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Abstract

The rapid proliferation of wireless systems makes interiee management more and more impor-
tant. This paper presents a novel cognitive coexistencednark, which enables an infrastructure system
to reduce interference to ad-hoc or peer-to-peer commtioichnks in close proximity. Motivated by
the superior resources of the infrastructure system, waydtow its centralized resource allocation can
accommodate the ad-hoc links based on sensing and predibgir interference patterns.

Based on an ON/OFF continuous-time Markov chain model, fhtenal allocation of power and
transmission time is formulated as a convex optimizatiabfgm and structured solutions are derived.
The optimal scheduling is extended to the case where thasinércture channel is random and rate
constraints need only be met in the long-term average. liginthe multi-terminal case is addressed and
the problem of optimal sub-channel allocation discussedné&tical performance analysis illustrates that
utilizing the superior flexibility of the infrastructurenlks can effectively mitigate interference.

Index Terms

Cognitive Radio; Resource Allocation and Interference Btmment; Standards Coexistence; Dy-
namic Spectrum Access;

I. INTRODUCTION

The rapid growth of wireless networks makes interferencargrortant performance impedi-
ment and motivates a careful study of coexistence. In umdied bands, where there is a lack of
coordination among heterogeneous technologies, traditiforms of coexistence are based on
statically separating systems, for example by having theeraie in disjoint frequency bands.
However, such static approaches are inefficient and notalslecommodate the projected growth
in deployments.

The high interference conditions which are prevalent inaemised bands are in contrast to
a fairly low average utilization, which results from the stimess of traffic that is supported
by these systems and the random medium access behavioallymmployed. This contrast
motivates dynamic approaches to interference managenteah wan leverage unused spectrum
opportunities.

Cognitive radio presents a new framework for analyzing ghrisblem. Reconfigurable radio
platforms enable a dynamic adaptation of transmissiompeters based on monitoring the radio
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environment. In this way it is possible to reduce interfeeehy detecting and predicting temporal
activity patterns and avoiding transmission overlapsinditely this may lead to a newognitive
coexistence paradigm.

This paper addresses a special case of cognitive coexesiamalving two different types
of networks: an infrastructure (IS) wide area network tHadres spectrum with local, ad-hoc
(AH) or peer-to-peer systems. Motivated by the superior rmoimication resources of the IS
system, we analyze how its flexible, centralized resourtEaion can accommodate the AH
links based on sensing and predicting their interferenctepe. Despite adapting its resource
allocation based on sensing results, the IS system mingmigerference to the AH network
subject to maintaining a specified quality-of-service (RESel for its users.

This approach is different from typical dynamic spectruroess (DSA) problem formulations
in which a secondary system exploits spectrum opportnigé over by a primary system,
subject to the constraint that no significant interfererscereated (seel] for a review). While
both approaches are hierarchical, spectrum property srightDSA mandate that secondary
users adapt to spectrum licensees. In contrast, in cogritexistence it is possible to use the
flexibility of the primary system to accommodate a secondperhaps lower priority) system
while maintaining a desired primary system performancellébhis could be viewed as a “best-
effort” approach toward interference management and stenge.

This framework is relevant to a number of practical setums.dxample, the convergence of
wide and local area networks has received increasing sttef@e coexistence of IEEE 802.16
and IEEE 802.11 systems in unlicensed bands is such an examhpgbractical importance
[2], [3]. Similarly, coexistence issues that arise when different radio tecgnes need to be
integrated into a single devicecorporating peer-to-peer connectivity into cellulatvaerks [4]
or accommodating femto-cell base statioBsdre potential scenarios where this work could be
applied. Yet other applications arise in the military domawhere the coexistence of high and
low priority links is a fundamental concerg][

A. Main contribution

This paper addresses the coexistence of two wireless rietwloait operate on different spatial
scales: a longer range IS network that interferes with Iéddllinks. We address the question
of whether the IS network can accommodate surrounding Aksliny allocating power and
transmission time judiciously. Specifically, we make thBokwing contributions:

« The problem of optimal power and transmission time allacais formulated as a convex

program and the optimal frame-level solution is derivedsé&hon optimality conditions,
a solution algorithm with guaranteed convergence and lomptexity is introduced. The
structure of the optimal solution is studied to provide Hrt intuition.

« The frame-level problem is relaxed to the case of averagectstraints, in which statistical
knowledge of the activity patterns of the AH users and theH&noel coefficients are used
to allocate resources in both frequency and time.

« Finally, a scenario with multiple IS users is considered mah the IS base station allocates
sub-channels based on average interference metrics ars pes¢orm optimal power and
transmission time allocation based on sensing results.Mpeoison with conventional sub-
channel allocation methods shows that heuristics may yielformance close to optimal.

