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Abstract—We investigate the effect of medium-access control
(MAC) used in information retrieval by a mobile access point (AP)
on information processing in large-scale sensor network, where
sensors are unreliable and subject to outage. We focus on a 1-D
sensor network and assume that the location information is avail-
able locally at each sensor and unavailable to the AP. For a fixed
collection interval, two types of MAC schemes are considered: the
deterministic scheduling, which collects data from predetermined
sensors locations, and random access, which collects data from
random locations. We compare the signal estimation performance
of the two MACs, using the expected maximum distortion as
the performance measure. For large sensor networks with fixed
density, we show that there is a critical threshold on the sensor
outage probability out: For out

(1+ (1)), where is
the throughput of the random access protocol, the deterministic
scheduling provides better reconstruction performance. However,
for out

(1+ (1)), the performance degradation from
missing data samples due to sensor outage does not justify the ef-
fort of scheduling; simple random access outperforms the optimal
scheduling.

Index Terms—Estimation, information retrieval, random access,
random field, sampling, scheduling, sensor network.

I. INTRODUCTION

FOR many applications, a sensor network operates in three
phases. In the first phase, sensors take measurements that

form a snapshot of the signal field at a particular time. The mea-
surements are stored locally. The second phase is information
retrieval in which data are collected from individual sensors.
The last phase is information processing in which data from sen-
sors are processed centrally with a specific performance metric.

An appropriate network architecture for such applications is
Sensor Networks with Mobile Access (SENMA) [1]. Shown
in Fig. 1, SENMA has two types of nodes: low-power low-
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Fig. 1. A 1-D reachback sensor network with a mobile AP.

complexity sensors randomly deployed in large number and a
few powerful mobile access points that communicate with sen-
sors. Sensors communicate to the mobile access points (APs)
directly. The use of mobile APs enable data collections from
specific areas of the network, either by scheduling or by random
access.

We focus on the latter two phases in SENMA: information
retrieval and processing. Specifically, we examine the effect of
medium-access control (MAC) for information retrieval on in-
formation processing in a network in which sensors are unreli-
able, possibly with low duty cycle, and subject to outage. In such
cases, it is not possible for mobile access points to collect data
from all sensors. We consider two types of MAC: deterministic
scheduling that schedules transmissions from specific sensor lo-
cations, and random access that collects packets randomly from
the sensor field.

For information processing, packets collected by mobile APs
form a sampled signal field, either randomly or deterministi-
cally with a specific pattern. Two factors affect the performance
of information processing: the sampling pattern and the MAC
throughput. The former tells us how the signal field is sampled,
and the latter provides the amount of samples we can obtain
during a collection time using a specific MAC. While it may
appear obvious that collecting data from optimally chosen loca-
tions using (centralized) deterministic scheduling gives better
performance, there are several nontrivial practical complica-
tions. For networks with finite sensor density, the scheduling
scheme must have a finite scheduling resolution. By this we
mean that, because the probability that a randomly deployed
sensor exists at a particular location is zero, the deterministic
scheduling protocol must be modified to schedule, not a sensor
at a particular location, but sensor(s) in the neighborhood of a
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location. Even with such a modification, there is still non-zero
probability that the scheduled transmission location is void of
sensors, or the batteries of those scheduled sensors have run
out at the time of data collection.

The possibility of sensor outage brings the question of
whether a deterministic MAC is sufficiently robust to practical
imperfections. In this paper, we compare deterministic sched-
uling and random access for the application of reconstructing
a signal field with Poisson distributed sensors of finite density.
To make the problem more tractable, we study the performance
in a 1-D signal field, which provides insight into the two-di-
mensional problem. A minimum mean-square error (MMSE)
estimator is used for signal reconstruction, and the performance
metric is the expected maximum mean-square error (MSE) of
the entire signal field. A key parameter is the sensor outage
probability —a function of sensor density, sensor duty
cycle, and scheduling resolution—which gives the probability
that there is no active sensor within the scheduled resolution
interval. We show that, for large networks, there is an outage
probability threshold beyond which the deterministic central
scheduling is inferior to distributed random access.

While the literature on sensor networks grows rapidly, little
attention has been paid to the interaction between MAC and
signal reconstruction. We approach this problem by making
the connection of MAC to sampling and parametrize a MAC
scheme into a particular sampling scheme. Specifically, we
treat the deterministic scheduling to random access as periodic
sampling with missing samples to random sampling. However,
because the sampling dictated by the two MAC schemes comes
from the specific sensor network application, the periodic and
random sampling in our problem possess their own unique
characteristics, and thus are different from the traditional
sampling problem set up [2]–[8]. Therefore, the literature on
the studies of sampling does not provide an answer to our
problem. The problem of current setting is considered in [9]
for the case when the sensor density is infinite without sensor
outage. Using an asymptotic analysis, we show that the optimal
deterministic scheduling always gives better performance than
random access, although the performance gain depends on the
level of measurement signal-to-noise ratio (SNR); the gain
in the high-SNR regime is substantial and diminishes at low
SNR. The intuition for the latter is that, in the low-SNR regime,
the reconstruction performance is dominated by noise rather
than by scheduling. In this paper, we generalize that analysis
to the case when the sensor density is finite. Moreover, we
also bring the effect of MAC throughput (the probability of
successful transmission) in random access on the performance
into the comparison. Besides the practical significance of such
a generalization, our results require the notion of sensor outage,
drawing the connection of sensor outage in disjoint regions with
the classical problem of head runs in coin tossing [10] and the
evaluation of asymptotic extreme statistics of head runs [11].

