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Abstract— In this paper we consider dynamically sharing the
spectrum in the time-domain by exploiting whitespace between
the bursty transmissions of a set of users, represented by an
802.11b based wireless LAN (WLAN). Realizing that exploiting
the under-utilization of the channel requires a good model of the
these users’ medium access, we propose a continuous-time semi-
Markov model that captures the WLAN’s behavior yet remains
tractable enough to be used for deriving optimal control strategies
within a decision-theoretic framework.

Our model is based on actual measurements in the 2.4 GHz
ISM band using a vector signal analyzer to collect complex
baseband data. We explore two different sensing strategies
to identify spectrum opportunities depending on whether the
primary user’s transmission scheme is known. The collecteddata
is used to statistically characterize the idle and busy periods of
the channel. Furthermore, we show that a continuous-time semi-
Markov model is able to capture the data with good accuracy.
The Kolmogorov-Smirnov test is used to validate the model and
to assess the model’s goodness-of-fit quantitatively. A conclusion
summarizes the main results of the paper.

I. I NTRODUCTION

With the proliferation of wireless communication systems,
the relevant spectrum has become a scarce resource, most of
which has been allocated by regulators as of today. At most
times and locations, however, actual measurements show that
the spectrum is only lightly used. This apparent paradox gives
rise to envisioning different schemes that dynamically reuse
the spectrum without causing (significant) interference tothe
licensee, referred to as the primary user in the following.

In this paper, we consider dynamically sharing the spectrum
in the time-domain by exploiting white-space between the
bursty transmissions of a primary user [1]. In order not to
interfere with the primary user, we need to obtain a reliable
model to predict the primary users’ access.

The are numerous applications for such a setup. For in-
stance, consider the coexistence of sensor networks with
WLAN based applications (or other protocols employing
similar MAC schemes). Due to the heterogenous applications
of sensor networks and their transient deployment it seems
unrealistic to assume that separate frequency bands will be
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assigned by regulators. However, given that sensor networks
usually communicate sporadically and at low rate, it is plausi-
ble that the remaining whitespace of other applications could
be reused. A similar setup can also be envisioned for different
commercial applications such as Bluetooth and WLAN, or to
mitigate the effect of interference in unlicensed bands (such
as the ISM bands).

A. Main contribution

In this work, we propose a model that statistically describes
the busy and idle periods of a WLAN. In looking for a
model we recognize that there is a fundamental tradeoff
between analytical tractability and the accuracy of the model.
Ultimately, if we desire to derive an optimal control policy
based on such a model (presumably within a decision-theoretic
framework), we need to keep the model simple enough. At the
same time, however, a tractable model is useless if it is not
able to predict the primary user’s behavior sufficiently well.

Specifically, we show that a continuous-time semi-Markov
process (SMP) represents a good tradeoff between these
two extremes. On the one hand extensive research has been
performed on the optimal control of semi-Markov decision
processes (SMDP) allowing for our model to be embedded in
such a framework. On the other hand, the SMP is complex
enough to characterize the heavy-tailed distribution of the idle
durations appearing in practice. In particular, we show that a
generalized Pareto distribution provides for a good fit withthe
experimental data and we evaluate the goodness-of-fit using
the Kolmogorov-Smirnov test.

Finally, we emphasize that our model is based on data ob-
tained from actual measurements with a vector signal analyzer
in the2.4 GHz ISM band. We implement two different sensing
strategies and compare their results to confirm the validity
of the data. In this way, our approach not only guarantees
accurate measurement of the busy and idle periods but also
gives valuable insights when it comes to a practical, real-time
implementation in hardware.

B. Relevant work

Dynamic spectrum access schemes have recently received
considerable attention, both in terms of theoretical concepts as
well as practical implementations and testbeds [2]. Sparked by
projects such as the DARPA XG program [3] or the European



DRiVE Project [4] different methodologies have been explored
to promote efficient use of the spectrum.

Dynamically sharing the spectrum can most efficiently be
employed in the spatial or time-domain, each area having its
own challenges and limitations. In the spatial domain, the
reliable sensing of primary users has to be guaranteed, making
it necessary to detect very weak signals [5]. In such a scenario
receiver cooperation becomes crucial in many cases [6].

In time-domain applications, the main challenge lies in
predicting the medium access of the primary user, and finding
optimal control schemes that take practical limitations into
account. In [1], [7] optimal control policies are found in a
partially-observable decision framework, assuming a Marko-
vian behavior of the primary user.