These contributions are corroborated by numerical resulisch demonstrate that judicious
transmission time allocation can mitigate interferendeatively.
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B. Related work

Optimal resource management in multiuser multicarrieelgss systems has been well-studied
for both downlink and uplink cases; sed,[[8], [9] for an overview of the topic. In cognitive
radio networks, optimal resource allocation is more cinglieg because it needs to incorporate
interference constraints, which protect the primary systeom harmful interference. Typical
formulations aim at finding a power and sub-channel allocatvhich maximizes the throughput
of the cognitive radio system while meeting interferencd power constraints. Recent work in
this area includes1f0], [11]. In addition to meeting interference constraints, speutisharing
and self-coexistence within the cognitive radio netwodoateed to be addressed. Contributions
in this area include12], [13], [14], [15]. Within the framework of cognitive coexistence, the
optimal power allocation based on knowledge of the interiee channel has been addressed in
[16] by the authors of this paper. Previous work on improving ¢bexistence among local and
personal area networks includekrs], [18] in which a cognitive frequency hopping protocol is
derived based on temporal activity models. To the best oftithors’ knowledge, interference-
aware power and transmission time allocation based ongineglitemporal activity patterns has
not been addressed before.

C. Organization and notation

The rest of this paper is organized as follows. After intradg the problem setup i8ec. Il
the optimal frame-level allocation is derived 8ec. IIl. The results are extended to the average
rate case irBec. IVand sub-channel assignment is considere8en. V. Throughout this paper
notation is fairly standard. Vectors are typeset in boldfdeor an event’, the indicator function
14 is equal to one ifA’ occurs and zero otherwise. The notation” is used to abbreviate
max{0, -}.

Il. PROBLEM FORMULATION
A. System setup

The system setup is shown Fig. L We consider an IS system, which consists of a base
station and a single client (the multi-terminal case will éddressed irSec. \J. The uplink
transmissions of this client may strongly interfere witltdbtransmissions of one or multiple
AH networks surrounding the client. For this setup, the fobof optimally assigning power
and transmission time at the IS client, such as to minimizerference to the AH links is
analyzed. The time/frequency behavior of both systemsasvshn Fig. 1h

Ad-hoc network: The AH network consists of a set of AH nodes which operate irequency
band that overlaps with the IS system. As depicteBig 1bthere can be multiple AH networks
which operate inl/ non-overlapping bands that each overlap with a certainf$8tsub-channels.

It is assumed that the partitioning of the AH bands is fixed #rat the temporal activity of
different bands is statistically independent.

We model the time behavior of each AH band by a two-state OIN/Gdntinuous time Markov
chain (CTMC). The holding times in both ON and OFF state ag@oaentially distributed with
parameterg; for the ON state and for the OFF state. Therefore, if an AH link is detected to
be in a certain state at timg, then its transition matrix for time, + 7 is given by

1 —(A )T — e~ A+p)T
P(r) [+ e A— e

= )‘"',U“ - Me—()\+,u)7— )\+M€—(A+u)7 ) (l)
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which follows directly from the definition of a CTMCLP, p.391]. Therefore, the probability of
an AH link being ON at time + 7, conditioned on having it observed in the ON (OFF) state
at timet, is given by the lower right (upper right) entry in the matrizose.

Modeling AH links based on a two-state CTMC approximates t¢herier sense random
medium access typically employed in such systems. This hmgdapproach has been used
in related publications1f8], [20] and solidified by a measurement-based analysis of WLAN
traffic [17]. The CTMC assumption strikes a good tradeoff between madeuracy and the
analytical tractability that is needed in the subsequecti@as. A discussion on how to estimate
these model parameters in practice is also contained inféreraentioned publications.

Infrastructure system: The IS system operates in the same frequency band as the Aldrket
consists of NV subcarriersand evolves in frames of fixed duratidn At the beginning of each
frame, spectrum sensing is used to detect the ON/OFF acti¥ithe AH bands, and based on
the sensing outcome, power and transmission time are askigeeFig. 1h

Throughout the paper we assupeefect sensing, that is, sensing outcomes are always accurate
and the overhead associated with sensing is negligiblae to the proximity of IS and AH
systems, the detection task is conceptually similar to #meier sensing employed in systems
such as IEEE 802.11. We further assume that the IS clientsepssa larger transmit power
compared to the AH terminals, enabling us to ignore interfee from the AH terminals to the
IS base station.

Based on the sensing result at the beginning of each frareelSttsystem allocates power
and transmission time on a sub-channel basis. This is ctuelgp similar to the allocation
of time/frequency resource blocks in broadband cellulatesys based on OFDMA. The case
where a subset or even all sub-channels need to share thetigaimg allocation (for example
when transmissions in the entire band can only be turned aifphas worse performance in
general. Nevertheless, a similar solution approach resragiplicable.

The IS system minimizes interference subject to maintgimate requirements for its client.
The rate that is supported by a specific sub-channel is middelsed on a channel capacity

formulation, o 4
pn n pnn

nlog [ 1+ kK = nlog [ 1+ , 2

2.0 g( pnNO) 2.0 g( pn) @

wherep = [p1,...,py]t denotes the power allocatiop,= [p1, ..., pny]? represents the trans-
mission time allocation)V, is the noise powers a normalization factor, and, is introduced
for notational convenienée

B. Interference metrics and scheduling assumptions

The interference between IS and AH networks is modeled byatleeage temporal overlap
between both systems. Based on the sensing result at thenbegpf the frame and knowledge
of the CTMC parameters of the AH links, transmission time poder are allocated.

