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Abstract— In this paper we consider dynamically sharing the assigned by regulators. However, given that sensor neswvork
spectrum in the time-domain by exploiting whitespace betwen ysually communicate sporadically and at low rate, it is giau
the bursty transmissions of a set of users, represented by an g that the remaining whitespace of other applicationdctou

802.11b based wireless LAN (WLAN). Realizing that exploitig b d. A simil t Iso b . d for dif
the under-utilization of the channel requires a good model bthe € reused. A simiiar setup can aiso be envisionea for dritere

these users’ medium access, we propose a continuous-timense commercial applications such as Bluetooth and WLAN, or to

Markov model that captures the WLAN’s behavior yet remains mitigate the effect of interference in unlicensed bandgl{su
tractable enough to be used for deriving optimal control stategies  as the ISM bands).
within a decision-theoretic framework.

Our model is based on actual measurements in the 2.4 GHz A. Main contribution
ISM band using a vector signal analyzer to collect complex . L .
baseband data. We explore two different sensing strategies [N this work, we propose a model that statistically desaibe

to identify spectrum opportunities depending on whether tte the busy and idle periods of a WLAN. In looking for a
primary user’s transmission scheme is known. The collectedata model we recognize that there is a fundamental tradeoff
is used to stafistically characterize the idle and busy pedds of  hatyeen analytical tractability and the accuracy of the ehod
the channel. Fu.rthermore, we show that a contlnuous-tlme 3Bi- Ultimatelv. if desire to deri timal trol i
Markov model is able to capture the data with good accuracy. Imately, 1t we desire 1o derive an (_)p_lma co_n.ro pp Icy
The Kolmogorov-Smirmov test is used to validate the model an  based on such a model (presumably within a decision-thieoret
to assess the model’s goodness-of-fit quantitatively. A colusion framework), we need to keep the model simple enough. At the
summarizes the main results of the paper. same time, however, a tractable model is useless if it is not
able to predict the primary user’'s behavior sufficiently lwel
Specifically, we show that a continuous-time semi-Markov
ess (SMP) represents a good tradeoff between these
extremes. On the one hand extensive research has been

I. INTRODUCTION

With the proliferation of wireless communication system o
the relevant spectrum has become a scarce resource, mo?\tlvg?
V,Vh'Ch has beer) allocated by regulators as of today. At m rformed on the optimal control of semi-Markov decision
times and locations, however, actual measurements shaw cesses (SMDP) allowing for our model to be embedded in
the spectrum |s_onlyzjl_|f$htly useg. This aﬁpa;ent pa_racillogsglvsuch a framework. On the other hand, the SMP is complex
rise to envisioning different schemes that dynamica ySE’euenough to characterize the heavy-tailed distribution efitte
the spectrum without causing (significant) interferencéh® durations appearing in practice. In particular, we shovt tha

licensee, referred to as the primary user in the following. eneralized Pareto distribution provides for a good fit \tlité

In this paper, we consider dynamically sharing the spectr perimental data and we evaluate the goodness-of-fit using
in the time-domain by exploiting white-space between t fie Kolmogorov-Smirnov test

!oursty tran.smissions of a primary user [1]. In qrder n(_)t to Finally, we emphasize that our model is based on data ob-
interfere with the primary user, we need to obtain a rel""‘b{gined from actual measurements with a vector signal asalyz

m(?rdhel to predict the prlmalr_y l:_sers faccessh o, F in the2.4 GHz ISM band. We implement two different sensing
€ are humerous applications for such a setup. "or | rategies and compare their results to confirm the validity
stance, consider the coexistence of sensor networks wil

the data. In this way, our approach not only guarantees

WL.AN based applications (or other protocols emp.loy'.ngccurate measurement of the busy and idle periods but also
similar MAC schemes). Due to the heterogenous appllcauo%%
[