From a practical viewpoint, numerous testbeds have been
set up to explore practical limitations. In [8] a sensing-based
DSP/FPGA implementation has been presented for sharing the
spectrum with a WLAN.

Statistical modeling in WLAN applications usually focuses
on parameters such as packet loss or channel quality, assuming
idealized models for the medium access and physical layer.
As a result, models proposed within such frameworks do not
easily extend to our setup. The class of semi-Markov models
considered in this paper, on the other hand, has been em-
ployed in numerous applications ranging from characterizing
VoIP traffic [9], to speech recognition tasks [10], and related
applications.

II. M EASUREMENT SETUP

In this work we identify the primary user with an 802.11b
based WLAN operating in the 2.4 GHz ISM band. Different
from existing publications that use commercial WLAN adapter
cards to obtain packet traces, we employ a vector signal
analyzer (VSA) to capture the raw complex baseband data.
Subsequently, we process these data to find the busy and idle
periods of the channel. Our approach not only guarantees an
accurate and verifiable characterization of the channel butalso
gives valuable insights into sensing strategies when it comes
to a practical implementation.

A schematic of our setup is shown in Fig. 1. The details for
both the WLAN setup and the configuration of the VSA are
provided in the following sections, respectively.
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Fig. 1. The measurement setup.

A. WLAN setup

The WLAN consists of a Netgear WGT624 wireless router
and three computers with wireless adapter cards (two Netgear
WG311T and one WG511T; cf. Fig. 1). The router operated
in a 22 MHz frequency band around2.462 GHz (Channel 11).
The router as well as the workstations were located in the
same room resulting in a high signal-to-noise ratio (SNR)
between nodes and no hidden terminals. Traffic was generated
using the Distributed Internet Traffic Generator (D-ITG) [11],
which allowed us to statistically characterize parameterssuch
as inter-departure times and packet length.

As we will discuss in detail, our measurements focus on
two traffic scenarios. First, we consider high rate UDP traffic
from one workstation to the router (the other computers are
turned off) to verify the operability of the setup. Subsequently,
we consider UDP traffic of constant packet length from all
three computers with Poisson distributed inter-departuretimes
at different rates.

B. Vector signal analyzer

In order to capture the transmissions of the WLAN dis-
cussed above we use an Agilent 89640A vector signal analyzer
to collect complex baseband samples. The device internally
downconverts the signal from2.462 GHz to an internal inter-
mediate frequency (IF) and then samples at a rate of44 MHz
[12]. A large number of continuous blocks of length0.25 s
each are collected in this way and stored for further processing.

III. SENSING STRATEGIES

Given the raw complex baseband data gathered by the VSA,
we process the data to find the idle and busy periods of the
channel. In particular, we implement two different sensing
strategies, depending on whether it is known that the primary
user forms a WLAN.

A. Energy-based detection

If the transmission standard of the primary user is not
known, a natural approach it to use energy-based detection.
To this end we partition the data into blocks ofN complex
baseband samples and then perform detection for each of
them individually (clearly, the blocks must be shorter than
the smallest busy/idle duration for this approach to work and
for edge-effects to be ignored). We formulate this problem
as a hypothesis testing problem between the null-hypothesis
of observing only noiseVi and the alternative hypothesis
of observing a signalSi in noise. Mathematically, this is
formulated as

H0 : Yi = Vi, i = 1, . . . , N (1)

H1 : Yi = Si + Vi, i = 1, . . . , N. (2)

In our analysis we assume that the noise is drawn from a
complex Gaussian distribution with zero mean and variance
σ2

0
,

Vi ∼ CN (0, σ2

0
), i = 1, . . . , N. (3)



Considering our assumption that the transmission standardof
the primary user is unknown, we further assume that the signal
Si is also drawn from a complex Gaussian distribution with
zero-mean but varianceσ2

1
,

Si ∼ CN (0, σ2

1
), i = 1, . . . , N. (4)

The above detection problem is standard [13], and the optimal
Neyman-Pearson detector is given by

T (y) =

N
∑

i=1

|Yi|
2
H1

≷
H0

γ, (5)

where the thresholdγ is determined by the desired probability
of false-alarm. Recognizing that the test statisticT (y) is χ2

distributed with2N degrees of freedom, we can establish that
the probability of false-alarm is given by