Modeling interference based on temporal overlap approtésma scenario in which the cross-
talk is high enough to make any overlapping transmission§aind AH system unsuccessful.

!In contrast to many DSA setups, where very weak signals nedsktdetected, the proximity of AH terminals to the IS
client leads to moderate to high average signal-to-naiies. This facilitates the sensing task and enables us phogrnsimple
methods such as energy detection.

2The above formulation encompasses a channel capacity fation (for < = 1) as well as the case of variable-rate M-QAM
in which casex = 1.5/(— In BER) is chosen such that a targBER is met R1].
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While it is conceptually possible to optimize a joint metoicinterfering power and transmission
time overlap, such a formulation renders the problem narvewand computationally intractable.
Moreover, explicitly modeling the interfering power at thel nodes would require the IS clients
to estimate channel conditions, an assumption that is raaitin practice.

The allocation of transmission time consists of specifythgation and placement of the
transmission within the current frame. We first show thad ibptimal to transmit at the beginning
(the end) of the frame if the sensing outcome is idle (busy).

Lemma 1. Assume that g fraction of transmission time needs to be allocated to a sub-
channel, on which the AH user's ON/OFF behavior is modeledhgy CTMC (). Based on
a sensing outcome at the beginning of the frame, the mininxpeated overlap with the ON
period of the AH user is achieved by

. transmitting at the beginning of the framiee(, during [0, pT]) if the sensing outcome was

idle and

. transmitting at the end of the frameg(, during [(1 — p)T, T] if the sensing outcome was

busy.
Proof: see appendix.

Based on Lemma 1, we derive the expected time overlap beti#&and AH transmissions,
conditioned on the sensing resuite {0,1} at the beginning of the frame. Consider a sub-
channeln, which overlaps with AH band = g(n). Then, the activity ofAH users in band is
given by the CTMC{X;(£),¢ > 0} with parameters\; and y;. Transmitting for gp fraction of
the frame, leads to the expected time oveudgp (p), wherey denotes the sensing result. This
yields

pT pT
1 1
énolp) = =E / 1{Xi<g>:1}dg'x<o> =00 == / Pr(X () =1|X(0) = 0)d¢  (3)
0 0
if the sensing result was idlg/ & 0). By substituting 1) it is then easy to show that
¢n70(p) = ﬁ (pT —+ N +,LL ( —(XNitpi)pT o 1)) ) (4)
In the case of a busy sensing resylt= 1, we obtain
bn1(p) = iy (pT I f@ k)T ((etm)oT _ 1)> . (5)

This derivation made use of the fact that the sensing restiliso IS sub-channels are either
perfectly correlated (if they overlap with the same AH baad}tatistically independent (if they
overlap with different bands). Therefore, the predicti@rfprmance of a specific sub-channel
cannot be improved by using sensing results from other babels.

Lemma 2: The functionse,, o(p) and ¢, 1(p) are strictly convex and increasing jn

Proof: Both ¢, 0(p) and ¢, 1(p) are nonnegative linear combinations of a convex and a
strictly convex function. One is linear, the other an expuara function with nonzero exponent.
The monotonicity can easily be verified by differentiation.
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[Il. OPTIMAL FRAME-LEVEL ALLOCATION

Consider a single IS client, which minimizes the time overteetween IS and AH trans-
missions subject to maintaining a rate constraint across$hchannel to the IS base station.
Mathematically, this leads to probleRi

min ;aﬁ wn () (6)
PnBn

st. > pulog 1+ p >R 7)

d pn<P (8)

pn=>0, 1<n<N 9

0<p, <1, 1<n<N, (10)

with rate constraint? (7) and power constraint” (8). It is straightforward to show thd®1 is
a convex optimization problem since the objective funci®monvex (by Lemma 2), the rate
constraint (once rewritten in standard form) is convex by plerspective property2f], and all
other constraints are linear.

A solution toP1 can be found by general solution techniques in polynommé&tj22]. For
this specific problem, however, it is possible to show a gdestructure that enables us to gain
further insight into the problem.

A. Optimality conditions and solution structure

The solution structure is obtained by introducing Lagranudtipliers v and ¢ for the rate
and power constraint, respectively. This leads to the Lagjea

R—anlog<1+p;ﬁn an—P

The Karush-Kuhn-Tucker (KKT) optimality conditions areeth given by the constraintg)¢
(20) of P1, nonnegativity constraints for the Lagrange multiplieysz 0, ¢ > 0, the slackness
conditions

L(P, ;7€) = > bngalpn) +7 +e .y

v[R=> p;log (1 + p—z*ﬁn) =0 (12
€ [ZPZ —Pl =0, (13)
the condition oL . »
OL(p. pi 7€) {jg’ Bm>0, (14)
8pn pp— y D =
and 0 0
' >0, p,=
L n
0 (pﬁ,pm ) —0, pfe(0,1) . (15)
Pn Pn=p5 < O, p; =1
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Expressions¥4) and (5) can be understood on an intuitive level by noting thatorand p;,
to be minimizers ofL(p, p; v, €), their partial derivative must equal zero unless they liethmn
boundary of the feasible set.