. . . Ves valuable insights when it comes to a practical, rieaé-t
of sensor networks and their transient deployment it see

o i é)lementation in hardware.
unrealistic to assume that separate frequency bands will
_ o o B. Relevant work
Iprepared though collaborative participation in the Comications and ) )
Networks Consortium sponsored by the U.S. Army Researcbraabry under Dynamic spectrum access schemes have recently received

the Collaborative Technology Alliance Program, CoopeeatAgreement considerable attention, both in terms of theoretical cpteas
DAAD19-01-2-0011. The U.S. Government is authorized torsdpce and I ical imol . d beds [2]. S
distribute reprints for Government purposes notwithstandany copyright well as practical implementations and testbeds [2]. Sphbye

notation thereon. projects such as the DARPA XG program [3] or the European



DRIVE Project [4] different methodologies have been exgtbr A. WLAN setup

to promote efficient use of the spectrum. o The WLAN consists of a Netgear WGT624 wireless router
Dynamically sharing the spectrum can most efficiently bg, three computers with wireless adapter cards (two Netgea
employed in the spatial or time-domain, each aréa having {53117 and one WG511T: cf. Fig] 1). The router operated
own challenges andl limitations. In the spatial domain, thﬁ a 22 MHz frequency band arourl462 GHz (Channel 11).
reliable sensing of primary users has to be guaranteedn@akihe router as well as the workstations were located in the
it necessary to detect very weak signals [5]. In such a s@®nagyme room resulting in a high signal-to-noise ratio (SNR)
receiver cooperation becomes crucial in many cases [6]. peween nodes and no hidden terminals. Traffic was generated
In time-domain applications, the main challenge lies ifsing the Distributed Internet Traffic Generator (D-ITG)J1
predicting the medium access of the primary user, and findifgich allowed us to statistically characterize parameseich
optimal control schemes that take practical limitation®in 5¢ inter-departure times and packet length.
account. In [1], [7] optimal control policies are found in a Ag \e will discuss in detail, our measurements focus on
partially-observable decision framework, assuming a Markyq traffic scenarios. First, we consider high rate UDP taffi
vian behavior of the primary user. from one workstation to the router (the other computers are
From a practical viewpoint, numerous testbeds have begfned off) to verify the operability of the setup. Subseflye
set up to explore practical limitations. In [8] a sensing4% \ye consider UDP traffic of constant packet length from all

DSP/FPGA implementation has been presented for sharing thgse computers with Poisson distributed inter-depatiores
spectrum with a WLAN. at different rates.

Statistical modeling in WLAN applications usually focuses
on parameters such as packet loss or channel quality, asgunB. Vector signal analyzer
idealized models for the medium access and physical Iayer1n order to capture the transmissions of the WLAN dis-

As a result, models proposed within such frameworks do n Gssed above we use an Agilent 89640A vector signal analyzer

easily extend to our setup. The class of semi-Markov mod? > collect complex baseband samples. The device internally

con&deyed in this paper, on the othgr hand, has been Bwnconverts the signal from462 GHz to an internal inter-
ployed in numerous applications ranging from charactegizi

) . mediate frequency (IF) and then samples at a rateidfiHz
Zg:;;;fggs[g]’ to speech recognition tasks [10], and retht [12]. A large number of continuous blocks of lengit25s

each are collected in this way and stored for further praegss

Il. MEASUREMENT SETUP [1l. SENSING STRATEGIES

In this work we identify the primary user with an 802.11b  Gijven the raw complex baseband data gathered by the VSA,
based WLAN operating in the 2.4 GHz ISM band. Differenje process the data to find the idle and busy periods of the
from existing publications that use commercial WLAN adapt@hannel. In particular, we implement two different sensing

cards to obtain packet traces, we employ a vector signgfategies, depending on whether it is known that the pgimar
analyzer (VSA) to capture the raw complex baseband datger forms a WLAN.

Subsequently, we process these data to find the busy and idle

periods of the channel. Our approach not only guaranteesAnEnergy-based detection
accurate and verifiable characterization of the channedlsot
gives valuable insights into sensing strategies when itrrl(n

toa pracncall |mplementat|o.n. I . _To this end we patrtition the data into blocks &f complex
A schematic of our setup is shown/in Fig. 1. The details fqf;s0and samples and then perform detection for each of
both_the WLAN setup and th? conﬁguratn_)n of the VSA athem individually (clearly, the blocks must be shorter than
provided in the following sections, respectively. the smallest busy/idle duration for this approach to wor#d an
for edge-effects to be ignored). We formulate this problem

If the transmission standard of the primary user is not
own, a natural approach it to use energy-based detection.

