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A Sensing-Based Cognitive Coexistence Method for
Interfering Infrastructure and Ad-Hoc Systems

Stefan Geirhofer, Lang Tong†, and Brian M. Sadler

Abstract

The rapid proliferation of wireless systems makes interference management more and more impor-
tant. This paper presents a novel cognitive coexistence framework, which enables an infrastructure system
to reduce interference to ad-hoc or peer-to-peer communication links in close proximity. Motivated by
the superior resources of the infrastructure system, we study how its centralized resource allocation can
accommodate the ad-hoc links based on sensing and predicting their interference patterns.

Based on an ON/OFF continuous-time Markov chain model, the optimal allocation of power and
transmission time is formulated as a convex optimization problem and structured solutions are derived.
The optimal scheduling is extended to the case where the infrastructure channel is random and rate
constraints need only be met in the long-term average. Finally, the multi-terminal case is addressed and
the problem of optimal sub-channel allocation discussed. Numerical performance analysis illustrates that
utilizing the superior flexibility of the infrastructure links can effectively mitigate interference.

Index Terms

Cognitive Radio; Resource Allocation and Interference Management; Standards Coexistence; Dy-
namic Spectrum Access;

I. INTRODUCTION

The rapid growth of wireless networks makes interference animportant performance impedi-
ment and motivates a careful study of coexistence. In unlicensed bands, where there is a lack of
coordination among heterogeneous technologies, traditional forms of coexistence are based on
statically separating systems, for example by having them operate in disjoint frequency bands.
However, such static approaches are inefficient and not ableto accommodate the projected growth
in deployments.

The high interference conditions which are prevalent in unlicensed bands are in contrast to
a fairly low average utilization, which results from the burstiness of traffic that is supported
by these systems and the random medium access behavior typically employed. This contrast
motivates dynamic approaches to interference management which can leverage unused spectrum
opportunities.

Cognitive radio presents a new framework for analyzing thisproblem. Reconfigurable radio
platforms enable a dynamic adaptation of transmission parameters based on monitoring the radio
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environment. In this way it is possible to reduce interference by detecting and predicting temporal
activity patterns and avoiding transmission overlaps. Ultimately this may lead to a newcognitive
coexistence paradigm.

This paper addresses a special case of cognitive coexistence involving two different types
of networks: an infrastructure (IS) wide area network that shares spectrum with local, ad-hoc
(AH) or peer-to-peer systems. Motivated by the superior communication resources of the IS
system, we analyze how its flexible, centralized resource allocation can accommodate the AH
links based on sensing and predicting their interference patterns. Despite adapting its resource
allocation based on sensing results, the IS system minimizes interference to the AH network
subject to maintaining a specified quality-of-service (QoS) level for its users.

This approach is different from typical dynamic spectrum access (DSA) problem formulations
in which a secondary system exploits spectrum opportunities left over by a primary system,
subject to the constraint that no significant interference is created (see [1] for a review). While
both approaches are hierarchical, spectrum property rights in DSA mandate that secondary
users adapt to spectrum licensees. In contrast, in cognitive coexistence it is possible to use the
flexibility of the primary system to accommodate a secondary(perhaps lower priority) system
while maintaining a desired primary system performance level. This could be viewed as a “best-
effort” approach toward interference management and coexistence.

This framework is relevant to a number of practical setups. For example, the convergence of
wide and local area networks has received increasing interest. The coexistence of IEEE 802.16
and IEEE 802.11 systems in unlicensed bands is such an example of practical importance
[2], [3]. Similarly, coexistence issues that arise when different radio technologies need to be
integrated into a single device,incorporating peer-to-peer connectivity into cellular networks [4]
or accommodating femto-cell base stations [5] are potential scenarios where this work could be
applied. Yet other applications arise in the military domain, where the coexistence of high and
low priority links is a fundamental concern [6].

A. Main contribution

This paper addresses the coexistence of two wireless networks that operate on different spatial
scales: a longer range IS network that interferes with localAH links. We address the question
of whether the IS network can accommodate surrounding AH links by allocating power and
transmission time judiciously. Specifically, we make the following contributions:

• The problem of optimal power and transmission time allocation is formulated as a convex
program and the optimal frame-level solution is derived. Based on optimality conditions,
a solution algorithm with guaranteed convergence and low complexity is introduced. The
structure of the optimal solution is studied to provide further intuition.

• The frame-level problem is relaxed to the case of average rate constraints, in which statistical
knowledge of the activity patterns of the AH users and the IS channel coefficients are used
to allocate resources in both frequency and time.

• Finally, a scenario with multiple IS users is considered in which the IS base station allocates
sub-channels based on average interference metrics and users perform optimal power and
transmission time allocation based on sensing results. A comparison with conventional sub-
channel allocation methods shows that heuristics may yieldperformance close to optimal.

These contributions are corroborated by numerical resultswhich demonstrate that judicious
transmission time allocation can mitigate interference effectively.
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B. Related work

Optimal resource management in multiuser multicarrier wireless systems has been well-studied
for both downlink and uplink cases; see [7], [8], [9] for an overview of the topic. In cognitive
radio networks, optimal resource allocation is more challenging because it needs to incorporate
interference constraints, which protect the primary system from harmful interference. Typical
formulations aim at finding a power and sub-channel allocation which maximizes the throughput
of the cognitive radio system while meeting interference and power constraints. Recent work in
this area includes [10], [11]. In addition to meeting interference constraints, spectrum sharing
and self-coexistence within the cognitive radio network also need to be addressed. Contributions
in this area include [12], [13], [14], [15]. Within the framework of cognitive coexistence, the
optimal power allocation based on knowledge of the interference channel has been addressed in
[16] by the authors of this paper. Previous work on improving thecoexistence among local and
personal area networks includes [17], [18] in which a cognitive frequency hopping protocol is
derived based on temporal activity models. To the best of theauthors’ knowledge, interference-
aware power and transmission time allocation based on predicting temporal activity patterns has
not been addressed before.