A. Related Work

In terms of MAC design problem for sensor networks, it has
attracted a growing interest. Many MAC protocols have been
proposed aiming to the special needs and requirements, such

as system throughput and energy efficiency, for both ad hoc
sensor networks [12]–[14] and reachback sensor networks [15],
[16]. In terms of sampling, there have been extensive studies
in the literature. Many studies and performance analysis on the
interpolation methods based on a periodic or random sample
scheme have been conducted. See [3] and [4] and references
therein. In terms of periodic sampling, the effect of jittering, or
missing samples have been studied [6], [17]. Interpolation, se-
quential estimation, or prediction using random sampling has
also been studied [3], [6], [18], [19]. In terms of the comparison
of different type of sampling, the comparisons of periodic sam-
pling with Poisson sampling, and time-jittering effect on peri-
odic sampling have been considered for some special cases [3],
[17], [20]. Despite these results, the discussion on the compar-
ison of different sampling schemes is still very limited. Infinite
data samples on a time (or spatial) line are assumed in most
cases. For finite-window samples, the explicit expression is dif-
ficult to find and, often, either bounds on the reconstruction error
are derived or numerical comparisons are sorted [3]. For the ap-
plication of sampling in sensor networks, in [21], the authors
discuss the tradeoff between frequent (equal-spaced) sampling
with 1-bit information per sample and less frequent sampling
with -bit information per sample in a one dimensional signal
field.

B. Organization

The rest of this paper is organized as follows. In Section II, we
introduce the source and sensor network models. In Section III,
we explain the deterministic and random access MAC we
consider for data retrieval, followed by the description of the
estimator and distortion measure for signal reconstruction. In
Section IV, we obtain the expression for the reconstruction
distortion under both MAC schemes for a fixed collection
time. We then provide the asymptotic performance comparison
under the two MAC schemes in Section V, where we obtain
the asymptotic behavior of distortion ratio and the threshold
which determines the relative performance of the deterministic
scheduling and random access. Simulation results are presented
in Section VI. Finally, we conclude in Section VII.

II. SYSTEM MODEL

A. Source Model

We consider a 1-D field of length . The signal of interest
in at time is denoted by , where . We assume that
the spatial dynamic of is a 1-D homogeneous Ornstein
Uhlenbeck field [23] governed by the following linear stochastic
differential equation:

(1)

where and are known, and the process is
a standard Brownian motion. The signal ,
where , is the stationary solution of (1). This
process is often used to model physical phenomenon such as
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temperature, vibration, etc. It is both Gaussian and Markovian
[23, Ch. 2]. Given , we have

(2)

Being homogeneous in , has the autocorrelation

(3)

which is only a function of distance between the two points
and .

B. Sensor Network Model

Consider a network where sensors are randomly deployed in
. We assume that the distribution of sensors in forms a 1-D

homogeneous spatial Poisson field with local density sensors/
unit area. In particular, in an interval of size , the number of
sensors is a Poisson random variable with probability

(4)

and mean . Given , the sensors are
independent and identically distributed (i.i.d.) in this interval
with uniform distribution. Finally, the number of sensors in any
two disjoint intervals are independent.

After deployment, the sensors obtain their location informa-
tion through some positioning method [24]–[26]. At time , all
sensors measure their local signals and form a snapshot of the
signal field. The measurement of a sensor at location is given
by

(5)

where is spatially i.i.d. zero mean white Gaussian mea-
surement noise with variance and is independent of .
Note that we consider information retrieval and processing only
based on the measurement data at time . Thus, we drop the time
index for brevity in the following presentation.

Each sensor then stores its local measurement, along with
their sensor location information, in the form of a packet for
collection.

III. INFORMATION RETRIEVAL AND PROCESSING

A. MAC for Information Retrieval

When the mobile AP is ready for data collection, it retrieves
packets from sensors within a fixed collection time using a given
MAC scheme. Assuming slotted transmissions in a collision
channel,1 we consider two types of MAC schemes for data re-
trieval: deterministic scheduling and random access.