Solution structure for p}: By substituting 11) into (14) and solving forp we arrive at

1 +
pzz%(u—ﬁ) , (16)

wherev := /e has been introduced to simplify notation in what followsr Boy fixed value
of p,, (14) represents a water filling solutio23.

Solution structure for p: The optimal transmission time allocation is obtained byssitiiting
(11 and @6) into (15). For an idle sensing resuly,, = 0, we obtain,

1 1 |
pr = ““WH%P%%WM’WMWS®J
1’ O0.W.

, (17)

where(y; = Ai/ (N + i) (1 — exp(—(\; + p;)T') andi = g(n) denotes the AH sub-band that
overlaps with sub-channel. In the above equation we have defined
—1)*
- l + o (Vﬁn
hn(V) [Og(l/ﬂn)] 1+ (Vﬁn — 1)+
to simplify notation. Similarly, we can obtain the solutistmucture for the case of a busy sensing
result,y, = 1,

(18)

07 vhn(y) < Cl,i
v _ log ( 2 iy, (1)~ 21
P = ]+-(?xmw i) Gy <aha) <1 (19)
1, yho(v) > 1,

where(;; = N/ (N + i) (14 pi /X exp(—(\; + 1;)T'). Note that the above expressions depend
on the Lagrange multipliers only through the terrh, () which does not depend on the AH
activity parameters,; and ;. Further, the transmission time allocatiod§)¢(19) are monotonic
with respect to this term.

B. Iterative solution algorithm for v and v

To find the optimal power and transmission time allocatioeelobon the above closed-form
expressions, we present an algorithm for finding the pdirv*], which corresponds to the
optimal solution ofP1.

For any pairfy, v| the power allocatiom(~, ») and transmission time allocatigs(~y, ) define
the optimal solution td®1 with modified rate constraint

R(y,v) =Y pal,)[log(v53,)]* (20)
and modified power constraint
"
P('%V) ::an(77y) <V_ﬁi) ) (21)

where p,, (v, v) is given by 7) or (19) (depending on the sensing result). The fact that this
solution is optimal for rate constraing(y,~) and power constrainP(~,v) follows directly
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from the KKT optimality conditions, which are necessary audficient for convex optimization
problems 22].

Based on the above, finding the pajr, »*| corresponding to the given rate constraihtind
power constraint” could theoretically be performed by searching all pairs/|. In this section
we show, however, thak(v, v) and P(, v) exhibit some monotonicity which enables us to use
the bisection method for findingy*, v*] with guaranteed convergence and low complexity. We
first study the case of keepingfixed and adjusting’ such that the rate constraint is met with
equality. Then, we show that the allocated sum power deeseagth .

We note that similar iterative algorithms have been progasethe literature optimizing the
performance of DSL modem®4]. Despite conceptual similarities the algorithm presdnte
this paper is tailored to the specific optimization problender consideration.

Adjusting  to meet the rate constraint: We first consider the case of adjustingsuch that
R(v,v) = R while keepingy fixed. It is easy to verify that for any, h,(v) is nondecreasing in
v. Thereforep, (v, v) increases withy as well as can be seen froh7j and (9). Further, since
pn(7, V) increases withv for fixed v, so doesRk(v, v). We can exploit this property to find the
for which R(v,v) = R by the bisection method. First, we can find upper and lowentdsy,
andy;, for this value. These bounds are guaranteed to exist gtger) — oo for v — oo and
R(v,v) — 0 for v — 0. Once these bounds have been obtained the bisection methatively
finds v* with guaranteed convergence.

Adjusting v to meet the power constraint: Having obtained an algorithm for finding for
arbitrary~ such that the rate constraint is satisfied, we study the hb@hafthe power constraint
as~ is adjusted. Asy is varied, we continue to adjustsuch that the rate constraint is satisfied
at all times. The pair of Lagrange multipliers is thereforeeg by [y, v*(7)].

The slackness conditions imply that at the optimal solutioth rate and power constraints
are met with equality. From20) we observe that decreasingrequires increasing in order to
continue meeting the rate constraint. Further, decreasiegluces the objective function because
log(v6,) > log(v3,) for o > v, enables us to reduge,(~,v*(v)) for at least some.

Since decreasing requires increasing, the allocated sum power increasesyadecreases.
Intuitively, a constant rate constrair2Q) requires 21) to increase because the tefmi(~y) — 5%1]+
increases faster thdig(v*()3,)]". The following lemma shows this rigorously.

Lemma 3: The sum poweb _ p, associated with allocatiopy, »*(v)] is a decreasing function
in .

Proof: see appendix.