C. Organization and notation

The rest of this paper is organized as follows. After introducing the problem setup inSec. II
the optimal frame-level allocation is derived inSec. III. The results are extended to the average
rate case inSec. IVand sub-channel assignment is considered inSec. V. Throughout this paper
notation is fairly standard. Vectors are typeset in boldface. For an eventX , the indicator function
1[X ] is equal to one ifX occurs and zero otherwise. The notation(·)+ is used to abbreviate
max{0, ·}.

II. PROBLEM FORMULATION

A. System setup

The system setup is shown inFig. 1. We consider an IS system, which consists of a base
station and a single client (the multi-terminal case will beaddressed inSec. V). The uplink
transmissions of this client may strongly interfere with local transmissions of one or multiple
AH networks surrounding the client. For this setup, the problem of optimally assigning power
and transmission time at the IS client, such as to minimize interference to the AH links is
analyzed. The time/frequency behavior of both systems is shown in Fig. 1b.

Ad-hoc network: The AH network consists of a set of AH nodes which operate in a frequency
band that overlaps with the IS system. As depicted inFig. 1bthere can be multiple AH networks
which operate inM non-overlapping bands that each overlap with a certain set of IS sub-channels.
It is assumed that the partitioning of the AH bands is fixed andthat the temporal activity of
different bands is statistically independent.

We model the time behavior of each AH band by a two-state ON/OFF continuous time Markov
chain (CTMC). The holding times in both ON and OFF state are exponentially distributed with
parametersµ for the ON state andλ for the OFF state. Therefore, if an AH link is detected to
be in a certain state at timet0, then its transition matrix for timet0 + τ is given by

P(τ) =
1

λ + µ

[

µ + λe−(λ+µ)τ λ− λe−(λ+µ)τ

µ− µe−(λ+µ)τ λ + µe−(λ+µ)τ

]

, (1)
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which follows directly from the definition of a CTMC [19, p.391]. Therefore, the probability of
an AH link being ON at timet0 + τ , conditioned on having it observed in the ON (OFF) state
at time t0 is given by the lower right (upper right) entry in the matrix above.

Modeling AH links based on a two-state CTMC approximates thecarrier sense random
medium access typically employed in such systems. This modeling approach has been used
in related publications [18], [20] and solidified by a measurement-based analysis of WLAN
traffic [17]. The CTMC assumption strikes a good tradeoff between modelaccuracy and the
analytical tractability that is needed in the subsequent sections.A discussion on how to estimate
these model parameters in practice is also contained in the aforementioned publications.

Infrastructure system: The IS system operates in the same frequency band as the AH network,
consists ofN subcarriers,and evolves in frames of fixed durationT . At the beginning of each
frame, spectrum sensing is used to detect the ON/OFF activity of the AH bands, and based on
the sensing outcome, power and transmission time are assigned; seeFig. 1b.

Throughout the paper we assumeperfect sensing, that is, sensing outcomes are always accurate
and the overhead associated with sensing is negligible.1 Due to the proximity of IS and AH
systems, the detection task is conceptually similar to the carrier sensing employed in systems
such as IEEE 802.11. We further assume that the IS clients possess a larger transmit power
compared to the AH terminals, enabling us to ignore interference from the AH terminals to the
IS base station.

Based on the sensing result at the beginning of each frame, the IS system allocates power
and transmission time on a sub-channel basis. This is conceptually similar to the allocation
of time/frequency resource blocks in broadband cellular systems based on OFDMA. The case
where a subset or even all sub-channels need to share the sametiming allocation (for example
when transmissions in the entire band can only be turned on oroff) has worse performance in
general. Nevertheless, a similar solution approach remains applicable.

The IS system minimizes interference subject to maintaining rate requirements for its client.
The rate that is supported by a specific sub-channel is modeled based on a channel capacity
formulation,

∑

n

ρn log

(

1 + κ
pn|hn|

2

ρnN0

)

=
∑

n

ρn log

(

1 +
pnβn

ρn

)

, (2)

wherep = [p1, . . . , pN ]T denotes the power allocation,ρ = [ρ1, . . . , ρN ]T represents the trans-
mission time allocation,N0 is the noise power,κ a normalization factor, andβn is introduced
for notational convenience2.

B. Interference metrics and scheduling assumptions

The interference between IS and AH networks is modeled by theaverage temporal overlap
between both systems. Based on the sensing result at the beginning of the frame and knowledge
of the CTMC parameters of the AH links, transmission time andpower are allocated.

Modeling interference based on temporal overlap approximates a scenario in which the cross-
talk is high enough to make any overlapping transmissions ofIS and AH system unsuccessful.

1In contrast to many DSA setups, where very weak signals need to be detected, the proximity of AH terminals to the IS
client leads to moderate to high average signal-to-noise-ratios. This facilitates the sensing task and enables us to employ simple
methods such as energy detection.