We assume that the AP has no knowledge of the sensor lo-
cations before data collection, and only each sensor knows its

1A packet is correctly received only if no other users attempt transmission.

own location information. If the AP had sensor location infor-
mation, it could exploit it. However, this implies a great deal of
overhead and additional networking burden. Sensor deployment
is often random, and additional sensors may be added at a later
time; each sensor’s operational condition may also be uncertain
(sensors may be out of operation, or in different duty cycles).
All these hinder a priori knowledge of sensor location informa-
tion at the AP, and a large overhead burden occurs if the AP
were to acquire this before data collection, especially in a large
sensor field. Therefore, we focus on the case where the sensors
know their individual locations, but location information is not
required at the AP.

1) Deterministic Scheduler : A deterministic scheduling
collects data from predetermined locations. Given a collection
time of slots, one particular scheme is to preselect sen-
sors to transmit. If the AP has the knowledge of sensor locations,
there is an optimal selection of sensors to transmit. Without
the knowledge of sensor location, however, it is nontrivial to
select a good set of sensors at the initial stage before col-
lection. Somehow, the AP will need to travel across the sensor
field and learn where the sensors are, and the overhead of this
initial learning process can be significant. Furthermore, battery
expiration, addition of new sensors, and different sensor duty
cycles can all make the eligible sensor set time varying. In addi-
tion, some sensors may not have new data to transmit. That also
makes the deterministic selection of sensors for data collec-
tion inappropriate.

Instead, we consider a deterministic scheme that schedules
sensors from the intervals centered at equally spaced lo-
cations to access the channel. Ideally, if sensors exist at these
equally spaced locations, such a scheduling is optimal for the
distortion measure we consider in Section III-C [9]. However,
when there is no sensor at a scheduled location, deterministic
schedulings result in missed samples. For randomly distributed
sensors, the probability that a sensor exists at a particular loca-
tion is zero. Thus, we need to consider scheduling with finite
resolution.

Specifically, the AP obtains the squally spaced locations
based on the field length and the collection time slots.
It then travels through the field for data collection, where the
scheduler enables a resolution interval of length centered
at each desired location, and the AP collects one packet from
each interval.2 If there are no active sensors in a resolution
interval, we say a sensor outage occurs. Let be the proba-
bility of sensor outage. For the target , the smallest interval
length that enables should satisfy

(6)

In other words, the resolution interval is determined by and
as

(7)

2This can be implemented through carrier sensing by letting the sensor closest
to the center of the interval to transmit [22], or using a control channel.
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Notice that the maximum number of disjoint intervals
that can enable is

(8)

In summary, for given target sensor outage probability
and network density , the deterministic scheduler first sets
the resolution interval length according to (7). For
given slots of collection time ( ), it next enables

intervals of length centered at the equally spaced
locations. Then, the AP schedules one packet transmission (data
sample) from each interval. Note that the AP can use target
and choose resolution interval based on , or it may choose to
only use as the resolution interval, and
is the resulting outage probability. We choose the former way in
the following presentation, which separates the notion of collec-
tion interval from the collection time to allow more flex-
ible design choices under practical constraints.3 We note that
both finite and asymptotic analytical results derived below are
the same under either approach.

2) Random Access : In the random access, in contrast,
sensors contend to access the channel with equal priority. We
assume that packets from sensors have equal reception prob-
ability,4 and therefore the origins of received packets in are
random. In terms of the sample pattern, these received data sam-
ples can be viewed as if they are results of the AP randomly sam-
pling the sensor measurement data in . Specifically, the mobile
AP activates sensors in an area for transmissions with a given
random access protocol. Depending on the application, the area
enabled can be either the whole field or randomly chosen sub-
regions of . For an enabled collection area in the network, let

be the MAC throughput (probability of successful transmis-
sion per slot) for the area with activated sensors. We assume
that exists.

B. Viewing MAC as Sampling Scheme

As we have mentioned above, a MAC scheme determines a
specific sampling scheme: It dictates the data sample amount
and underling sampling pattern. Therefore, in terms of the effect
on signal reconstruction, we can view a MAC scheme as a sam-
pling scheme. In particular, for the two types of MAC schemes
we consider, the deterministic scheduler can be viewed as pe-
riodic sampling. With the existence of sensor outage in a reso-
lution interval, we can view the effect of scheduling as periodic
sampling with missing samples. For random access, on the other
hand, the resulting sampling pattern is random with uniform dis-

3Using intervalD=M may not be always possible or desirable; We consider
the resolution interval to be a design choice. Specifically, the access point usu-
ally has to be confined to an angle of vision. If the antenna of the access point
has the fixed beamwidth, then it is appropriate to fix the retrieval interval size,
instead of a function of M . At the sensor field, if the segment D=M is large,
sensors may not be able to hear each other. This increases the chance of colli-
sion and resulting loss of data in that interval. If the sensor density is high, it
is not necessary to enable the wholeD=M segment, but rather a small interval
may be sufficient.

4In this work, we assumed all nodes have equal reception probabilities (de-
sired for reconstruction purpose). For large spatial network, this can be realized
by dividing the field into smaller regions and the mobile AP enables one region
at a time.