Lemma3 enables us to find* again by the bisection method. Assuming tRatis feasible
which we will assume hereaftérthere exist bounds,, and; such thatP(v,, v*(v,)) < P <
P(y,v*(y)). Therefore, by starting the bisection method from thesatpave can find the pair
[v*,v*] with guaranteed convergence. The solution algorithm isvehio detail inFig. 2 The
inner loop (lines 4-14) correspond to finding(+), whereas the outer loop finds.

C. Properties of optimal allocations

Beyond simplifying solution algorithms, the structuredusions also enable us to make some
gualitative statements about the optimal resource allmtat

%It is straightforward to show tha?1 is infeasible exactly when despite full transmission tintiization there is no common
solution to rate and power constraint. Mathematicallys timeans that despite settipg = 1 for all n in equation ), (8) and
(7) do not have a common solution. From a practical viewpoiig thould be viewed as an outage scenario in which the IS
user’s quality-of-service cannot be achieved with the ueses available.
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Ordering in terms of IS channel quality: We first investigate the ordering with respect to
the IS channel coefficients,. This scenario is shown ikig. 3afor N = 4 sub-channels with
coefficients3 = [.9,1.1, .5, 1.5]7. We observe that, for any rate constraint, more transmissio
time is allocated to the sub-channel with higher channefficeent, i.e, 5, > 3; = p; > p;
provided all other parameters and the sensing results argigdl. On an intuitive level, this
result captures the fact that in channels with higlwe can achieve the same rate in a shorter
transmission duration using the same amount of power. Madkieally, the result follows from
the monotonicity of the optimal solution arig, ().

Ordering in terms of sensing results: Similar to the IS channel, the optimal transmission time
allocation can be ordered with respect to the sensing gedtlis straightforward to show that
if channels have the same IS channel coefficight= 3;, but different sensing results, then it
is preferable to allocate more transmission time to the dtli@nnel,i.e., p; > p; (note that this
holds even if the CTMC parameters are the same). To see thig, that for a busy sensing
result, the slot lengtll” affects whether or not the channel will become availablegneas for
an idle channel we are certain that the channel is idle imatelyi after obtaining the sensing
result. This is illustrated irFig. 3bfor N = 4, 8 = [.9,.9,1.1,1.1]7, andy = [0,1,0,1]7. It
is also interesting to note that some transmission timeliagated to frames with busy sensing
results even when idle frames are not yet used to the maximemnte

IV. OPTIMAL AVERAGE RESOURCEALLOCATION

Problem formulatiorP1 required that rate and power constraints are met in evenyefy@&ven
if sensing outcome or IS channel quality are disadvantageloupractical systems, satisfying
rate constraints at the frame-level is usually unnecesgayffices to maintain average rate con-
straints across time. This less stringent requirement eawmsbkd to further reduce interference by
allocating less transmission time during frames with asl@eal channel/interference conditions,
while compensating for the rate decrease during frames lpgtter conditions. Ultimately, this
leads to an improved resource allocation across both freyuéhe sub-channels of the IS
system) and time (consecutive frames of the IS system).

This section introduces such an average rate formulatioaveyaging across the temporal
activity of the AH network and random IS channel coefficieftsrther, this section introduces
two reference schemes that help to put the performance obplinal resource allocation in
perspective.

A. Formulation and solution structure

The average rate formulation requires associating prébebiwith all possible sensing out-
comes. While there are a total df sub-channels available, the sensing outcomes for sulmelsan
that overlap with the same AH band will be identical. Therefdor M sub-bands, there are a
total of 2 possible sensing outcomes. Let the set of all possiblersgositcomes be represented

by Y = {0,1} wherey = [y1,...,yn]" € Y denotes the sensing outcome per sub-band.
ProblemP2 of optimally allocating power and transmission time thecdrees
521? Z Ny Z Pryg(n) (Pny) (22)
pPny  yeY n
S DTy D paylog (1 ’ pnvyﬁn) 2 R (23)
yeY n pn,y
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Sy pay <P (24)

yeY n
Pny = 0, VyeY,1<n<N (25)

wheren; o = i/ (Ni+ i), mi1 = Ni/ (A + 1), and due to the independence of the AH sub-bands,
Ny = Hf‘il n:.4:- Note that this optimization problem ha4’ as many decision variables because
power and transmission time allocation may be differentdeery possible sensing outcome.
The fact that the decision variables grow exponentialhjhwif is not of major concern, because
M (the number of parallel AH bands) is typically quite smalh (ine order of one to five).

ProblemP2 can be solved similar to problefl. In particular, by forming the Lagrangian,
introducing Lagrange multipliers ande, and taking the derivative with respect to the decision
variables, we obtain a similar solution structure as in tlaenk-level problem.

Problem P2 can be solved efficiently using the same approach asPforWhile solving
an instance of Problen®P2 is more involved compared t®1 due to the larger number of
decision variables, the additional complexity is balanbgda less frequent need to recompute
the solution. Specifically, in practice2 only needs to be recomputed when the IS charthel
changes significantly, as the sensing results have already mcorporated into the problem
formulation. In contrastP1 may need to be solved in every frame, as its solution depends o
both IS channel and sensing results. Therefore, from aipahstandpoint, Probler@2 may lend
itself to a less complex implementation, assuming that SeHannel varies slowly compared
to the sensing results.