— ~

e AN as a hypothesis testing problem between the null-hypathesi
GT62 . . . .
J R S of observing only noiseV; and the alternative hypothesis
/7 { of observing a signalS; in noise. Mathematically, this is
! N formulated as
\ \l I~ Agilent 89640A VSAI/Q‘.
I 1
(W ’?‘/ | [Down- data | Ho @ Yi=Vi,i=1,...,N 1)
\ 1 3 ( X convert T;=1/44MHZ: .
\ WG311T PG, WGSIIT | Gl ! Hy @ Y, =8+V,i=1,...,N. (2)
) WG3I1T ,/‘ f . . .
AN 7 In our analysis we assume that the noise is drawn from a
N 80211bWLAN 7 complex Gaussian distribution with zero mean and variance
N T —— 2
00

Fig. 1. The measurement setup. V; ~CN(0,03), i=1,...,N. 3)



Considering our assumption that the transmission stanafard SYNC SFD [ SIGNAL | SERVICE [LENGTH| CRC
the primary user is unknown, we further assume that the bigna e |10 Soits Soits lebits ] 16bits
S; is also drawn from a complex Gaussian distribution with
zero-mean but variance?,

S; ~CN(0,01), i=1,...,N. (4)

PLCP Preamble | PLCP Header PSDU
144bits 48bits PLCP service data unit

Fig. 2. The PLCP preamble.

The 802.11b standard specifies that a PL@Ramble and
header be transmitted with the higher layer frames. The PLCP
N Hy header contains a synchronization preamble which consists
T(y) =Y _|Yi|* 2, (5)  of scrambled ‘1’ bits as well as the start-of-frame delimite
i=1 Tt which indicates the start of the PLCP header. The PLCP header
where the threshold is determined by the desired probabilityin turn consists of a ®NAL-field specifying the PSDU’s rate
of false-alarm. Recognizing that the test statidfigy) is x? of transmission, a ERvICE-field used for standard specific
distributed with2 NV degrees of freedom, we can establish th&ignaling and a ENGTH field which provides the duration in

The above detection problem is standard [13], and the optima
Neyman-Pearson detector is given by

the probability of false-alarm is given by microseconds needed to transmit the payload from higher lay
. ~y ers (PSDU) [15]. This ENGTH-field is of particular interest,
a=Pr(T(y) >[Ho) =1 - T'r(N, =), (6) since it provides us with the exact end of the packet. Togethe
0 with the SFD this completely determines the start and end of
where L each packet.
a N—-1_-—t
I (N,¢§) = ) /0 tY e dt @)

is the regularized gamma function aildV) is the complete QP“ISZISEP g | @

gamma function. Similarly, the power of the detector is give & | 77
by

11Mcp/s
11MS/s
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I
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6 = PI‘(T(y) > ’Y|H1) =1 f‘,,(N L) (8) Correlate  detection
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s
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The detection performance is influenced by the number of SIGNAL

1Mbit/

. . P; bl
available samplesV as well as the relation betweer§ and SERCE
o2, which can more conveniently be expressed in terms of the

SNR = 0% /0. In particular, given desired values for and Fig. 3. Receiver chain for the feature-based detectionrsehe

6 as well as a lower bound on the SNR, we can determine

how many samples are needed to arrive at a detector that H;- he (_Jle<|::(_)d|ng ;ha;ntﬁsed to (Ijecck))de tEe \(/jVI(;At'\' packeitsdlst
accurate enough. shown in Fig. 3. First, the complex baseband data sampled a

For a minimum SNR of 5dB, which is a conservative choic rate of44 MHz is passed through a Gaussian pulse shaping

for our setup, and blocks a¥ = 44 samples (corresponds to llter with a bandW|d.th—syn.1boI time produ_o.’r?TS = 1/2.
blocks of exactlyl us) we can discern the hypotheses wit ubsequently, the S|g_n_al is correlated with the 11-sample
less thanl0—° probability of error. It should be noted however arker sequence specified by the standard [14]. Conseguent