2The above formulation encompasses a channel capacity formulation (for κ = 1) as well as the case of variable-rate M-QAM
in which caseκ = 1.5/(− ln BER) is chosen such that a targetBER is met [21].
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While it is conceptually possible to optimize a joint metricof interfering power and transmission
time overlap, such a formulation renders the problem non-convex and computationally intractable.
Moreover, explicitly modeling the interfering power at theAH nodes would require the IS clients
to estimate channel conditions, an assumption that is non-trivial in practice.

The allocation of transmission time consists of specifyingduration and placement of the
transmission within the current frame. We first show that it is optimal to transmit at the beginning
(the end) of the frame if the sensing outcome is idle (busy).

Lemma 1: Assume that aρ fraction of transmission time needs to be allocated to a sub-
channel, on which the AH user’s ON/OFF behavior is modeled bythe CTMC (1). Based on
a sensing outcome at the beginning of the frame, the minimum expected overlap with the ON
period of the AH user is achieved by

• transmitting at the beginning of the frame (i.e., during [0, ρT ]) if the sensing outcome was
idle and

• transmitting at the end of the frame (i.e., during [(1− ρ)T, T ] if the sensing outcome was
busy.
Proof: see appendix.

Based on Lemma 1, we derive the expected time overlap betweenIS and AH transmissions,
conditioned on the sensing resulty ∈ {0, 1} at the beginning of the frame. Consider a sub-
channeln, which overlaps with AH bandi = g(n). Then, the activity ofAH users in bandi is
given by the CTMC{Xi(ξ), ξ ≥ 0} with parametersλi andµi. Transmitting for aρ fraction of
the frame, leads to the expected time overlapφn,y(ρ), wherey denotes the sensing result. This
yields

φn,0(ρ) =
1

T
E







ρT
∫

0

1{Xi(ξ)=1}dξ

∣

∣

∣

∣

X(0) = 0







=
1

T

ρT
∫

0

Pr(X(ξ) = 1|X(0) = 0)dξ (3)

if the sensing result was idle (y = 0). By substituting (1) it is then easy to show that

φn,0(ρ) = λi

(λi+µi)T

(

ρT + 1
λi+µi

(e−(λi+µi)ρT − 1)
)

. (4)

In the case of a busy sensing result,y = 1, we obtain

φn,1(ρ) = λi

(λi+µi)T

(

ρT + µi/λi

λi+µi
e−(λi+µi)T (e(λi+µi)ρT − 1)

)

. (5)

This derivation made use of the fact that the sensing resultsof two IS sub-channels are either
perfectly correlated (if they overlap with the same AH band)or statistically independent (if they
overlap with different bands). Therefore, the prediction performance of a specific sub-channel
cannot be improved by using sensing results from other sub-channels.

Lemma 2: The functionsφn,0(ρ) andφn,1(ρ) are strictly convex and increasing inρ.
Proof: Both φn,0(ρ) and φn,1(ρ) are nonnegative linear combinations of a convex and a

strictly convex function. One is linear, the other an exponential function with nonzero exponent.
The monotonicity can easily be verified by differentiation.
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III. OPTIMAL FRAME-LEVEL ALLOCATION

Consider a single IS client, which minimizes the time overlap between IS and AH trans-
missions subject to maintaining a rate constraint across the IS channel to the IS base station.
Mathematically, this leads to problemP1

min
p,ρ

∑

n

φn,yn
(ρn) (6)

s.t.
∑

n

ρn log

(

1 +
pnβn

ρn

)

≥ R (7)

∑

n

pn ≤ P (8)

pn ≥ 0, 1 ≤ n ≤ N (9)

0 ≤ ρn ≤ 1, 1 ≤ n ≤ N, (10)

with rate constraintR (7) and power constraintP (8). It is straightforward to show thatP1 is
a convex optimization problem since the objective functionis convex (by Lemma 2), the rate
constraint (once rewritten in standard form) is convex by the perspective property [22], and all
other constraints are linear.

A solution to P1 can be found by general solution techniques in polynomial time [22]. For
this specific problem, however, it is possible to show a special structure that enables us to gain
further insight into the problem.

A. Optimality conditions and solution structure

The solution structure is obtained by introducing Lagrangemultipliers γ and ǫ for the rate
and power constraint, respectively. This leads to the Lagrangian

L(p, ρ; γ, ǫ) =
∑

n

φn,yn
(ρn) + γ

[

R−
∑

n

ρn log

(

1 +
pnβn

ρn

)

]

+ ǫ

[

∑

n

pn − P

]

. (11)

The Karush-Kuhn-Tucker (KKT) optimality conditions are then given by the constraints (7)-
(10) of P1, nonnegativity constraints for the Lagrange multipliers,γ ≥ 0, ǫ ≥ 0, the slackness
conditions

γ

[

R−
∑

n

ρ∗
n log

(

1 +
p∗nβn

ρ∗
n

)

]

= 0 (12)

ǫ

[

∑

n

p∗n − P

]

= 0, (13)

the condition
∂L(p, ρ; γ, ǫ)

∂pn

∣

∣

∣

∣

pn=p∗n

{

= 0, p∗n > 0
> 0, p∗n = 0

, (14)

and
∂L(p, ρ; γ, ǫ)

∂ρn

∣

∣

∣

∣

ρn=ρ∗n







> 0, ρ∗
n = 0

= 0, ρ∗
n ∈ (0, 1)

< 0, ρ∗
n = 1

. (15)
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Expressions (14) and (15) can be understood on an intuitive level by noting that forp∗n andρ∗
n

to be minimizers ofL(p, ρ; γ, ǫ), their partial derivative must equal zero unless they lie onthe
boundary of the feasible set.