B. Reference schemes

Having incorporated random sensing outcomes into our fatimm, we introduce two refer-
ence schemes in order to put the performance of the optiralree allocation in perspective.
No sensing case: As a first benchmark, consider an approach that allocate®mpbut does
not perform any transmission time optimization. This case@asponds to conventional resource
management in IS systems, which simply allocates power tkentize best use of the uplink

channel. Mathematically, this is formulated as minimizing, p,, subject to the constraint3)¢
(10). We assume that for any sub-channel with> 0, the sub-channel is used for the entire
frame duration. Unused carriers for whiph = 0 are not allocated any transmission time.

Idle-frame allocation: Another possible reference scheme performs spectrum rggtosit
allocates resources in a suboptimal way. Specifically, idensallocating the entire frame by
settingp,, = 1 for all idle sub-channels while completely avoiding busp-®hannels by setting
pn = 0 for all n with y,, = 1. In the average rate formulation, this method can be fortadla
mathematically as minimizingjer Ny Y. Pn.y Subject to 3)-(26) and the additional constraint
that sub-channels with busy sensing outcome are neveasldcNote that the above optimization
problem may be infeasible even wh@&2 is feasible because we are imposing the additional
restriction of never transmitting during busy frames. Tewe that the reference scheme is
always feasible whe2 is, we force allocation to busy channels if the resultingiropation
would otherwise be infeasible.

C. Allocation for random IS channels

The previous section considered average rate constraititgaegpect to temporal AH activity
but fixed IS channeB. This section further extends the analysis to the case dorarlS channel
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coefficients3. The optimization problen®3 is given by

it [ 570y 3" 0y (nl. B)F D) @7)
p(yﬁ g YEY n
st [ Yoy 3 only. 0)log(1 + EXEAF(9) > (29)
3 yeY n
/ZnyanyﬂdF 8) < (29)
yeY
pn(y,B)ZO, VyeY,1<n<N (30)
0<p.(y,;B) <1, VyeY,1<n<N,, (31)

where the decision variablgs(y,3) and p(y,3) correspond to the power and transmission
time allocation that is used for sensing outcognend IS channel conditiof and F'(3) is
the cumulative distribution function g8 (which in practice would be inferred from a set of
past channel observations). By again forming the Lagrangrad computing the derivative with
respect to the decision variables, it is easy to show thatttinetured solutionsld) and @7)-(19)
again hold. Therefore, it is again possible to express tloeation as a function of the Lagrange
multipliers [y, v]. The rate constraint can then be evaluated by

/ > 3l aF (9) (32)

yeY

and the allocated sum power is given by

/ S Y oy B) (v +) dr (@) (33)

yeY n

While the above integrals can only be evaluated numericdllis possible to again find the
optimal solution via the bisection methotihe complexity of the above optimization problem is
again balanced by a less frequent need for recomputing fnéiso In fact, ProblemP3 only
needs to be recomputed when the channel statistics or t&tistaof the sensing results change
significantly.

D. Numerical results

This section presents numerical performance results ferofitimal average rate resource
allocation and compares them to the reference schemeslucid in this section. The results
were obtained forN = 5 sub-channels and a single AH sub-bahfl = 1. The prediction
parameters weré = ;= 1s~! and the IS channel coefficients were modeled as statisticall
independent Rayleigh fading. We further assume a blockéasicenario in which the 1S channel
varies slowly compared to the frame duration.

The performance for fixed IS channel and random sensingtsesukshown inFig. 4afor
T = 1s and inFig. 4bfor T'= .1s. The plot shows the average transmission overlap between
IS and AH network versus the achieved IS rate (note that theeaed IS rate and not the rate
constraint is plotted). The performance results are aeerager a set of independent IS channel
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realizations. Since the IS channel is assumed to vary mumkieslthan the frame rate, it is
inevitable that for some realizations @f problemP2 is infeasible.The outage probability is
consequently shown iRig. 4cto put the results in perspective. Note that all three sclsdmage
the same outage probability since the set of power/rateti@nt pairs[R, P| for which their
underlying optimization problems become infeasible, iniital. Typical outage probabilities
of approximately 10% correspond to an IS rate of about 0.7 Apshis rate, plots (a) and (b)
show that a significant performance gain is achieved by pmifay sensing-based transmission
time allocation.

The performance ordering reflects our expectations. Thefrdime allocation scheme out-
performs the no-sensing case but shows a quite significafdrpgnce gap with respect to the
optimal allocation, especially for low IS rates. Furthdrcarves show increasing interference as
the IS rate increases. This is expected, since high IS ra¢eemt the IS system from being able
to accommodate the AH links. The plots also show that iddeat allocation and no-sensing
scheme converge for high IS rates, because allocating digyrames is almost always infeasible
(and therefore busy frames typically need to be used as.well)

By comparingFig. 4a(7" = 1) andFig. 4b (T = .1), we observe that while the performance
of the optimal scheme does not change significantly, thefidime reference performs much
better. This is intuitive, because by reducing the frameaytlenit is easier to “fill up” the idle
periods of the AH network. The performance of the no-senstigeme remains unaltered and
is the same in both figures.