Fig. 2. Example of the locations of received packets.

tribution. Therefore, we can view the retrieval result as random
sampling (in both pattern and amount) with uniform distribu-
tion. Note that the sampling induced by the MAC scheme is dif-
ferent from ones in traditional sampling problems: The size of
the sensor field is finite; for random access, besides the sampling
location is random, the number of samples in a given collection
time is limited and random with the mean equal to where
the expectation is taken over , which is Poisson distributed.
In this paper, we are interested in the comparison of the per-
formance of the two sampling schemes dictated by the MAC
schemes within the same collection time, and their asymptotic
behavior of the MAC performance in a large network as the re-
trieval time becomes large.

C. Information Processing and Performance Measure

Assume that the AP retrieves packets from with a MAC
scheme for slots, and packets in are received. Note
that is random for both and (due to sensor outage).
We reconstruct the original signal based on these received data
samples, and measure the signal reconstruction performance.

To avoid the boundary effect for signal reconstruction, we as-
sume that there is a sensor deployed at each of the two bound-
aries of , and we are able to obtain their measurements. The
locations of all the received packets5 are denoted by

. We denote the corresponding order sta-
tistics of by . Also, we
denote and . Fig. 2 shows a realization
of sampling locations of the signal field in .

We estimate at location using its two immediate
neighbor samples by the MMSE smoothing. That is, for

,

(9)

In the noiseless measurement case where , the
above estimator is in fact optimal in terms of MSE. In other
words

(10)

The reason is that, due to the Markov property of in (1),
the signal , where , is only a function
of and . When measurement noise is present,
the estimator in (9) is suboptimal. Nonetheless, its simple struc-
ture and easy computation lends itself as an attractive practical
estimator.

5For convenience,M only denotes the number of packets not from the two
boundary sensors of A.
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Let the measurement SNR be SNR . Given ,
we use the maximum mean square estimation error in as the
performance measure for the reconstruction distortion in a given
realization of received samples:

SNR (11)

Note that maximum MSE is often used to capture the worst case
performance. Specific to the application of environmental mon-
itoring by sensor network, information from each local area is
needed in order to observe any abnormal behavior or activity.
For information accuracy, it requires that the error of the recon-
structed field at each location should be less than a threshold.
The maximum MSE precisely provides this information, and
therefore is used here as the performance measure.

A MAC scheme specifies where and how data packets should
be transmitted, in other words, how the signal field

is sampled; it not only determines the number of sam-
ples received, but also specifies the distribution of sample loca-
tions . The performance of a MAC scheme is then mea-
sured by the expected value of signal distortion metric in (11)
under a specific sampling scheme dictated by . In other words,
the expected maximum distortion of signal reconstruction with

distinct received packets is then given by

SNR SNR (12)

where the expectation is taken over for . The
expected maximum distortion of a MAC during the collection
time slots is then given by

SNR SNR (13)

where the expectation is taken over .
Our objective is to compare the signal reconstruction distor-

tion SNR of the two MAC schemes at different sensor
outage condition , when each scheme is used to retrieve
data for a fixed collection time.

IV. SIGNAL RECONSTRUCTION DISTORTION AND MAC

In this section, we obtain the average maximum distortion
SNR of the two schemes and .

Given received data samples, the maximum distortion
SNR in (11) can be found by comparing the maximum

distortion of in each interval , for
. Because the estimate in (9) is only a func-

tion of the two immediate neighbor samples of , we have

SNR

(14)

Note that the signal and the measurement noise are
independent and Gaussian. Given , and

are jointly Gaussian. Therefore, the MMSE estimator

in (9) is linear. The expressions for and its MSE are
obtained by

(15)

where
, and . With (3), we can show

that the maximum MSE of , for , is
only a function of the distance between and

SNR

(16)

where , for . The super-
script of denotes the number of received distinct data samples.
The maximum distortion SNR in (14) is therefore de-
termined only by the maximum of distances between
any two adjacent data samples

SNR SNR

(17)
where , which is a monotone in-
creasing function of . The average maximum distortion
with received samples in (12) is now rewritten as

SNR SNR (18)

A. Random Access

As we have mentioned in Section III, for the random-ac-
cess MAC , given received samples, their locations

are i.i.d. random variables with uniform distri-
bution . Consequently, the maximum sample distance

is random. The cumulative distribution of
for can be calculated from the distribution

of the order statistics . The joint density of
is given by [27]

if
otherwise.

(19)
Using the transformation of random variables, we have the joint
distribution of sample distances given by

if , and
otherwise.

(20)
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Since , we have

(21)

where is the indicator function: for
, and otherwise. By calculating the above, the

expression of is given by (22), shown at the bottom
of the page. The distribution of is plotted in Fig. 3 for
several values of as examples.

