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Domains of Attraction of Shalvi–Weinstein Receivers
Ming Gu, Member, IEEE,and Lang Tong, Member, IEEE

Abstract—Domains of attraction (DoA) of Shalvi–Weinstein
(SW) receivers are analyzed. It is shown that there is a one-to-one
correspondence between DoA in the receiver parameter space
and those in the global (or combined channel-receiver) parameter
space. For general noiseless channels, DoA of SW receivers in
the global response space are the minimum distance decision
regions on a unit sphere. In the presence of noise and for the class
of orthogonal channels, DoA of SW receivers for independent
and identically distributed (i.i.d.) input signals are the minimum
distance decision regions on an ellipsoid determined by the
channel coefficients and the noise variance. The DoA in the
receiver parameter space are also characterized for the general
nonuniformly distributed sources. The size of the DoA is shown
to be affected by the signal power, the signal constellation, the
noise level, and the channel condition. It is also demonstrated that
although the optima of the Shalvi–Weinstein algorithm and those
of the constant modulus algorithm are one-to-one correspondent,
their DoA are different in general.

Index Terms—Adaptive filters, blind equalization and deconvo-
lution.

I. INTRODUCTION

T HE goal of blind signal estimation is to estimate input sig-
nals without knowing the channel. Perhaps the most pop-

ular blind equalizer design criteria are the constant modulus
(CM) cost [9], [18] that measures the dispersion of the estimate
around a constant, and the Shalvi–Weinstein (SW) cost [15] that
evaluates the fourth-order cumulant under a power constraint. It
has been shown [13], [17] that, for sub-Gaussian sources,1 the
minima of the CM criterion and the maxima of the SW crite-
rion are equivalent in the sense that they differ only by scaling
factors. In other words, both criteria lead to receivers with the
same unbiased mean square error.

The optimization of CM and SW criteria can be accomplished
by the gradient method that guarantees the convergence to a
local optimum. The implementation of the gradient maximiza-
tion algorithm has the form

(1)

where
positive step-size;
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1Sub-Gaussian sources have the negative fourth-order cumulants.

positive definite symmetric matrix ( resulting
in the steepest ascent method);
continuously differentiable function.

Given a particular initialization , for arbitrarily small step-size
, the above update approximates the search of optima on the

surface of the cost function, andconverges to a local optimum
. The domain of attraction (DoA)2 associated with is a

neighborhood of such that the gradient algorithm initialized
with any element in the neighborhood leads to the convergence
to . In this paper, we are concerned with the largest such neigh-
borhood.

Although considerable progress has been made in character-
izing the locations of CM and SW receivers defined as local op-
tima of their corresponding cost functions [7], [10], [13], [20],
the following questions remain unanswered: i) Given an initial-
ization of the algorithm, where will it converge? ii) How do we
initialize the algorithm so that a receiver will converge to the de-
sired setting? The lack of definitive answers to these questions
is directly related to the lack of characterization of the domains
of attraction for CM and SW receivers.

The purpose of this paper is to analyze domains of attraction
for the gradient ascent implementation of the SW cost function.
In particular, we are interested in the trajectories of the ordi-
nary differential equation associated with the gradient of the SW
(CM) objective function. Although the analysis is performed
with respect to the statistical average of the SW cost, using sto-
chastic approximation [3], it allows us to predict the behavior of
the stochastic gradient algorithm implemented in practice.

The main results of this paper are as follows. Using the signal
space property, we first show that under the assumptions given
in Section II-A, the analysis of DoA of the receiver param-
eter can be pursued in the global response space without loss
of generality. Analytical results for two special cases are thus
obtained next. In the absence of noise, we show that DoA are
the minimum distance decision regions on a unit ball, and the
relative size of the domain of attraction for each receiver re-
mains unchanged as long as signal constellations are fixed. In
the presence of noise, we show that for the class of orthog-
onal channels and when the input signals have the same con-
stellation, DoA of SW receivers are the minimum distance de-
cision regions on an ellipsoid determined by the channel, the
noise, and the signal power. This result is also extended to the
nonuniformly distributed sources case. DoA in the receiver pa-
rameter space are defined accordingly. For the orthogonal chan-
nels, we further investigate how the relative size of DoA is in-
fluenced by the channel condition, noise variance, signal power,
and signal constellation. This analysis is of great practical sig-
nificance for the blind signal separation problem when there are