The performance for average IS channel coefficients andoranr®dH behavior is shown in
Fig. 5which compares the solution &3 with the same reference schemes. We can observe that
by exploiting the channel variability and allocating agdeequency and time, we can further
reduce interference. Otherwise, the performance trerelsiarilar to those ofig. 4. Note that
idle-frame allocation does not achieve the same channelcdgmas the optimal scheme because
it only transmits in frames with an idle sensing result.

V. ALLOCATION FOR MULTIPLE IS USERS

The previous section derived the optimal power and trarsonstime allocation assuming
that an orthogonal set of sub-channels had already beegnassio each IS user. This enabled
us to consider each of the terminals individually and penfoesource allocation based on local
sensing results.

In practice, the IS base station needs to assign sub-clgatmelach of the IS users without
knowing what the sensing outcomes will be. We therefore idenghe problem of optimal sub-
channel allocation based on minimizing average interfsemetrics. This leads to a similar
formulation as compared to the average interference caSednlV. Once a sub-channel alloca-
tion has been computed and fed back to the IS users, they eatheisocally available sensing
results to optimize their medium access. The optimal swdmcél allocation is a combinatorial
problem, which is computationally more challenging thaokpemsP1 throughP3, which could
be analyzed based on convex optimization. While a geneedysis of this problem goes beyond
the scope of this paper we find the optimal solution for fasiyall problem instances by
exhaustive search. A comparison with heuristic allocatienggests that efficient greedy sub-
channel allocation algorithms developed for related mob$etups can be applied to this problem
and yield a performance close to optimal.
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A. Optimal sub-channel allocation

The problem of optimal sub-channel allocation involvesigrgag orthogonal sets of sub-
channels to each terminal, such that the overall interteres minimized; se€ig. 6. A mathe-
matical formulation can be based on proble& Specifically, definef(A) as the optimal value
of P2 where the summations over sub-channels are restrictedad), i.e., the sub-channels
on which a specific IS user operates. Defjf(@\) := oo if P2 is infeasible.

Assume that the IS base station is serving a total/afisers. The problem of optimal sub-
channel allocation is then formulated as

U
g&g;fmu) (34)
st.AU---UAy ={1,...,N} (35)
ANA; =0 047, (36)

where A; denotes the set of sub-channels assigned to termin@lue to @5 and @6) the
sub-channel allocations are mutually exclusive and ctllely exhaustive. Note that the above
problem does not require knowledge of the sensing outcontbeaindividual terminals. The
base station only requires knowledge of the CTMC parametersd i, as well as knowledge
of the IS channel coefficients.

The above problem is difficult to solve due to its combinatnature and conventional sub-
channel allocation methods are not easily extended to jpacate the additional dimension of
allocating transmission time. For small problem instantesvever, the optimal allocation can
be found by exhaustive search.

B. Suboptimal algorithm

The problem of optimal sub-channel allocation in multiearsystems has been well-studied
in the absence of transmission time allocation, 8f.gnd references therein. Standard methods
typically minimize the total transmit power subject to ratnstraints. In our setup, this can be
formulated mathematically as minimizifg_, > nea, Pn SUbject to rate and power constraints
for the individual terminals. While the resulting optimizan problem is still combinatorial,
efficient approximation techniques have been developeld glitse-to-optimal performance.

Allocating sub-channels in this manner can be used as awctigéeheuristic. Since good
channel quality results in lower average transmission tiveeconjecture that conventional sub-
channel allocation may be a good approximation to the optimearference-aware sub-channel
allocation. Numerical results show that this is indeed #gedn the scenarios we have examined.

C. Numerical results

Numerical results for the multi-terminal case are showfim 7. The total average transmis-
sion time overlap (summed over all IS users) is plotted wibpect to the rate constraint for
each individual IS users (constraints are assumed to beicd®n The performance trends are
the same as in the case of a single IS user. For low rate regenmts we can effectively mitigate
interference by assigning resources judiciously. On theroband, as rate requirements become
more stringent, there is less flexibility in accommodatihg AH links. The scenario plotted in
Fig. 7 corresponds td/ = 3 terminals,N = 5 sub-channels, and Rayleigh fading IS channel
coefficients.
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The performance of the optimal and suboptimal sub-chanloeladion schemes is very similar
regardless of the rate constraint. This suggests that namgthe total transmission power is
a reasonable approximation to the optimal sub-channetatilan. In future work, we plan to
corroborate this conjecture in more detail.

VI. CONCLUSION

In conclusion, this paper has introduced a nosagnitive coexistence framework, which
enables infrastructure systems to coexist with local, addr peer-to-peer communication links.
Based on sensing and predicting the interference pattéthese ad-hoc links, the infrastructure
system allocates power and transmission time judiciousty shat overlaps with the ad-hoc links
are minimized.