Combining (18) and (22), and applying
for , the expected maximum distortion for with

packets is obtained by

SNR SNR

SNR

SNR (23)

where is such that SNR , and SNR is the
derivative of SNR given by

SNR

Finally, the expected maximum distortion of in (13) is ob-
tained by

SNR SNR

SNR (24)

B. Deterministic Scheduler

For the deterministic scheduler with target sensor outage
probability , it enables intervals of length cen-
tered at , for and collects one sample
from each interval. The actual number of received samples may
be less than due to sensor outage. In the later presentation,

Fig. 3. Distribution of d under � (D = 1): (a) CDF of d ; (b) PDF
of d .

we use instead of for simplicity. The readers should
keep in mind of the relationship of with and . From (13)
and (18), we have

SNR SNR (25)

where now is the maximum sample distance in a realiza-
tion of the received data samples, which is determined by the

if

if

if
if .

(22)
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largest number of consecutive intervals that sensor outage
occurs. Then, we have

(26)
The expected maximum distortion SNR with is
therefore bounded by

SNR

SNR

SNR (27)

where

SNR

(28)

To calculate the bounds, we need to find the cumulative dis-
tribution of denoted by . It is given by

(29)

where is the number of realizations in which exact
intervals have sensor outage, but no more than of these are
consecutive.

Since sensors are Poisson distributed, for disjoint resolution
intervals, the occurrence of sensor outage in each of them are
independent with probability . This can be viewed as a se-
quence of a biased coin tossing, where heads appear with .
Then, the distribution of is equivalent to that of the longest
head run (consecutive heads) in a sequence of biased coin
tosses. The coefficient therefore can be viewed as the
number of sequences of length in which exactly heads
occur, but no more than of these occur consecutively. The
longest run in a sequence of coin tossing has been studied ex-
tensively [10], [11]. It is shown in [10] that can be cal-
culated by the following recursion:

if
if

if .
(30)

Therefore, the upper and lower bounds on SNR can be
calculated using (27), (29), and (30).

V. SCHEDULING VERSUS RANDOM ACCESS

In this section, we perform an analysis for large sensor net-
works. The average number of sensors in the network, denoted
as , is given by . We are interested in the comparison

of the asymptotic performance of the two schemes when is
large.

Under the mechanisms of deterministic scheduler and
random access described in Section III-A, we compare the
the signal reconstruction distortion of the two schemes. The
following theorem describes the asymptotic behavior of recon-
struction distortion SNR when becomes large.

Theorem 1: Let be given. Suppose that (1) as
; (2) as , the reconstruction

distortions under and are given by6

SNR
SNR

(31)

where .

SNR
SNR

(32)

where .
Proof: See Appendix I.

Theorem 1 shows us how reconstruction distortion scales
with as the network grows large (either density, or both size
and density). Note that the condition on the growth of network
population in Theorem 1 allows the network size grow
but below rate with increased density . One special
case of this condition is the case where the size of the network

is fixed and the density grows. Note from the first term of
(31) and (32) that, there exists a lower bound on the distortion,
we denote it by SNR :

SNR
SNR

(33)

From (17), we see that this bound corresponds to the case when
we let the density of the sensor network go to infinity (thus there
exists a sensor at any location), and collect all the measure-
ment of the field. The distortion in the second term of (31) and
(32) corresponds to the distortion due to the particular sampling
scheme dictated by deterministic scheduler and random ac-
cess . It is this term that represents the difference of signal
reconstruction under different MAC schemes.

The distortion expressions in (31) and (32) show that in large
sensor network, as we use more and more time slots to col-
lect the data samples, the reconstruction distortion decreases to
the lower bound SNR . The decreasing rate depends on the
underlying sampling scheme dictated by the MAC scheme, as
well as the signal spatial correlation. From the second terms in

6A function f(x) is O(g(x)) if lim f(x)=g(x) = c where c < 1
is constant; f(x) is o(g(x)) if lim f(x)=g(x) = 0, in particular, when
g(x) = 1, f(x) is o(1) if lim f(x) = 0.
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Fig. 4. Distortion decay ratio r(M; SNR).

(31) and (32), we see that, for , the decreasing rate is at least
, and for , the rate is at least .

Given the asymptotic expression in Theorem 1, we now com-
pare the performance of the two schemes and . Note that
we could directly compare the distortion SNR of the two
schemes. But as we mentioned above, the term representing the
distortion due to the specific MAC scheme used is the second
term in (31) and (32). Therefore, we will only compare the
second term, i.e., the excess distortion

SNR SNR

We will see in Theorem 2 that comparing the excess distortion
provides a clear expression for the threshold on according
to which the relative performance of and changes. For
convenience, we define the ratio of the excess distortion of
to that of as

SNR SNR

SNR SNR
(34)

Fig. 4 illustrates the ratio of the two MAC schemes. The
relative performance of and , therefore, depends on the
value of comparing with 1: If , is better than ;
otherwise, outperforms . The following theorem shows
the condition for (or 1) in a large sensor network.