Solution structure for p∗n: By substituting (11) into (14) and solving forp∗n we arrive at

p∗n = ρn

(

ν −
1

βn

)+

, (16)

whereν := γ/ǫ has been introduced to simplify notation in what follows. For any fixed value
of ρn, (14) represents a water filling solution [23].

Solution structure for ρ∗
n: The optimal transmission time allocation is obtained by substituting

(11) and (16) into (15). For an idle sensing result,yn = 0, we obtain,

ρ∗
n =

{

1
(λi+µi)T

log 1

1−
λi+µi

λi
γhn(ν)

, γhn(ν) ≤ ζ0,i

1, o.w.
, (17)

whereζ0,i = λi/(λi + µi)(1 − exp(−(λi + µi)T ) and i = g(n) denotes the AH sub-band that
overlaps with sub-channeln. In the above equation we have defined

hn(ν) := [log(νβn)]+ −
(νβn − 1)+

1 + (νβn − 1)+
(18)

to simplify notation. Similarly, we can obtain the solutionstructure for the case of a busy sensing
result,yn = 1,

ρ∗
n =











0, γhn(ν) < ζ1,i

1 +
log

(

λi+µi
µi

γhn(ν)−
λi
µi

)

(λi+µi)T
, ζ1,i ≤ γhn(ν) ≤ 1

1, γhn(ν) > 1,

, (19)

whereζ1,i = λi/(λi + µi)(1 + µi/λi exp(−(λi + µi)T ). Note that the above expressions depend
on the Lagrange multipliers only through the termγhn(ν) which does not depend on the AH
activity parametersλi andµi. Further, the transmission time allocations (17)-(19) are monotonic
with respect to this term.

B. Iterative solution algorithm for γ and ν

To find the optimal power and transmission time allocation based on the above closed-form
expressions, we present an algorithm for finding the pair[γ∗, ν∗], which corresponds to the
optimal solution ofP1.

For any pair[γ, ν] the power allocationp(γ, ν) and transmission time allocationρ(γ, ν) define
the optimal solution toP1 with modified rate constraint

R(γ, ν) :=
∑

n

ρn(γ, ν)[log(νβn)]+ (20)

and modified power constraint

P (γ, ν) :=
∑

n

ρn(γ, ν)

(

ν −
1

βn

)+

, (21)

whereρn(γ, ν) is given by (17) or (19) (depending on the sensing result). The fact that this
solution is optimal for rate constraintR(γ, ν) and power constraintP (γ, ν) follows directly
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from the KKT optimality conditions, which are necessary andsufficient for convex optimization
problems [22].

Based on the above, finding the pair[γ∗, ν∗] corresponding to the given rate constraintR and
power constraintP could theoretically be performed by searching all pairs[γ, ν]. In this section
we show, however, thatR(γ, ν) andP (γ, ν) exhibit some monotonicity which enables us to use
the bisection method for finding[γ∗, ν∗] with guaranteed convergence and low complexity. We
first study the case of keepingγ fixed and adjustingν such that the rate constraint is met with
equality. Then, we show that the allocated sum power decreases withγ.

We note that similar iterative algorithms have been proposed in the literature optimizing the
performance of DSL modems [24]. Despite conceptual similarities the algorithm presented in
this paper is tailored to the specific optimization problem under consideration.

Adjusting ν to meet the rate constraint: We first consider the case of adjustingν such that
R(γ, ν) = R while keepingγ fixed. It is easy to verify that for anyn, hn(ν) is nondecreasing in
ν. Therefore,ρn(γ, ν) increases withγ as well as can be seen from (17) and (19). Further, since
ρn(γ, ν) increases withν for fixed γ, so doesR(γ, ν). We can exploit this property to find theν
for which R(γ, ν) = R by the bisection method. First, we can find upper and lower bounds,νu

andνl, for this value. These bounds are guaranteed to exist sinceR(γ, ν)→∞ for ν →∞ and
R(γ, ν)→ 0 for ν → 0. Once these bounds have been obtained the bisection method iteratively
finds ν∗ with guaranteed convergence.

Adjusting γ to meet the power constraint: Having obtained an algorithm for findingν for
arbitraryγ such that the rate constraint is satisfied, we study the behavior of the power constraint
asγ is adjusted. Asγ is varied, we continue to adjustν such that the rate constraint is satisfied
at all times. The pair of Lagrange multipliers is therefore given by [γ, ν∗(γ)].

The slackness conditions imply that at the optimal solutionboth rate and power constraints
are met with equality. From (20) we observe that decreasingγ requires increasingν in order to
continue meeting the rate constraint. Further, decreasingγ reduces the objective function because
log(ν̂βn) ≥ log(νβn) for ν̂ ≥ ν, enables us to reduceρn(γ, ν∗(γ)) for at least somen.

Since decreasingγ requires increasingν, the allocated sum power increases asγ decreases.
Intuitively, a constant rate constraint (20) requires (21) to increase because the term[ν∗(γ)− 1

βn
]+

increases faster than[log(ν∗(γ)βn)]
+. The following lemma shows this rigorously.

Lemma 3: The sum power
∑

n pn associated with allocation[γ, ν∗(γ)] is a decreasing function
in γ.