α = Pr(T (y) > γ|H0) = 1− Γ̃r(N,
γ

σ2

0

), (6)

where

Γ̃r(N, ξ) =
1

Γ(N)

∫ ξ

0

tN−1e−tdt (7)

is the regularized gamma function andΓ(N) is the complete
gamma function. Similarly, the power of the detector is given
by

β = Pr(T (y) > γ|H1) = 1− Γ̃r(N,
γ

σ2

0
+ σ2

1

). (8)

The detection performance is influenced by the number of
available samplesN as well as the relation betweenσ2

0
and

σ2

1
, which can more conveniently be expressed in terms of the

SNR = σ2

1
/σ2

0
. In particular, given desired values forα and

β as well as a lower bound on the SNR, we can determine
how many samples are needed to arrive at a detector that is
accurate enough.

For a minimum SNR of 5 dB, which is a conservative choice
for our setup, and blocks ofN = 44 samples (corresponds to
blocks of exactly1 µs) we can discern the hypotheses with
less than10−5 probability of error. It should be noted however,
that the above derivation relies on the idealized assumptions
(3) and (4). Given that we have an oversampled signal at hand,
especially (4) may require some modification. Additionally, in
a practical implementation interference from other channels is
an important limitation, especially since the WLAN channels
in the 2.4 GHz ISM band are partially overlapping [14]. In
practice it can thus be necessary to filter the signal as to
mitigate out-of-band interference.

B. Feature-based detection

The last section assumes that we do not have any informa-
tion on the transmission scheme of the primary user. However,
for some applications it is reasonable to assume that we know
that we are sharing the spectrum with a WLAN. In this case,
we can exploit this knowledge to detect packets more reliably
and to extract information on the packet length that is provided
in the packet’s header.
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Fig. 2. The PLCP preamble.

The 802.11b standard specifies that a PLCP1 preamble and
header be transmitted with the higher layer frames. The PLCP
header contains a synchronization preamble which consists
of scrambled ‘1’ bits as well as the start-of-frame delimiter,
which indicates the start of the PLCP header. The PLCP header
in turn consists of a SIGNAL -field specifying the PSDU’s rate
of transmission, a SERVICE-field used for standard specific
signaling and a LENGTH field which provides the duration in
microseconds needed to transmit the payload from higher lay-
ers (PSDU) [15]. This LENGTH-field is of particular interest,
since it provides us with the exact end of the packet. Together
with the SFD this completely determines the start and end of
each packet.
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Fig. 3. Receiver chain for the feature-based detection scheme.

The decoding chain used to decode the WLAN packets is
shown in Fig. 3. First, the complex baseband data sampled at
a rate of44 MHz is passed through a Gaussian pulse shaping
filter with a bandwidth-symbol time productBTs = 1/2.
Subsequently, the signal is correlated with the 11-sample
Barker sequence specified by the standard [14]. Consequently,
the oversampled signal shows periodic peaks whenever the
spreading sequence lines up with the input signal. By detecting
these peaks we obtain chip-synchronization. The signal is then
downsampled to the symbol rate of11 Mbps, and despread.
While there is a small but noticeable frequency offset between
transmitter and receiver, we need not compensate for it given
that the preamble is encoded using DBPSK. The decoded
bits are then descrambled and the start-of-frame delimiteris
detected. Subsequently, the SIGNAL , SERVICE, and LENGTH

fields are extracted and the CRC-check is performed to ensure
that the extracted information is correct.

It should be noted that we do not claim optimality for the
above decoding approach. However, given that we operate at
medium to high SNR the above decoding scheme yields good
results and mimics the processing used in commercial WLAN

1PLCP stands for Physical Layer Convergence Procedure.The router is
configured to only use long synchronization preambles.
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(b) Histogram for the idle durations.

Fig. 4. Histograms for the measurement validation (cf. Sec.IV-A).

adapter cards.

IV. M EASUREMENT RESULTS

In this section we present results for the busy and idle
periods of the channel obtained by processing the baseband
data using the sensing strategies discussed in the last sec-
tion. First, we focus on an idealized setup with only one
terminal and the access point. The results obtained for both
the energy and feature-based sensing match very closely,
moreover they reflect the characteristics of the WLAN’s MAC
protocol bolstering the validity of our measurement. Second,
we present our measurement results for a setup consisting of
three terminals and the access point, for varying data rates.