Theorem 2: Let be given. Suppose that 1) as
and 2) as . Then, for

and for .
Proof: By (31) and (32) in Theorem 1, we have the ratio

as

(35)

We see that the second term goes to 1 as grows. Therefore,
the ratio is determined by the first leading term. Comparing it
to 1, we have the threshold on .

From (35), it is clear that the relative performance of and
depends critically on . As we see, although the deter-

ministic scheduling is designed for an optimal retrieval pattern,
its performance is less robust in the sense that it suffers from
missing data samples due to sensor outage. Theorem 2 gives us
the transition of the relative performance of the two strategies.

Fig. 5. Favored region of the two MAC schemes.

For , the gain of scheduling transmission
with desired pattern is evident, although there exists a mild per-
formance loss because of sensor outage. As we expected, the
deterministic scheduler provides a better reconstruction perfor-
mance. In [9], we have considered the case when the sensor den-
sity goes to infinity, and therefore there is no sensor outage. We
have shown that, in fact, the excess distortion ratio grows as

. When , however, The-
orem 1 shows that the performance loss of due to missing
data samples does not justify the effort of scheduling the de-
sired retrieval pattern, and random access outperforms the op-
timal scheduling.

Note that there are two factors of a MAC scheme affecting the
signal reconstruction: the sampling pattern and the throughput
of MAC. The former determines where the samples are from,
and the latter determines how many samples the AP can ob-
tain. Because of sensor outage, the resulting sampling pattern
by using degrades the performance due to missing data sam-
ples. For the random access , on the other hand, the number of
samples is limited by the throughput. The threshold
on for the relative performance clearly indicates the above
two factors: the condition is equivalent to

, i.e., we should set the length of the resolution
interval so that the expected number of sensors in the resolution
interval is greater than . Fig. 5 depicts the favored
region of each MAC scheme. The two regions are divided by
the curve . For fixed , the resolution interval

needs to be larger than to let perform better.
On the other hand, if we keep the of fixed and vary , then
for lower than a certain value, the expected number of sensors
in is too small, and it is better to perform random access. Our
result implies that if the average number of received data sam-
pling in random access is more than that in deterministic sched-
uler, then we may just let sensors perform random access instead
of careful planning for desired retrieval pattern. This shows that
although the deterministic scheduler can be optimally designed,
it relies on the network parameters and is therefore less robust
to the imperfect knowledge of the network conditions.

VI. SIMULATIONS

We now numerically compare the reconstruction perfor-
mance of and for various scenarios. The expected
maximum distortion of and is calculated using (24) and
(27), respectively.
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Fig. 6. Signal field S(x) (D = 500 m, f = 0.02 m, � = 1).

Fig. 7. Expected maximum distortion ��E(M; SNR) versus M (� =
5 sensors/m). (a) P = 0:5; (b) P = 0:75.

A. Signal Field and System Setup

We consider a field with 500 m. For the signal of
interest , an example of the Ornstein Uhlenbeck field is
shown in Fig. 6. We set and 0.05 m (i.e., for

1 m, ). We set the sensor density
5 sensors/m and randomly deploy Poisson distributed sen-

sors in . For the random access, we choose a simple ALOHA
with delay-first transmission without feedback, where each of

Fig. 8. ��E(M;SNR) versus P (� = 5 sensors/m, M = 300).

the activated sensors transmits its packet with probability .
In this case, the throughput, i.e., the probability of a successful
transmission, is and

.

B. Distortion versus Collection Time

We plot in Fig. 7 the expected maximum distortion
SNR of and with various for SNR 0,

20 dB, respectively. Fig. 7(a) and (b) are the plots for prob-
ability of sensor outage and ,
respectively. We observe that as increases, on average the
received data samples at the AP increases, and SNR of
both and decreases. However, we see that the relative
reconstruction performance of and depends on the
different value of we set. For the relatively high we
set, the reconstruction performance of the random access is
uniformly better than that of the deterministic scheduler .

C. Distortion Versus Sensor Outage Probability

To see the transition of the relative performance of and
, we plot SNR of and with for

various at SNR 0, 20 dB in Fig. 8. Note that since
is the design parameter for , the performance of does not
change for different . We observe that clearly there exist a
threshold on approximately at 0.67 , such that
the performance of is worse than for all greater than
this value, and better for less than this value.

We also compare the ratio of excess distortion obtained in
our simulations with the theoretical expression of in (35) of
Theorem 2, where the we use the coefficients in (36) of Lemma
1 and (57) of Lemma 3 to replace the ’s in (35). Fig. 9 shows
the curves of versus for SNR 20 dB and .
We see that the simulation matches the result in Theorem 2.

D. Distortion Versus SNR

In Fig. 10, we plot the expected maximum distortion
SNR of and with various SNR for .

We plot SNR of at 0.5, 0.75, where the
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Fig. 9. Distortion ratio r versus P (� = 5 sensors/m, M = 300, SNR =
20 dB).