Proof: see appendix.
Lemma3 enables us to findγ∗ again by the bisection method. Assuming thatP1 is feasible

which we will assume hereafter,3 there exist boundsγu andγl such thatP (γu, ν
∗(γu)) ≤ P ≤

P (γl, ν
∗(γl)). Therefore, by starting the bisection method from these points we can find the pair

[γ∗, ν∗] with guaranteed convergence. The solution algorithm is shown in detail in Fig. 2. The
inner loop (lines 4–14) correspond to findingν∗(γ), whereas the outer loop findsγ∗.

C. Properties of optimal allocations

Beyond simplifying solution algorithms, the structured solutions also enable us to make some
qualitative statements about the optimal resource allocation.

3It is straightforward to show thatP1 is infeasible exactly when despite full transmission time utilization there is no common
solution to rate and power constraint. Mathematically, this means that despite settingρn = 1 for all n in equation (7), (8) and
(7) do not have a common solution. From a practical viewpoint this could be viewed as an outage scenario in which the IS
user’s quality-of-service cannot be achieved with the resources available.
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Ordering in terms of IS channel quality: We first investigate the ordering with respect to
the IS channel coefficientsβn. This scenario is shown inFig. 3afor N = 4 sub-channels with
coefficientsβ = [.9, 1.1, .5, 1.5]T . We observe that, for any rate constraint, more transmission
time is allocated to the sub-channel with higher channel coefficient, i.e., βi ≥ βj ⇒ ρi ≥ ρj

provided all other parameters and the sensing results are identical. On an intuitive level, this
result captures the fact that in channels with highβi we can achieve the same rate in a shorter
transmission duration using the same amount of power. Mathematically, the result follows from
the monotonicity of the optimal solution andhn(ν).

Ordering in terms of sensing results: Similar to the IS channel, the optimal transmission time
allocation can be ordered with respect to the sensing results. It is straightforward to show that
if channels have the same IS channel coefficient,βi = βj , but different sensing results, then it
is preferable to allocate more transmission time to the idlechannel,i.e., ρi ≥ ρj (note that this
holds even if the CTMC parameters are the same). To see this, note that for a busy sensing
result, the slot lengthT affects whether or not the channel will become available, whereas for
an idle channel we are certain that the channel is idle immediately after obtaining the sensing
result. This is illustrated inFig. 3b for N = 4, β = [.9, .9, 1.1, 1.1]T , andy = [0, 1, 0, 1]T . It
is also interesting to note that some transmission time is allocated to frames with busy sensing
results even when idle frames are not yet used to the maximum extent.

IV. OPTIMAL AVERAGE RESOURCEALLOCATION

Problem formulationP1 required that rate and power constraints are met in every frame, even
if sensing outcome or IS channel quality are disadvantageous. In practical systems, satisfying
rate constraints at the frame-level is usually unnecessary; it suffices to maintain average rate con-
straints across time. This less stringent requirement can be used to further reduce interference by
allocating less transmission time during frames with adversarial channel/interference conditions,
while compensating for the rate decrease during frames withbetter conditions. Ultimately, this
leads to an improved resource allocation across both frequency (the sub-channels of the IS
system) and time (consecutive frames of the IS system).

This section introduces such an average rate formulation byaveraging across the temporal
activity of the AH network and random IS channel coefficients. Further, this section introduces
two reference schemes that help to put the performance of theoptimal resource allocation in
perspective.

A. Formulation and solution structure

The average rate formulation requires associating probabilities with all possible sensing out-
comes. While there are a total ofN sub-channels available, the sensing outcomes for sub-channels
that overlap with the same AH band will be identical. Therefore, for M sub-bands, there are a
total of2M possible sensing outcomes. Let the set of all possible sensing outcomes be represented
by Y = {0, 1}M wherey = [y1, . . . , yM ]T ∈ Y denotes the sensing outcome per sub-band.

ProblemP2 of optimally allocating power and transmission time then becomes

min
pn,y
ρn,y

∑

y∈Y

ηy

∑

n

φn,yg(n)
(ρn,y) (22)

s.t.
∑

y∈Y

ηy

∑

n

ρn,y log

(

1 +
pn,yβn

ρn,y

)

≥ R (23)
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∑

y∈Y

ηy

∑

n

pn,y ≤ P (24)

pn,y ≥ 0, ∀y ∈ Y, 1 ≤ n ≤ N (25)

0 ≤ ρn,y ≤ 1, ∀y ∈ Y, 1 ≤ n ≤ N, (26)

whereηi,0 = µi/(λi +µi), ηi,1 = λi/(λi +µi), and due to the independence of the AH sub-bands,
ηy =

∏M
i=1 ηi,yi

. Note that this optimization problem has2M as many decision variables because
power and transmission time allocation may be different forevery possible sensing outcome.
The fact that the decision variables grow exponentially with M is not of major concern, because
M (the number of parallel AH bands) is typically quite small (on the order of one to five).

ProblemP2 can be solved similar to problemP1. In particular, by forming the Lagrangian,
introducing Lagrange multipliersγ andǫ, and taking the derivative with respect to the decision
variables, we obtain a similar solution structure as in the frame-level problem.

Problem P2 can be solved efficiently using the same approach as forP1. While solving
an instance of ProblemP2 is more involved compared toP1 due to the larger number of
decision variables, the additional complexity is balancedby a less frequent need to recompute
the solution. Specifically, in practiceP2 only needs to be recomputed when the IS channelβ

changes significantly, as the sensing results have already been incorporated into the problem
formulation. In contrast,P1 may need to be solved in every frame, as its solution depends on
both IS channel and sensing results. Therefore, from a practical standpoint, ProblemP2 may lend
itself to a less complex implementation, assuming that the IS channel varies slowly compared
to the sensing results.