' the oversampled signal shows periodic peaks whenever the

that the above derivation relies on the idealized assumgtio di i ith the input sianal. By d ¢
(3) and [(4). Given that we have an oversampled signal at haﬁgrea INg Ssequence ines up wi e inputsignal. By detgc

especially[(4) may require some modification. Additionailty g ése peakls 3’? ot)rt]aln chlg-slyncthrg?l\z/l%tlon. Thde zlgnhblsc}
a practical implementation interference from other chéise ownsampled fo the Symbo rate ps, and despread.

an important limitation, especially since the WLAN chameIWh"e there is a small but noticeable frequency offset betwe

. . . transmitter and receiver, we need not compensate for ingive
n th(_a 2'4GHZ ISM band are partially Qverlapplng [14] Iq{bat the preamble is encoded using DBISSK The dec%ded
practice it can thus _be necessary to filter the signal as bits are then descrambled and the start-of—fra.me delinster
mitigate out-of-band interference.

detected. Subsequently, thecGBAL, SERVICE, and LENGTH
B. Feature-based detection fields are extracted and the CRC-check is performed to ensure

The last section assumes that we do not have any inforrrt1r<'1;f’Elt the extracted information is correct.

. L . It should be noted that we do not claim optimality for the
tion on the transmission scheme of the primary user. Howeve . :

o L above decoding approach. However, given that we operate at
for some applications it is reasonable to assume that we know . . . :

. : . medium to high SNR the above decoding scheme yields good

that we are sharing the spectrum with a WLAN. In this case - . ; _

o . results and mimics the processing used in commercial WLAN
we can exploit this knowledge to detect packets more rgliabl

and to extract information on the packet length that is [tedi IPLCP stands for Physical Layer Convergence Procedure.@teerr is
in the packet’s header. configured to only use long synchronization preambles.



500 . . . blocks of length0.2 ms correspond to the acknowledgement

a0k T 9938 f9928 o packets that need to be sent after each successful reception
£ a data packet. The histograms also shows that there aretalmos
& 300 ‘ ‘ ‘ as many acknowledgements as data packets, which indicates
Bo200 [ that most packets are received successfully. Finally, itpe s
- 00 b nificantly smaller component with length95 ms corresponds
: : : to periodic beacons that need to be broadcast from the access
00 02 04 06 08 1 point for timing purposes. Such packets are sent peridglical
time [ms] every 100 ms.

The histogram of the idle periods reflects the particulars
of the WLAN standard as well. We see that there are two
500 . . . large, discrete componentsidt s and around@0—80 us. The

(a) Histogram for the busy durations.

100 | former corresponds precisely to the short inter-frame epac
g (SIFS) that separates the transmission of a data packetsand i
5, 300 1 [ R acknowledgement by the receiver. The latter approximately
£ 200 | cbntéﬁtionwin dbwi 32 dlots 20'§eac'h corresponds to the distributed coordination function rinte

= 100 | ‘ o ’ ” frame space (DIFS), that is the idle duration that must be

waited for before transmitting the next data packet. Finalk

00' 02 04 06 0.8 obser_ve 32 discrete _components spaced approximatels

time [ms] (that is the standardized slot-length) apart. These qoores
to the contention window that is used for the medium access

(b) Histogram for the idle durations. of the WLAN.

Fig. 4. Histograms for the measurement validation[(cf. D).
g g ( B. Measurement results

adapter cards. The above section bolsters the validity of our measurement
setup and the used sensing strategies. In this section we now
use a more representative setup with multiple terminalsh ea

In this section we present results for the busy and idienning a traffic generator. While we again used UDP traffic
periods of the channel obtained by processing the basebaith a constant payload 0512B, the inter-departure times
data using the sensing strategies discussed in the last s@sre chosen to have independent Poisson distributions with
tion. First, we focus on an idealized setup with only ongarying rate parametek. For the busy intervals we again
terminal and the access point. The results obtained for baethserve a very similar histogram compare@g, 4. However
the energy and feature-based sensing match very closefy idle times are now highly dependent on the paramketer
moreover they reflect the characteristics of the WLAN’s MA@Itimately, as the traffic rate increases the channel besome
protocol bolstering the validity of our measurement. Selconbusier and the available whitespace decreases.
we present our measurement results for a setup consisting ofhis behavior is illustrated in Fig. 5, where the upper and
three terminals and the access point, for varying data.ratesower figure correspond ta = 25pkts/s and\ = 500pkts/s,
respectively. We can observe that in the low rate case, the
histogram suggests a heavy-tailed behavior; we will addres