2We use DoA as an abbreviation for both “domain of attraction” and “domains
of attraction.” Which one it represents can be determined from the context.
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Fig. 1. Linear estimation model.

multiple users with different types of signals. Finally, we give an
example of DoA for the two-dimensional (2-D) global response.
In this case, the characterization of SW receivers is complete. It
is interesting to note that in spite of the one-to-one correspon-
dent relationship existing between SW and CM receivers, their
DoA are different in general.

The two scenarios—general channels without noise and or-
thogonal channels with arbitrary noise—that DoA can be com-
pletely characterized are somewhat restrictive. However, they
do include many practical applications in communications. Be-
cause the SW cost is smooth, the characterization of DoA ob-
tained in this paper approximates well for general channels at
high signal-to-noise ratio (SNR) and for channels that are ap-
proximately orthogonal. The latter may be the result of the trans-
mission of code division multiple access (CDMA) signals using
orthogonal codes. In the presence of channel dispersion, the
signal waveforms from different users are no longer orthogonal.
It has been shown that using SW receivers for such a case leads
to minimum mean square error (MMSE)-like performance [17].
The analysis presented here offers an approximate description
of DoA for mildly distorted channels. Another example that in-
volves orthogonal channels is space-time coding. Tarokhet al.
[16] showed that by constructing space-time block codes with
columns being orthogonal, decoupled maximum likelihood de-
coding is achieved with remarkable performance at the expense
of almost no extra processing. Other examples include orthog-
onal frequency division multiplexing (OFDM) used in wireless
communications [19] and the discrete multitone (DMT) imple-
mented for digital subscriber line (DSL) technology [11]. A re-
view on applications of orthogonal transmultiplexers in commu-
nications was presented in [2].

There are few results available on the characterization of at-
traction domains for SW or CM receivers. The most relevant is
a paper by Benvenisteet al. [1], where they considered a class
of objective functions that include the Sato algorithm as a spe-
cial case and characterized DoA in the absence of noise for the
blind equalization problem. Our results differ from theirs in two
ways. First, their analysis does not apply directly to smooth cost
functions such as the SW criterion. Second, we have included
several parameters in the model ignored in [1]. Specifically, we
have included noise and considered sources with different power
and statistical properties. It is interesting, however, to note that
some of our results coincide with theirs, even when the cost
functions considered are different. A recent study of the DoA
for fractionally spaced CM equalizers was made by Chung and
Johnson [6]. They showed that under the noise-free assumption,
the domain of attraction of a local CM minimum in the global re-

sponse space is an exponential hypercone that, when the power
constraint is applied, agrees with our result of the minimum dis-
tance decision region on the unit ball. More general results, in-
cluding the situation in the presence of noise, were also consid-
ered in Chung’s thesis [5].

In the following section, the linear equalization model is de-
scribed. The signal space property and the equivalent cost func-
tions in the global response space are presented in Section II
as well. Main results with regard to domains of attraction of
SW receivers and their properties for both the noiseless case and
the orthogonal channels are given in Section III. Conclusion is
drawn in Section IV.

Throughout the paper, upper and lower case bold letters de-
note matrices and vectors, respectively. Key symbols are listed
as follows.

transpose;
pseudo-inverse;
expectation operator;

-norm of defined by ;
vector norm of on matrix defined by ;
range space of [12];
range of ;
identity matrix;
unit column vector with 1 at theth entry and zero
elsewhere;
size of the set .

II. PROBLEM FORMULATION

A. Model

We consider the linear estimation model illustrated in Fig. 1
and described by

(2)

(3)

where the input signal is transmitted through the
channel (the impulse response matrix) and
corrupted by the additive white Gaussian noise .

The linear estimator is designed to estimate one of
the components in, say . The estimation is blind in the sense
that only the marginal statistics of and are used, and the
channel matrix is assumed to be unknown. Vector
represents the global response between the signal to be esti-
mated and the estimator output.

In our analysis, we assume the follwing.