A. Measurement validation

In order to verify that our measurements reflect the particu-
lars of the WLAN standard, we consider a setup consisting of
a single laptop computer with a Netgear WG511T adapter card
and the wirless router. The computer generated UDP packets at
a rate of105 packets per second with constant inter-departure
times and a constant packet length of 512 Bytes. Using the
VSA we then collected 40 blocks with a duration of0.25 s each
and analyzed the data using the sensing strategies described
above. The durations of idle and busy periods were collected
and the histogram of these data is shown in Fig. 4.

First, consider the histogram of the busy periods of the
channel in Fig. 4(a). We can see that the packets have
three discrete lengths, with approximate durations of0.2 ms,
0.61 ms, and0.95 ms, respectively. Indeed this reflects the
standardized behavior of the WLAN and the particulars of
our setup. In fact, the blocks of length0.61 ms correspond to
the UDP data packets (512 B plus high layer headers), and the

blocks of length0.2 ms correspond to the acknowledgement
packets that need to be sent after each successful receptionof
a data packet. The histograms also shows that there are almost
as many acknowledgements as data packets, which indicates
that most packets are received successfully. Finally, the sig-
nificantly smaller component with length0.95 ms corresponds
to periodic beacons that need to be broadcast from the access
point for timing purposes. Such packets are sent periodically
every 100 ms.

The histogram of the idle periods reflects the particulars
of the WLAN standard as well. We see that there are two
large, discrete components at10 µs and around70−80 µs. The
former corresponds precisely to the short inter-frame space
(SIFS) that separates the transmission of a data packet and its
acknowledgement by the receiver. The latter approximately
corresponds to the distributed coordination function inter-
frame space (DIFS), that is the idle duration that must be
waited for before transmitting the next data packet. Finally, we
observe 32 discrete components spaced approximately20 µs
(that is the standardized slot-length) apart. These correspond
to the contention window that is used for the medium access
of the WLAN.

B. Measurement results

The above section bolsters the validity of our measurement
setup and the used sensing strategies. In this section we now
use a more representative setup with multiple terminals, each
running a traffic generator. While we again used UDP traffic
with a constant payload of512 B, the inter-departure times
were chosen to have independent Poisson distributions with
varying rate parameterλ. For the busy intervals we again
observe a very similar histogram compared to Fig. 4. However,
the idle times are now highly dependent on the parameterλ.
Ultimately, as the traffic rate increases the channel becomes
busier and the available whitespace decreases.

This behavior is illustrated in Fig. 5, where the upper and
lower figure correspond toλ = 25pkts/s andλ = 500pkts/s,
respectively. We can observe that in the low rate case, the
histogram suggests a heavy-tailed behavior; we will address
this fact in more detail in the next section. On the other hand,
at high rate, the histogram more resembles an exponential
distribution.

V. PROPOSED SEMI-MARKOV MODEL

The measurement results presented in the last section allow
for two important conclusions when it comes to establishing
a model. First, we can categorize the state of the channel by
four different states. In particular we assume that the channel
can be busy due to either the transmission of a data packet, or
due to the transmission of an acknowledgement. Second, the
channel is either idle for just the short inter-frame space,or for
an extended period either corresponding to stations contending
for the medium, or the fact that none of the terminals has data
to transmit. The state space of the model is illustrated in Fig. 6.

From the viewpoint of a secondary user, it is especially
important to characterize how long the channel remains in each
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Fig. 6. Proposed Markov model. The lumped model (with deterministic
DATA→SIFS→ACK transitions is shown on the right).

state. Given that the idle times show a continuous behavior,
a continuous-time Markov process (CTMP) appears to be
an intuitive approach. However, considering the heavy-tailed
behavior of the idle periods (cf. Fig. 5), we can infer that
this class of model is not appropriate since a CTMP requires
the sojourn times in each state to be exponentially distributed
[16]. Consequently, we will consider a continuous-time semi-
Markov process, which allows for an arbitrary specificationof
the sojourn time distribution in each state.

More precisely, a semi-Markov process is a stochastic
process whose transition behavior can be characterized in two
steps [17]. First, the transition between states follow a Markov
chain and are hence specified by a transition matrix

P =







p11 · · · p1n

...
. . .

...
pn1 · · · pnn






, (9)

wherepij denotes the probability that a transition from state
i to statej occurs. Secondly, given that the system is in state
i and will transition to statej, the sojourn timet in state

i is distributed according to cumulative distribution function
Qij(t). Note that pii = 0 for all i because the arbitrary
specification of the sojourn time fully captures the time spent
in each state.