In order to verify that our measurements reflect the particthis fact in more detail in the next section. On the other hand
lars of the WLAN standard, we consider a setup consisting af high rate, the histogram more resembles an exponential
a single laptop computer with a Netgear WG511T adapter catistribution.
and the wirless router. The computer generated UDP packets a
a rate of10° packets per second with constant inter-departure
times and a constant packet length of 512 Bytes. Using theThe measurement results presented in the last section allow
VSA we then collected 40 blocks with a durationio25 s each for two important conclusions when it comes to establishing
and analyzed the data using the sensing strategies dekcridbenodel. First, we can categorize the state of the channel by
above. The durations of idle and busy periods were collectilr different states. In particular we assume that the shhn
and the histogram of these data is shown in Fig. 4. can be busy due to either the transmission of a data packet, or

First, consider the histogram of the busy periods of thdue to the transmission of an acknowledgement. Second, the
channel in Fig.| 4(a). We can see that the packets haseannel is either idle for just the short inter-frame spacéor
three discrete lengths, with approximate duration$.@fms, an extended period either corresponding to stations cdirtgn
0.61 ms, and0.95ms, respectively. Indeed this reflects théor the medium, or the fact that none of the terminals has data
standardized behavior of the WLAN and the particulars @6 transmit. The state space of the model is illustratedgn Bi
our setup. In fact, the blocks of length61 ms correspond to  From the viewpoint of a secondary user, it is especially
the UDP data packet$12 B plus high layer headers), and thémportant to characterize how long the channel remainséh ea

IV. MEASUREMENT RESULTS

A. Measurement validation

V. PROPOSED SEMHMARKOV MODEL



1 is distributed according to cumulative distribution funat
Qi;(t). Note thatp;; = 0 for all i because the arbitrary
specification of the sojourn time fully captures the timergpe
in each state.

histogram

A. Estimating transition probabilities

The first step in characterizing the channel as a semi-
Markov process is to estimate the transition probabilifiem
our measurement data. Given the idle and busy durations we
first classify every observation according to the four staie
our model. Then, given this unbroken chain of observations,
6000 : : : : we can use well-known maximume-likelihood techniques [18]
: : : : to obtain estimates for the transition probability matrix.

In particular, consider the following estimator

0 0.01 0.02 0.03 0.04 0.05
time [s]

(a) Idle periods forA = 25pkts/s

'S
o
o
(=)

Dij = s (10)
j Uz
where thetransition countn;; is the number of transitions

. i — j occuring in our observation sequence. Similarly,=
0 0.2 0.4 0.6 08 1 35 ni is the number of times that the system resides in state

time [ms] i

(b) Idle periods for\ = 500pkis/s Using the above equation, we can estimate the transition
matrix given our observation sequence. The transition irmatr
is essentially constant with respect to the traffic ratén the
case of\ = 100pkts/s we have

histogram

N
o
(=)
(=)

Fig. 5. Histograms of the idle durations for small and la’ge

Data
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0.996 0.004 0 0 | e

We can see that for our measurement setup with high SNR
transmission between nodes and no hidden terminals the
sequence of states ADA —SIFS—ACK is essentially deter-
Fig. 6. Proposed Markov model. The lumped model (with detgisiic ~Ministic (the corresponding transition probabilities aery
DATA— SIFs—ACK transitions is shown on the right). close to one). Hence, it is possible to simplify the model by
Iulmping these states together. While this inhibits us to @hod

& occurrence of collisions, we retain good accuracy since
collisions are infrequent.