A1) Entries of are independent sub-Gaussian random
variables.
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A2) Entries of are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with zero
mean and variance .

A3) and are independent.
A4) has full column rank.

Because is unknown, it is without loss of generality to as-
sume that . If source signals are unequally pow-
ered, the input vector can be expressed as, where
diag with being the power of theth user.
Since both and are unknown, we can absorbinto , and
thus, still holds true. The effect of signal power will
be discussed later.

B. Cost Functions and Implementations

SW Cost and SW Algorithm:In order to estimate the input
signal without knowing the channel, Shalvi and Weinstein pro-
posed a criterion [15] to maximize the cost function

(4)

subject to the unit power constraint , where
is the fourth-order cumulant of. A local maximum of this con-
strained optimization is referred to as an SW receiver. To obtain
an explicit form of , by substituting (3) into (4), we have

(5)

where3

diag (6)

The above derivation makes use of some properties of cumulant
[14] and assumptions A1)-A3) listed in the previous subsection.
As for the constraint, applying ,
and leads to

(7)

where

(8)

Therefore, the SW receiver can be obtained from

subject to (9)

3For a sub-Gaussian signals,K (s) < 0. The negative sign in this definition
is meant to make� positive.

Two stochastic gradient algorithms were proposed in [15] for
practical implementation.

CM Cost and CM Algorithm:Proposed earlier than the SW
algorithm (SWA), the constant modulus criterion [9] aims to
minimize an unconstrained objective function

(10)

where is the dispersion constant.
Local minima of (10) constitute CM receivers. The explicit ex-
pression of the CM cost is obtained as

(11)

The connection of CM and SW receivers is obvious if we impose
a unit power constraint on (11).

The constant modulus algorithm (CMA) is the stochastic gra-
dient method based on the cost function (10) and given by

(12)

Compared with the (constrained) SWA, this algorithm is easier
to implement.

Power-Constrained CMA:The analysis of DoA for SW re-
ceivers can be more conveniently carried out by considering the
power-constrained constant modulus (PC-CM) algorithm with
receivers defined as

(13)

Examining (5) and (11), it can be seen that under the constraint
, and have exactly the same form except

for a sign difference, which implies that the minimization of the
power-constrained CM cost is identical to the maximization of
the SW cost. Therefore, the domain of attraction of an SW re-
ceiver is the same as that of the corresponding receiver obtained
by a gradient search algorithm for the criterion described in (13).

In optimizing (13), we consider a two-step stochastic approx-
imation procedure

(14)

where is a step size. Obviously, the first step aims to at-
tain a CM minimum which is co-linear with and a one-to-one
correspondent to the SW maximum, whereas the projecting op-
eration serves the purpose of satisfying the power constraint.

C. Signal Space Property

Direct analysis of convergence properties of SW receivers
using the power-constrained constant modulus algorithm is a
formidable task. One way to attack this problem is via trans-
forming the optimization of the receiver coefficientsto the
optimization with respect to the global system response. How-
ever, these two optimizations are not equivalent in general. For
convenience, we denote as the receiver parameter space, a
collection of any linear estimator, and
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as the space for the global response. To make the analysis
in justifiable, we resort to an important concept—the signal
space property [17], [20].

The signal space is defined as the column space of the
channel matrix . A receiver is said to have the signal space
property if , i.e., for some . This implies that
the receiver is made of a linear combination of filters matched
to the columns of the channel matrix, or equivalently, the re-
ceiver can be viewed as a cascade of a matched filter and a linear
combiner, and it filters out any disturbance not in the direction
of the signal. Ericson [8] showed that an optimal receiver de-
signed from any reasonable criterion includes a matched filter
as its front end.

The signal space property of SW receivers was proved in [17]
for general heterogeneous sources. For the homogeneous sub-
Gaussian sources considered in this paper, the result still holds
as follows: Assume that is not empty (i.e., ). Let

be an SW receiver defined as

(15)

Then

(16)

In general, introducing constraints alters locations of local op-
tima and perhaps creates or removes local optima. The above
statement shows that restricting an SW receiver to the signal
space has no effect on the receiver itself. A similar result ap-
plies to CM receivers [17], [20]. It is this property that allows
us to analyze SW receivers and their DoA in the global response
space.