B. Reference schemes

Having incorporated random sensing outcomes into our formulation, we introduce two refer-
ence schemes in order to put the performance of the optimal resource allocation in perspective.

No sensing case: As a first benchmark, consider an approach that allocates power but does
not perform any transmission time optimization. This case corresponds to conventional resource
management in IS systems, which simply allocates power to make the best use of the uplink
channel. Mathematically, this is formulated as minimizing

∑

n pn subject to the constraints (7)-
(10). We assume that for any sub-channel withpn > 0, the sub-channel is used for the entire
frame duration. Unused carriers for whichpn = 0 are not allocated any transmission time.

Idle-frame allocation: Another possible reference scheme performs spectrum sensing but
allocates resources in a suboptimal way. Specifically, consider allocating the entire frame by
settingρn = 1 for all idle sub-channels while completely avoiding busy sub-channels by setting
ρn = 0 for all n with yn = 1. In the average rate formulation, this method can be formulated
mathematically as minimizing

∑

y∈Y
ηy

∑

n pn,y subject to (23)-(26) and the additional constraint
that sub-channels with busy sensing outcome are never allocated. Note that the above optimization
problem may be infeasible even whenP2 is feasible because we are imposing the additional
restriction of never transmitting during busy frames. To ensure that the reference scheme is
always feasible whenP2 is, we force allocation to busy channels if the resulting optimization
would otherwise be infeasible.

C. Allocation for random IS channels

The previous section considered average rate constraints with respect to temporal AH activity
but fixed IS channelβ. This section further extends the analysis to the case of random IS channel

September 19, 2009 DRAFT



TO APPEAR IN WIRELESS COMMUNICATIONS AND MOBILE COMPUTING 11

coefficientsβ. The optimization problemP3 is given by

min
p(y,β)
ρ(y,β)

∫

β

∑

y∈Y

ηy

∑

n

φn,yg(n)
(ρn(y, β))dF (β) (27)

s.t.
∫

β

∑

y∈Y

ηy

∑

n

ρn(y, β) log(1 + pn(y,β)βn

ρn(y,β)
)dF (β) ≥ R (28)

∫

β

∑

y∈Y

ηy

∑

n

pn(y, β)dF (β) ≤ P (29)

pn(y, β) ≥ 0, ∀y ∈ Y, 1 ≤ n ≤ N (30)

0 ≤ ρn(y, β) ≤ 1, ∀y ∈ Y, 1 ≤ n ≤ N, , (31)

where the decision variablesp(y, β) and ρ(y, β) correspond to the power and transmission
time allocation that is used for sensing outcomey and IS channel conditionβ and F (β) is
the cumulative distribution function ofβ (which in practice would be inferred from a set of
past channel observations). By again forming the Lagrangian and computing the derivative with
respect to the decision variables, it is easy to show that thestructured solutions (14) and (17)-(19)
again hold. Therefore, it is again possible to express the allocation as a function of the Lagrange
multipliers [γ, ν]. The rate constraint can then be evaluated by

∫

β

∑

y∈Y

ηy

∑

n

ρn(y, β)[log(νβn)]+dF (β) (32)

and the allocated sum power is given by
∫

β

∑

y∈Y

ηy

∑

n

ρn(y, β)
(

ν − 1
βn

)+

dF (β). (33)

While the above integrals can only be evaluated numerically, it is possible to again find the
optimal solution via the bisection method.The complexity of the above optimization problem is
again balanced by a less frequent need for recomputing the solution. In fact, ProblemP3 only
needs to be recomputed when the channel statistics or the statistics of the sensing results change
significantly.

D. Numerical results

This section presents numerical performance results for the optimal average rate resource
allocation and compares them to the reference schemes introduced in this section. The results
were obtained forN = 5 sub-channels and a single AH sub-bandM = 1. The prediction
parameters wereλ = µ = 1 s−1 and the IS channel coefficients were modeled as statistically
independent Rayleigh fading. We further assume a block fading scenario in which the IS channel
varies slowly compared to the frame duration.

The performance for fixed IS channel and random sensing results is shown inFig. 4a for
T = 1 s and inFig. 4b for T = .1 s. The plot shows the average transmission overlap between
IS and AH network versus the achieved IS rate (note that the achieved IS rate and not the rate
constraint is plotted). The performance results are averaged over a set of independent IS channel
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realizations. Since the IS channel is assumed to vary much slower than the frame rate, it is
inevitable that for some realizations ofβ problemP2 is infeasible.The outage probability is
consequently shown inFig. 4cto put the results in perspective. Note that all three schemes have
the same outage probability since the set of power/rate constraint pairs[R, P ] for which their
underlying optimization problems become infeasible, is identical. Typical outage probabilities
of approximately 10% correspond to an IS rate of about 0.7 bps. At this rate, plots (a) and (b)
show that a significant performance gain is achieved by performing sensing-based transmission
time allocation.

The performance ordering reflects our expectations. The idle-frame allocation scheme out-
performs the no-sensing case but shows a quite significant performance gap with respect to the
optimal allocation, especially for low IS rates. Further, all curves show increasing interference as
the IS rate increases. This is expected, since high IS rates prevent the IS system from being able
to accommodate the AH links. The plots also show that idle-frame allocation and no-sensing
scheme converge for high IS rates, because allocating only idle frames is almost always infeasible
(and therefore busy frames typically need to be used as well).