state. Given that the idle times show a continuous behavi
a continuous-time Markov process (CTMP) appears to

an intuitive approach. However, considering the heavgdai . . L
behavior of the idle periods (cf. Fig] 5), we can infer that Acco.rdm.g to the_above we consider the_ simplified model
this class of model is not appropriate since a CTMP requirggov.vn i IfZIQDA 6. Wg'C: con;s;(s: ofat ttransm;:] sdta:e (a_Igni\_pe
the sojourn times in each state to be exponentially digibu ;/rzrrzcizcino:s aT:d alnF i, dlzn stateK 'T'r?eefrﬁlsitio: e:gg%ﬁ

[16]. Consequently, we will consider a continuous-time sem ): ' P

Markov process, which allows for an arbitrary specificatisn for this simplified semi-Markov model are now trivial, since
the sojourn time; distribution in each state every transmit statamust be followed by an idle period.

More precisely, a semi-Markov process is a stochast Consequently, 0 fuIIy.specify the Se’T“"\"aTkOV model, we
process whose transition behavior can be characterizedoin tonly need to characterize the sojourn times in each state.

steps [17]. First, the transition between states follow akda B, Fitting sojourn distributions

chain and are hence specified by a transition matrix Given the simplified model shown in Figl 6 it remains

P11 Pin to specify the distribution?);;(¢) for the sojourn times in

P— T . 7 9) each state. This is easily done for the ANsMmIT state since
' ' ' the sojourn time in the Bra, SIFS, and AcK state are all

L deterministic, we also have a deterministic sojourn timtha

wherep;; denotes the probability that a transition from stat€ RANSMIT state.
i to statej occurs. Secondly, given that the system is in state The sojourn time in the dLE state is more difficult to
¢ and will transition to statej, the sojourn timet in state approximate. The histograms|in Fig. 5 show that for small
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Fig. 7. Fitting the sojourn time in thebLE-state forA = 25pkts/s. The right Fig. 8. Fitting the sojourn time in thebLE-state for\ = 500pkts/s. The
figure shows an enlarged view for smallThe K-S boundaries are drawn for right figure shows an enlarged view for smallThe K-S boundaries are drawn
p=0.1. for p = 0.1.

we see heavy-tailed behavior, while for lary@n exponential that is determining whethey; are drawn from a given contin-
distribution seems to be a good fit. Since we are concernig@us distribution functior¥”. Specifically, given the observa-
with finding a distribution that provides an overall goodions we first construct the empirical distribution functio

fit, we focus on distributions whose shape can approximate #iy; <t

both extremes. In particular, we consider a generalizedt®ar Fe(t) = — —, (15)

n
distribution with probability density function [19] where#i : y; < t denotes the number of observations smaller

1 N\ 117k thant. If the observations are indeed drawn from distribution
ftlk,o) = = (1 +k_> , (12) F, we would assume thaf.(t) and F(t) match well. To
g g assess the deviation from this hypothesis consider the K-S

wherek # 0 denotes the shape parameter, angpresent the test statistic
scale parameter. We assume that the threshold paratister D = max|F(t) = F(t)]. (16)

é_ertol.bltt.should be notetd t?hat fr=0 tht_e ?Sﬂffi‘)"zt?d I:‘aretoNaturally, a small value ofD suggests that the samples are
istribution converges fo the exponential distribution. indeed drawn from distribution®”. While the quantity D

The parameters for the generalized Pareto distribution 8ects the goodness-of-fit, we usually consider the sedal
estimated using maximum-likelihood techniques. The param _value. which is defined as

ter estimates are shown(in Tab. I. The fitted cumulative diyzns?
function are shown in Fig. 7 and Fig. 8 for = 25 pkts/s p = Pr(D > d|Hy). (17)
and A = 500 pkts/s, respectively. The generalized Pare
distribution shows a good fit in both cases. For comparison,

® can be shown thaf (17) is independent of the distribution

NN . . # and, givenD = d can easily be evaluated by simulation
exponential distribution is also fit to the data. While forga O[ZO]' Usually, a value ofp ~ 0.1 is deemed high enough

A the goodngss-of-ﬂt IS cpmparable to.the Paret.o distribut as to assume that the observations are indeed drawn form
an exponential assumption is clearly inappropriate forlbm%istributionF