A. Estimating transition probabilities

The first step in characterizing the channel as a semi-
Markov process is to estimate the transition probabilitiesfrom
our measurement data. Given the idle and busy durations we
first classify every observation according to the four states of
our model. Then, given this unbroken chain of observations,
we can use well-known maximum-likelihood techniques [18]
to obtain estimates for the transition probability matrix.

In particular, consider the following estimator

p̂ij =
nij

ni
(10)

where thetransition countnij is the number of transitions
i → j occuring in our observation sequence. Similarly,ni =
∑

k nik is the number of times that the system resides in state
i.

Using the above equation, we can estimate the transition
matrix given our observation sequence. The transition matrix
is essentially constant with respect to the traffic rateλ. In the
case ofλ = 100pkts/s we have

P =









0 0 0.960 0.040
0 0 0.003 0.997

0.002 0.998 0 0
0.996 0.004 0 0









Data
←−−

ACK
←−−

SIFS
←−−

Idle
←−

. (11)

We can see that for our measurement setup with high SNR
transmission between nodes and no hidden terminals the
sequence of states DATA→SIFS→ACK is essentially deter-
ministic (the corresponding transition probabilities arevery
close to one). Hence, it is possible to simplify the model by
lumping these states together. While this inhibits us to model
the occurrence of collisions, we retain good accuracy since
collisions are infrequent.

According to the above we consider the simplified model
shown in Fig. 6, which consists of a ‘transmit’ state (a lumped
version of DATA , SIFS, and ACK states with deterministic
transitions), and an idle state. The transition probabilities
for this simplified semi-Markov model are now trivial, since
every transmit statemust be followed by an idle period.
Consequently, to fully specify the semi-Markov model, we
only need to characterize the sojourn times in each state.

B. Fitting sojourn distributions

Given the simplified model shown in Fig. 6 it remains
to specify the distributionQij(t) for the sojourn times in
each state. This is easily done for the TRANSMIT state since
the sojourn time in the DATA , SIFS, and ACK state are all
deterministic, we also have a deterministic sojourn time inthe
TRANSMIT state.

The sojourn time in the IDLE state is more difficult to
approximate. The histograms in Fig. 5 show that for smallλ
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we see heavy-tailed behavior, while for largeλ an exponential
distribution seems to be a good fit. Since we are concerned
with finding a distribution that provides an overall good
fit, we focus on distributions whose shape can approximate
both extremes. In particular, we consider a generalized Pareto
distribution with probability density function [19]

f(t|k, σ) =
1

σ

(

1 + k
t

σ

)−1−1/k

, (12)

wherek 6= 0 denotes the shape parameter, andσ represent the
scale parameter. We assume that the threshold parameterθ is
zero. It should be noted that fork = 0 the generalized Pareto
distribution converges to the exponential distribution.

The parameters for the generalized Pareto distribution are
estimated using maximum-likelihood techniques. The parame-
ter estimates are shown in Tab. I. The fitted cumulative density
function are shown in Fig. 7 and Fig. 8 forλ = 25 pkts/s
and λ = 500 pkts/s, respectively. The generalized Pareto
distribution shows a good fit in both cases. For comparison, an
exponential distribution is also fit to the data. While for large
λ the goodness-of-fit is comparable to the Pareto distribution,
an exponential assumption is clearly inappropriate for small
λ.

C. Goodness-of-fit test

In order to validate the goodness-of-fit of the distributions
fit to the empirical data in the last section, we consider the
Kolmogorov-Smirnov (K-S) test. Givenn independent random
variablesY1, . . . , Yn, this test is a well-known technique for
discerning the hypotheses

H0 : Yi ∼ F (t), i = 1, . . . , n (13)

H1 : Yi ≁ F (t), i = 1, . . . , n, (14)
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that is determining whetheryi are drawn from a given contin-
uous distribution functionF . Specifically, given the observa-
tions we first construct the empirical distribution function

Fe(t) =
#i : yi ≤ t

n
, (15)

where#i : yi ≤ t denotes the number of observations smaller
thant. If the observations are indeed drawn from distribution
F , we would assume thatFe(t) and F (t) match well. To
assess the deviation from this hypothesis consider the K-S
test statistic

D = max
t
|Fe(t)− F (t)|. (16)

Naturally, a small value ofD suggests that the samples are
indeed drawn from distributionF . While the quantityD
reflects the goodness-of-fit, we usually consider the so-called
p-value, which is defined as

p = Pr(D ≥ d|H0). (17)

It can be shown that (17) is independent of the distribution
F and, givenD = d can easily be evaluated by simulation
[20]. Usually, a value ofp ≈ 0.1 is deemed high enough
as to assume that the observations are indeed drawn form
distributionF .