Fig. 10. ��E(M; SNR) versus SNR (� = 5 sensors/m, M = 300).

performance of is better than that of at 0.5
and worse at 0.75. For each case, we see that as SNR
becomes large, the performance gap between and in-
creases. As expected, when noise level is high, the distortion
is mainly dominated by the measurement noise, therefore the
performance gap is small. When SNR becomes higher, the ef-
fect on the reconstruction distortion due to using different MAC
scheme becomes more significant, and the performance gap be-
comes larger.

E. Distortion versus Signal Spatial Correlation

Finally, we compare the performance under various signal
spatial correlation levels. From (3), the signal correlation
coefficient is given by , where . In
Fig. 11(a) and (b), we plot SNR of and with var-
ious for SNR 20 and 0 dB, respectively. We set
and . For ranges from 0.02 to 0.8, the correlation
coefficient ranges from 0.98 (high correlation) to 0.45

Fig. 11. ��E(M;SNR) versus correlation coefficient a (� = 5 sensors/m, M =
300). (a) SNR = 20 dB; (b) SNR = 0 dB.

(low correlation). As expected, the lower spatial correlation ,
the higher distortion. For the performance gap at different corre-
lation level, from Theorem 2, we see that is not in the leading
term of the expression for . Therefore, for relatively large,
the spatial correlation does not affects the ratio . For high SNR,
where the limiting distortion SNR is very small, the ex-
cess distortion dominants SNR . Thus, the performance
gap (in decibels) is relatively unchanged. For low SNR, how-
ever, SNR is relatively large. For high spatial correlation,

SNR is dominated by the limiting distortion SNR .
Thus, the performance gap (in decibels) when is high is less
significant than that when is low.

VII. CONCLUSION

In this paper, we investigate how MAC for information re-
trieval affects information processing. Specifically, we consider
the performance of signal field reconstruction based on re-
ceived data. Data retrieval with different MAC schemes results
in distinct sampling pattern of the field, and throughput of MAC
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determines the number of samples received by the AP. Our
analysis demonstrates that, for MAC design in sensor networks,
a cross-layer approach that integrates application and MAC
should be considered. In particular, affecting the choices of
MAC are sensor density and reconstruction performance, both
dictated by the source characteristics and network parameters.

Using the maximum reconstruction distortion as our perfor-
mance measure, we examined two MAC strategies: the deter-
ministic scheduling designed to collect data from equally spaced
locations and the random access MAC. We have shown that, al-
though the scheduling is designed according to the optimal re-
trieval pattern, its performance suffers from the possibility of
sensor outage, which results in missing data samples and, there-
fore, is less robust to the uncertainty of the network parameters.
Specifically, the relative reconstruction performance is shown
to depend critically on the outage probability of sensors,
which determines the average number of active sensors in a reso-
lution interval. Our analysis shows that, for networks with large
sensor population, whether a deterministic scheduler is better
than random access depends on whether the critical threshold is

. The former is better only if .
Based on this, the favored region of each MAC is shown. The
two regions are divided by , where is
the expected number of sensors in the resolution interval , and

corresponds to . This
indicates that if the average number of samples obtained using
the deterministic scheduler is less than that of random access in
a given collection time, then one may just let sensors perform
random access.

Although our results provide insight of the relation of MAC
and application performance in sensor network, many problems
remain for further study. In this paper, the analysis and com-
parison of different MAC schemes for signal reconstruction is
limited to the 1-D sensor field. Even though the results provide
insight into the 2-D network, detailed studies of the interaction
of MAC and signal reconstruction performance in the 2-D field
are still of interest. The extension to the 2-D case is nontrivial
as the signal modeling and the reconstruction metric expres-
sion become much more complex. In order to make the problem
more tractable for analysis, some level of simplified approxi-
mation for the 2-D models and signal estimation method may
be assumed. For example, the field can be quantized into dis-
crete grids, and a Gauss–Markov field on the lattice, often used
for 2-D modeling, can be applied to study our problem. Also,
in this study, we focus on the MMSE signal reconstruction for
the random signal model considered in (1). A more generalized
random signal model can be considered for further detailed ex-
amination. The performance in many other applications, such
as signal prediction, spectral estimation, is also of great interest
for investigation.

APPENDIX I
PROOF OF THEOREM 1

A. Asymptotic Distortion of Deterministic Scheduler

To calculate the expected maximum distortion SNR
of , we first need to find the statistics of , the largest

number of consecutive intervals that have sensor outage. For
Poisson-distributed sensors, the sensor outage in each disjoint
interval of length is i.i.d. with probability . The problem
of finding essentially is equivalent to that of finding the
longest run of consecutive heads for a sequence of biased
coin tossing, where the probability of head is . Using the
extreme value theory of head runs [11], we show that pos-
sesses an almost sure behavior. For convenience, let

The result is shown in the following lemma.
Lemma 1: Let be defined as before. Then

(36)
Therefore

a.s. (37)

Proof: Theorem 3 and Theorem 4 of [11] provide almost
sure behavior of . We state these theorems below.