We analyzed the problem within the framework of convex opation and derived structured
solutions at the frame-level. These results were extendetthdé average rate case to reduce
interference further by allocation across both frequenay tame. Finally, we addressed the case
of multiple IS users and provided more insight on how sulnalehallocation can be performed.

APPENDIX A
PROOF OFLEMMA 1

We denote the IS transmissions within the current frame byitefset of closed and disjoint
time intervalsl, = [ay, bx] where eacH,, C [0,7] corresponds to a contiguous transmission of
the IS user. Clearly, this formulation incorporates pdssgauses between IS transmissions. We
also required_, |b, — a;| = pT', because a total gf7" transmission time needs to be allocated.

First, consider the case of an idle sensing result at thenbagj of the frame, say at time
t = 0. Then according to3) and (), the expected time overlap is given by

by, by
%Z/ Pr(X(§) = 11X(0) = 0)d¢ = %Z/ ﬁ(l—e_(““)ﬁ)dg. (37)
E Y% L Jak

Since the integrand is strictly increasinggdnthe above expression is minimized by transmitting
contiguously during the time intervéd, p77].

In the case of a busy sensing result, an equivalent apprasds Ito a strictly decreasing
integrand and therefore it is optimal to transmit during time interval [(1 — p)7,T] in that
case.

APPENDIX B
PROOF OFLEMMA 3

In Sec. IllI-Bwe have defined the sum power corresponding to the pair ofalbagr multipliers
[y, v] as P(~, v). Further, we showed that by keepindixed and varying it is possible to find
a v*(~) for which the rate constraint is satisfied with equality. Tgify notation let us now
define P() as the sum power associated withv*()].

The proof thatP(v) decreases withy proceeds by contradiction. First, we note that- 0
implies P(vy) — oo due to the structure of the optimal solutioris?f-(19). Assume now that
P(~) is not monotonically decreasing. Then, becaB$e) is continuous, there exist two different
values ofv, sayy; and~,, such thatP(y,) = P(vs).
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Based on the KKT conditions stated Bec. IlI-A, it is easy to verify that both, and
correspond to optimal solutions of ProbldRl with rate constraintR(~;,v*(y;)) and power
constraintP(+;, v*(v1)). Further, from the structure of the optimal solutions it isac that the
transmission time allocations associated wittand~, must be different, that isp(y1) # p(72).
This is a contradiction, however, because ProbRInhas a strictly convex objective function
and therefore at most one optimal solution.
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Fig. 1: System setup. An infrastructure link allocates poased transmission time such as to
minimize interference to close-by ad-hoc networks. Therfietence-aware resource allocation
is based on detecting and predicting the ad-hoc system’sdeahactivity.
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Algorithm 1: Solution Algorithm

1 Initialization. Obtain bounds/;, v, Vi, Vu;

2 repeat

3 f?% (’Yu_fyl>/2;

4 repeat

5 U— (v, —1)/2;

6 Find time allocatiorp,, () using @7);

7 Find power allocatior, (¥, 7) using (L6);
8 Compute achievable ratép,, p,) using @);
9 if 7(pn,pn) > R then

10 | v

11 else

12 ‘ UV < Uy,

13 end

14 until 0 < R — 7(pn, pn) < €r ;

15 Find time allocatiorp,, (¥, 7) using @7);
16 Find power allocatiom, (7, ) using (L6);
17 if > pn then

18 | =4
19 ese
20 | A=
21 end

22 until OSP_annS‘Ep;

Fig. 2: Algorithm for finding the optimal Lagrange multipigey and v for problem ©)-(10).
The inner loop (lines 4-14) find*(~) which satisfies the rate constraii).( The outer loop
determinesy*, which satisfies the power constrai).(
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Fig. 3: Structure of the optimal transmission time allogatifor varying rate constraint. The
solution can be ordered with respect to IS channel coeffigiensensing outcomes. The drastic
increase of the curves for largB results from the rate constraint approaching infeasybilit
(conditioned on the current channel realizatiBh It is straightforward to show that as the
problem approaches infeasibility the time allocation magproach eithep =1 or p = 0.

September 19, 2009 DRAFT



FIGURES 20

Optimal allocation

— — — Idle-frame allocation
oY a | L=y e No sensing
< <
g g L
o o
£ £
£ £ > 0.8
c c =
RS RS ie)
2 2 206
IS IS o
2 2 =
g g & 0.4
g g E
© ©
0.2
10 - - - - 10 - - - - 0
0O 05 1 15 2 25 0O 05 1 15 2 25 0O 05 1 15 2 25
achieved IS rate [bps] achieved IS rate [bps] achieved IS rate [bps]
(a) Frame lengtl" = 1 (b) Frame lengthl" = .1 (c) Outage probability

Fig. 4. Performance of optimal average rate resource ditotand comparison with suboptimal
reference schemes.
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Fig. 5: Performance result for random IS channel coeffisient
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Fig. 7: Performance result for the multi-terminal case.
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