPENDIX IV
PROOF OF COROLLARY 2

Proof: From Theorem 2, we have , such that for all

SNR

(78)

If we select such that , then for
SNR , we have (30).
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