A We applied the K-S test described above to our problem

identifying F'(¢t) with the fitted distribution andF.(¢) as the

empirical distribution function found by measurement. The
In order to validate the goodness-of-fit of the distribuonobtained values foD andp are also summarized in Tab. |I.

fit to the empirical data in the last section, we consider the While from|Fig. 7 and Fig. 8 the generalized Pareto distri-

Kolmogorov-Smirnov (K-S) test. Given independent random bution seems to be a good fit, thevalues obtained through the

C. Goodness-of-fit test

variablesYy, ..., Y,, this test is a well-known technique forK-S test seem rather small and do not reach the typical value
discerning the hypotheses of 0.1. Nevertheless, this discrepancy can be attributatigo
presence of the contention window. In fact, the idle periods
Ho @ Yi~F(t),i=1,...,n (13)  of the channel (disregarding the SIFS) will be a mixture of

Hi : Y= F(t), i=1,...,n, (14) the idle times due to the contention window and those that



A [pkts/s] 2 05 150 300 500 Furthermore, we believe that the model strikes a good
Generalized Pareto fit ise bet d tati lerity. |
% 10,3018 -0.3123 -0.3005 -0.2662 0.0239  -0.0455 COMpromise between accuracy and computation complerity.
o 0.0139 0.0072 0.0045 0.0017.35-10—4 1.59-10—4 particular, our model can be applied within the framework of
D 0.0368 0.0844 0.0572 0.0798  0.1180 0.0961  semi-Markov decision processes, allowing for derivingropt
p-value  0.4958 0.0015 0.0728 0.0032 0 0 control polices
D~ 0.0368 0.0683 0.0388 0.0396  0.0550 0.0281 P : , ,
pvalug®  0.4956 0.0180 0.4281 0.4029  0.0936 0.8138 In the future we plan to evaluate the model's goodness-of-fit
Exponential fit for more realistic traffic scenarios, including HTTP and FTP
k 0.0107 0.0054 0.0034 0.0013.30-10 % 1.53- 10 * traffic, as well as streaming applications (Voice-overviBeo
D 0.0813 0.0601 0.0797 0.0519 0.1226 0.1011 ;
p-value  0.0025 0.0518 0.0033 0.1307 0 0 conferencing, etc.).
D* 0.0813 0.0600 0.0794 0.0515 0.0536 0.0283 REFERENCES
p-valug®  0.0025 0.0525 0.0035 0.1361  0.1091 0.8070

(1]
TABLE |

Parameter estimates for the fitted generalized Pareto grmhertial
distributions, respectively. For both cases, the K-SgtatiD and
correspondingp-values are shown.

are really due to the fact that none of the terminals has datd
to transmit (we shall refer to the second scenario as a ‘freg
channel for brevity).

The fact that the distribution of the idle periods really is
a mixture of two different distributions has different effe
on the CDF, for large and smal, respectively. At small\,
the effect of the contention window is visible as an increlase
slope at small values df thus affecting theD value obtained
by the K-S test. A more appropriate goodness-of-fit measure
is thus to consider only the deviation for idle times that aré’
larger than the contention window, i.e.

D* = I?ZaTx|Fe(t) — F(t)].

(2]

(5]

(18) 8]
If we chooser = 21072 for A < 150, we obtain alternative
values of for the K-S statistics, denoted By in[Tab. I.

For increasing\, however, the contention window becomes
the dominant component (¢f. Figl 8). While in this case tq@O]
generalized Pareto distribution still nicely approxinsatee
empirical CDF, we see that this function is not smooth but
resembles a ‘staircase’. This can be attributed to the sfot
structure of the contention window with discrete composent
space20us apart. Consequently, we really are approximatirié?]
a discrete probability distribution with a continuous omela 15
have to expect some residual error. In fact, given the steep
slope of the CDF, the first few steps largely influence the ré4l
sulting D-value (cf| Fig. 8). By disregarding these components
according to[(18), we can again find modified values that
provide for a more appropriate evaluation.

Given the values forD*, we can again evaluaté (17) to
find the modifiedp*-values, again shown in Tal. I. Based onus]
the p*-values the generalized Pareto distribution appears [E%
be an appropriate fit for al\’s. In contrast, the exponential
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