By comparingFig. 4a(T = 1) andFig. 4b (T = .1), we observe that while the performance
of the optimal scheme does not change significantly, the idle-frame reference performs much
better. This is intuitive, because by reducing the frame length, it is easier to “fill up” the idle
periods of the AH network. The performance of the no-sensingscheme remains unaltered and
is the same in both figures.

The performance for average IS channel coefficients and random AH behavior is shown in
Fig. 5 which compares the solution ofP3 with the same reference schemes. We can observe that
by exploiting the channel variability and allocating across frequency and time, we can further
reduce interference. Otherwise, the performance trends are similar to those ofFig. 4. Note that
idle-frame allocation does not achieve the same channel capacity as the optimal scheme because
it only transmits in frames with an idle sensing result.

V. ALLOCATION FOR MULTIPLE IS USERS

The previous section derived the optimal power and transmission time allocation assuming
that an orthogonal set of sub-channels had already been assigned to each IS user. This enabled
us to consider each of the terminals individually and perform resource allocation based on local
sensing results.

In practice, the IS base station needs to assign sub-channels to each of the IS users without
knowing what the sensing outcomes will be. We therefore consider the problem of optimal sub-
channel allocation based on minimizing average interference metrics. This leads to a similar
formulation as compared to the average interference case inSec. IV. Once a sub-channel alloca-
tion has been computed and fed back to the IS users, they can use the locally available sensing
results to optimize their medium access. The optimal sub-channel allocation is a combinatorial
problem, which is computationally more challenging than problemsP1 throughP3, which could
be analyzed based on convex optimization. While a general analysis of this problem goes beyond
the scope of this paper we find the optimal solution for fairlysmall problem instances by
exhaustive search. A comparison with heuristic allocations suggests that efficient greedy sub-
channel allocation algorithms developed for related problem setups can be applied to this problem
and yield a performance close to optimal.

September 19, 2009 DRAFT



TO APPEAR IN WIRELESS COMMUNICATIONS AND MOBILE COMPUTING 13

A. Optimal sub-channel allocation

The problem of optimal sub-channel allocation involves assigning orthogonal sets of sub-
channels to each terminal, such that the overall interference is minimized; seeFig. 6. A mathe-
matical formulation can be based on problemP2. Specifically, definef(A) as the optimal value
of P2 where the summations over sub-channels are restricted ton ∈ A, i.e., the sub-channels
on which a specific IS user operates. Definef(A) :=∞ if P2 is infeasible.

Assume that the IS base station is serving a total ofU users. The problem of optimal sub-
channel allocation is then formulated as

min
{Au}

U
∑

u=1

f(Au) (34)

s.t. A1 ∪ · · · ∪ AU = {1, . . . , N} (35)

Ai ∩ Aj = ∅ i 6= j, (36)

where Ai denotes the set of sub-channels assigned to terminali. Due to (35) and (36) the
sub-channel allocations are mutually exclusive and collectively exhaustive. Note that the above
problem does not require knowledge of the sensing outcome atthe individual terminals. The
base station only requires knowledge of the CTMC parametersλ andµ, as well as knowledge
of the IS channel coefficientsβ.

The above problem is difficult to solve due to its combinatorial nature and conventional sub-
channel allocation methods are not easily extended to incorporate the additional dimension of
allocating transmission time. For small problem instances, however, the optimal allocation can
be found by exhaustive search.

B. Suboptimal algorithm

The problem of optimal sub-channel allocation in multicarrier systems has been well-studied
in the absence of transmission time allocation, cf. [9] and references therein. Standard methods
typically minimize the total transmit power subject to rateconstraints. In our setup, this can be
formulated mathematically as minimizing

∑U
u=1

∑

n∈Au
pn subject to rate and power constraints

for the individual terminals. While the resulting optimization problem is still combinatorial,
efficient approximation techniques have been developed with close-to-optimal performance.

Allocating sub-channels in this manner can be used as an effective heuristic. Since good
channel quality results in lower average transmission time, we conjecture that conventional sub-
channel allocation may be a good approximation to the optimal interference-aware sub-channel
allocation. Numerical results show that this is indeed the case in the scenarios we have examined.

C. Numerical results

Numerical results for the multi-terminal case are shown inFig. 7. The total average transmis-
sion time overlap (summed over all IS users) is plotted with respect to the rate constraint for
each individual IS users (constraints are assumed to be identical). The performance trends are
the same as in the case of a single IS user. For low rate requirements we can effectively mitigate
interference by assigning resources judiciously. On the other hand, as rate requirements become
more stringent, there is less flexibility in accommodating the AH links. The scenario plotted in
Fig. 7 corresponds toU = 3 terminals,N = 5 sub-channels, and Rayleigh fading IS channel
coefficients.
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The performance of the optimal and suboptimal sub-channel allocation schemes is very similar
regardless of the rate constraint. This suggests that minimizing the total transmission power is
a reasonable approximation to the optimal sub-channel allocation. In future work, we plan to
corroborate this conjecture in more detail.

VI. CONCLUSION

In conclusion, this paper has introduced a novelcognitive coexistence framework, which
enables infrastructure systems to coexist with local, ad-hoc or peer-to-peer communication links.
Based on sensing and predicting the interference patterns of these ad-hoc links, the infrastructure
system allocates power and transmission time judiciously such that overlaps with the ad-hoc links
are minimized.