Theorem 3: Let be a nondecreasing sequence of in-
tegers. Then, is 0 or 1 as
finite or infinite.

Proof: See [11].
Theorem 4: Let be a nondecreasing sequence of

integers with and
. Then,

is 0 or 1, as determined by whether
is finite or in-

finite.
Proof: See [11].

Let . By Theorem 3

(38)

This implies

(39)

On the other hand, for , it satisfies
the two conditions in Theorem 4:

(40)

(41)

By Theorem 4

(42)
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This implies

(43)

Combining (39) and (43), (36) and (37) follows.
Using Lemma 1, , such that , the lower

bound of the expected maximum distortion of in (27) can
be rewritten as

SNR

(44)

where since , we have
. For function , as ,

using Taylor’s Theorem, we have

(45)

If the growth rate for is such that as
, then we can apply (45) to (44), and we obtain the expected

maximum distortion as

SNR

SNR

SNR

(46)

The upper bound in (27) can be similarly derived and has the
same order as in (44). Therefore, we have the asymptotic ex-
pression in (31).

B. Asymptotic Distortion of Random Access

1) Asymptotic Expression of SNR for Large :
Now, we obtain the distortion of the random access , given

received packets from distinct sensors. From (17), the max-
imum distortion of is a function of

(47)

where , is the order statistics of i.i.d. uni-
formly distributed random variables. The property of is
given in the following lemma.

Lemma 2: Let be i.i.d. unit exponential random variables,
and , for . Then, the joint distribution
of is the same as that of the order sta-
tistics from i.i.d. random variables with uniform distribution

, i.e.,

if
otherwise.

(48)
Proof: The joint distribution of is given by

(49)

where , . Note that .

For any , let . By transforma-
tion of random variables, we then have the joint density of

given by

(50)
Notice that has a gamma density

It follows that

(51)

Therefore, from (50) and (51), we have the joint density

(52)

By Lemma 2, then the joint distribution of the
order statistics is the same as that of

. Therefore, the joint
distribution of is the same as that of

, where
. Thus, the maximum distance can be represented

by

(53)

Therefore, we have

(54)
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By the Strong Law of Large Numbers, we have

a.s. (55)

Let . From the asymptotic theory of ex-
treme statistics, we have the almost sure asymptotic property of

as follows.
Lemma 3 (Logarithmic Growth Rate of [28, p. 262], [29,

p. 215]): Let be the maximum of i.i.d. unit exponential
random variables. Then

(56)
Combining (54)–(56), we have

(57)
Thus, similarly as in (44)–(46), if as

, for large enough of received samples, the
expected maximum distortion of can be obtained as

SNR
SNR

(58)

We now obtain the limiting distribution of SNR .
Without loss of generality, we consider that the AP activates the
sensors in the whole field for transmissions. Note that, given

, the throughput is just the probability of a successful
transmission. Thus, is binomial distributed with

(59)

Because , for a given , , s.t. for all ,
. By the Chebyshev inequality, for fixed , we have

(60)

(61)

Now we bound SNR . Note that SNR de-
creases with . We have

SNR

SNR

SNR

SNR (62)
Therefore

SNR

SNR

SNR

SNR

Note that

(63)

Similarly

(64)

Following SNR in (58) for large , we have the lim-
iting distortion as

SNR SNR

SNR
(65)

2) Lower Bound on SNR SNR : We now
lower bound SNR SNR for large and .
We have

(66)

The lower bound on the excess distortion is given by

SNR SNR

SNR SNR

SNR

SNR

SNR

SNR (67)

Since , for any , , s.t. for all

(68)

Also we have

SNR

SNR (69)
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Since SNR is a decreasing function of , we have

SNR SNR

(70)

Combining (67) and (70), we have

SNR SNR SNR

The tail probability of can be again bounded by the Cheby-
shev inequality. Then, , , s.t. for all

(71)
Since the number of sensors in is Poisson distributed, for any

(72)

Thus, for any

s.t. for all

(73)

Thus, for and

SNR SNR

SNR

SNR (74)

From (58), for large , we have

SNR

(75)

Therefore, by (74), for large and , we have the
lower bound

SNR SNR

(76)

where .
3) Upper Bound on SNR SNR : For the

upper bound, we have

SNR SNR

SNR

SNR

SNR (77)

Since SNR is a decreasing function of , for the first
term, we have

SNR

SNR (78)
For the second term, we have

SNR

SNR (79)
As in the derivation of the lower bound, , s.t. for all

(80)

Therefore

(81)

(82)

for some , where the bound on the second term in (81) is
similar to that in (60). Therefore

SNR
SNR

(83)
Therefore, combining (78) and (83), , for

, the excess distortion in (77) is upper bounded by

SNR SNR SNR
(84)

for some . From (75), for large and , we
have

SNR SNR

(85)

Combining the lower and upper bounds in (76) and (84), we
have, for large and

SNR SNR

(86)

With (65), the asymptotic expression in (32) follows.
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