We applied the K-S test described above to our problem
identifying F (t) with the fitted distribution andFe(t) as the
empirical distribution function found by measurement. The
obtained values forD andp are also summarized in Tab. I.

While from Fig. 7 and Fig. 8 the generalized Pareto distri-
bution seems to be a good fit, thep-values obtained through the
K-S test seem rather small and do not reach the typical value
of 0.1. Nevertheless, this discrepancy can be attributed tothe
presence of the contention window. In fact, the idle periods
of the channel (disregarding the SIFS) will be a mixture of
the idle times due to the contention window and those that



λ [pkts/s] 25 50 75 150 300 500

Generalized Pareto fit
k -0.3018 -0.3123 -0.3095 -0.2662 -0.0239 -0.0455
σ 0.0139 0.0072 0.0045 0.00172.35 · 10

−4
1.59 · 10

−4

D 0.0368 0.0844 0.0572 0.0798 0.1180 0.0961
p-value 0.4958 0.0015 0.0728 0.0032 0 0

D∗ 0.0368 0.0683 0.0388 0.0396 0.0550 0.0281
p-value∗ 0.4956 0.0180 0.4281 0.4029 0.0936 0.8138

Exponential fit
k 0.0107 0.0054 0.0034 0.00132.30 · 10

−4
1.53 · 10

−4

D 0.0813 0.0601 0.0797 0.0519 0.1226 0.1011
p-value 0.0025 0.0518 0.0033 0.1307 0 0

D∗ 0.0813 0.0600 0.0794 0.0515 0.0536 0.0283
p-value∗ 0.0025 0.0525 0.0035 0.1361 0.1091 0.8070

TABLE I

Parameter estimates for the fitted generalized Pareto and exponential

distributions, respectively. For both cases, the K-S statistic D and

correspondingp-values are shown.

are really due to the fact that none of the terminals has data
to transmit (we shall refer to the second scenario as a ‘free’
channel for brevity).

The fact that the distribution of the idle periods really is
a mixture of two different distributions has different effects
on the CDF, for large and smallλ, respectively. At smallλ,
the effect of the contention window is visible as an increased
slope at small values oft, thus affecting theD value obtained
by the K-S test. A more appropriate goodness-of-fit measure
is thus to consider only the deviation for idle times that are
larger than the contention window, i.e.

D∗ = max
t≥τ
|Fe(t)− F (t)|. (18)

If we chooseτ = 2 · 10−3 for λ ≤ 150, we obtain alternative
values of for the K-S statistics, denoted byD∗ in Tab. I.

For increasingλ, however, the contention window becomes
the dominant component (cf. Fig. 8). While in this case the
generalized Pareto distribution still nicely approximates the
empirical CDF, we see that this function is not smooth but
resembles a ‘staircase’. This can be attributed to the slot
structure of the contention window with discrete components
space20µs apart. Consequently, we really are approximating
a discrete probability distribution with a continuous one and
have to expect some residual error. In fact, given the steep
slope of the CDF, the first few steps largely influence the re-
sultingD-value (cf. Fig. 8). By disregarding these components
according to (18), we can again find modified valuesD∗ that
provide for a more appropriate evaluation.

Given the values forD∗, we can again evaluate (17) to
find the modifiedp∗-values, again shown in Tab. I. Based on
the p∗-values the generalized Pareto distribution appears to
be an appropriate fit for allλ’s. In contrast, the exponential
distribution is a poor fit fit for smallλ.

VI. CONCLUSION

In conclusion, we have proposed a continuous-time semi-
Markov model that captures the idle periods remaining be-
tween the bursty transmissions of a wireless LAN. We demon-
strate that a generalized Pareto distribution provides foran
adequate fit for varying packet ratesλ.

Furthermore, we believe that the model strikes a good
compromise between accuracy and computation complexity. In
particular, our model can be applied within the framework of
semi-Markov decision processes, allowing for deriving optimal
control polices.

In the future we plan to evaluate the model’s goodness-of-fit
for more realistic traffic scenarios, including HTTP and FTP-
traffic, as well as streaming applications (Voice-over-IP,video
conferencing, etc.).
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