We analyzed the problem within the framework of convex optimization and derived structured
solutions at the frame-level. These results were extended to the average rate case to reduce
interference further by allocation across both frequency and time. Finally, we addressed the case
of multiple IS users and provided more insight on how sub-channel allocation can be performed.

APPENDIX A
PROOF OFLEMMA 1

We denote the IS transmissions within the current frame by a finite set of closed and disjoint
time intervalsIk = [ak, bk] where eachIk ⊆ [0, T ] corresponds to a contiguous transmission of
the IS user. Clearly, this formulation incorporates possible pauses between IS transmissions. We
also require

∑

k |bk − ak| = ρT , because a total ofρT transmission time needs to be allocated.
First, consider the case of an idle sensing result at the beginning of the frame, say at time

t = 0. Then according to (3) and (1), the expected time overlap is given by

1

T

∑

k

∫ bk

ak

Pr(X(ξ) = 1|X(0) = 0)dξ =
1

T

∑

k

∫ bk

ak

λ

λ + µ

(

1− e−(λ+µ)ξ
)

dξ. (37)

Since the integrand is strictly increasing inρ, the above expression is minimized by transmitting
contiguously during the time interval[0, ρT ].

In the case of a busy sensing result, an equivalent approach leads to a strictly decreasing
integrand and therefore it is optimal to transmit during thetime interval [(1 − ρ)T, T ] in that
case.

APPENDIX B
PROOF OFLEMMA 3

In Sec. III-Bwe have defined the sum power corresponding to the pair of Lagrange multipliers
[γ, ν] asP (γ, ν). Further, we showed that by keepingγ fixed and varyingν it is possible to find
a ν∗(γ) for which the rate constraint is satisfied with equality. To simplify notation let us now
defineP (γ) as the sum power associated with[γ, ν∗(γ)].

The proof thatP (γ) decreases withγ proceeds by contradiction. First, we note thatγ → 0
implies P (γ) → ∞ due to the structure of the optimal solutions (17)-(19). Assume now that
P (γ) is not monotonically decreasing. Then, becauseP (γ) is continuous, there exist two different
values ofγ, sayγ1 andγ2, such thatP (γ1) = P (γ2).
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Based on the KKT conditions stated inSec. III-A, it is easy to verify that bothγ1 and γ2

correspond to optimal solutions of ProblemP1 with rate constraintR(γ1, ν
∗(γ1)) and power

constraintP (γ1, ν
∗(γ1)). Further, from the structure of the optimal solutions it is clear that the

transmission time allocations associated withγ1 andγ2 must be different, that is,ρ(γ1) 6= ρ(γ2).
This is a contradiction, however, because ProblemP1 has a strictly convex objective function
and therefore at most one optimal solution.
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Fig. 1: System setup. An infrastructure link allocates power and transmission time such as to
minimize interference to close-by ad-hoc networks. The interference-aware resource allocation
is based on detecting and predicting the ad-hoc system’s temporal activity.
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Algorithm 1: Solution Algorithm

Initialization. Obtain boundsνl, νu, γl, γu;1

repeat2

γ̂ ← (γu − γl)/2;3

repeat4

ν̂ ← (νu − νl)/2;5

Find time allocationρn(ν̂) using (17);6

Find power allocationpn(γ̂, ν̂) using (16);7

Compute achievable rater(pn, ρn) using (2);8

if r(pn, ρn) ≥ R then9

νu ← ν̂10

else11

νl ← νu12

end13

until 0 ≤ R− r(pn, ρn) ≤ ǫR ;14

Find time allocationρn(γ̂, ν̂) using (17);15

Find power allocationpn(γ̂, ν̂) using (16);16

if
∑

n pn then17

γl ← γ̂18

else19

γ̂ ← γu20

end21

until 0 ≤ P −
∑

n pn ≤ ǫp ;22

Fig. 2: Algorithm for finding the optimal Lagrange multipliers γ and ν for problem (6)-(10).
The inner loop (lines 4–14) findν∗(γ) which satisfies the rate constraint (7). The outer loop
determinesγ∗, which satisfies the power constraint (8).

September 19, 2009 DRAFT



FIGURES 19

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rate constraint R [bps] 

tr
an

sm
is

si
o
n
 t

im
e 

al
lo

ca
ti

o
n
 ρ

 n

β =1.54

β =1.12

β =0.91

β =0.53

(a) Ordering by IS channel quality

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

rate constraint R [bps]

tr
an

sm
is

si
o
n
 t

im
e 

al
lo

ca
ti

o
n
 ρ

n

β =1.13

β =1.14

β =0.91

β
 =

0
.9

2

idle

busy

(b) Ordering by sensing outcome

Fig. 3: Structure of the optimal transmission time allocation for varying rate constraint. The
solution can be ordered with respect to IS channel coefficients or sensing outcomes. The drastic
increase of the curves for largeR results from the rate constraint approaching infeasibility
(conditioned on the current channel realizationβ). It is straightforward to show that as the
problem approaches infeasibility the time allocation mustapproach eitherρ = 1 or ρ = 0.
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Fig. 4: Performance of optimal average rate resource allocation and comparison with suboptimal
reference schemes.
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Fig. 5: Performance result for random IS channel coefficients.
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Fig. 6: System setup for the multi-terminal case.
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Fig. 7: Performance result for the multi-terminal case.
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