D. Equivalent Cost Functions

Because of the signal space properties of SW and CM re-
ceivers, there exists a one-to-one correspondence between re-
ceivers in and in . Given a CM or SW receiver , since

, we have

(17)

Therefore, the optimization with respect to the receiver coeffi-
cient is equivalent to that with respect to the system parameter

. To obtain the equivalent objective functions infor the pre-
vious three algorithms, we need only to substitute (17) into cor-
responding costs and express the output power
in terms of

(18)

where

(19)

Hence, corresponding to (5), (11), and (13) obtained in the
receiver parameter domain, we have the following equivalent
counterparts in the global response space:

SW:

subject to (20)

CM:

(21)

PC-CM: (22)

Note that the above one-to-one correspondence exists only
between receivers in and in . When we consider the conver-
gence region of a certain receiver, we will deal with a sequence

, and each may not be in , i.e., there does not nec-
essarily exist a one-to-one correspondent relationship between
two sequences and . This problem will
be discussed next.

III. D OMAINS OF ATTRACTION

We first give a definition of domains of attraction. The exis-
tence of DoA is guaranteed by the capture theorem [4].

Definition 1: Let be continuously differentiable and the
only local maximum of within some open set. A domain of at-
traction of is defined as an open set containing such
that for any initial point , the sequence generated
by the gradient algorithm according to (1) with an arbitrarily
small step-size and satisfying for all
i) remains in and ii) converges to .

To obtain an SW receiver adaptively, consider updating
using a gradient algorithm with an arbitrarily small step-size on
the ellipsoid . At issue is what are the largest possible
DoA of SW receivers. In order to answer this question, we need
to know some convergence properties of the SW algorithm. Two
scenarios will be considered in this section: the noiseless case
and the class of orthogonal channels in the presence of noise.
For the latter, the number and the locations of SW receivers have
been completely characterized recently [10].

A. Relationship Between DoA in and in

Exploring convergence properties in is difficult. While it
has been shown that there is a one-to-one correspondence be-
tween local optima of the SW criterion in and those in ,
it is not clear that DoA in the two spaces are one-to-one corre-
spondent. In fact, when has full column rank with , a
point may correspond to infinitely many points indomain,
but two different points in space will not have the same in-
verse image. Suppose that there arereceivers in , which are
denoted as with corresponding DoA ,
and accordingly, there also existreceivers
in with DoA . The question is, Are and
one-to-one correspondent? Here, we establish this connection
that allows us to pursue the analysis of DoA in the global re-
sponse space .
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Lemma 1: Let be a local maximum of (20) and be
its DoA. Then, under assumptions A1)–A4), is a
local maximum of (9) with DoA

(23)

Conversely, if is a local maximum of (9) and its DoA,
then is a local maximum of (20) with DoA

(24)

Proof: : See the Appendix.
Therefore, DoA in and those in are also one-to-one cor-

respondent in the sense that for any receiver with ,
there exists a unique with , and vice versa, although
different points in may have the same image in
under . Furthermore, if a sequence in con-
verges to , any corresponding sequence in will con-
verge to . is simply a projection of in lower
dimensions. From this point of view, we can analyze domains
of attraction in the global response space.

B. Domains of Attraction for Noiseless or Orthogonal
Channels

It was shown in [10] that each SW receiver is co-linear
with if and only if either there is no noise or the columns of

are orthogonal. In both cases, matrixdefined in (19) is di-
agonal. Our goal in this subsection is to characterize domains of
attraction for these two cases. Since the analysis for the noise-
less channel is a special case of that for the orthogonal
channels ( is diagonal), the characterization of
DoA will be focused mainly on the general orthogonal channel
case. We begin our discussion in the global response space and
then in the receiver parameter domain.

Suppose that the input sequence has the same probability dis-
tribution but possibly unequal power with power matrixde-
scribed in the system model. Then, SW receivers can be ob-
tained from the following criterion:

subject to (25)

where , and . Let
diag . This leads to

diag

diag (26)

The diagonality of enables us to find solutions to (25) and the
corresponding DoA.

Lemma 2: Let the columns of be orthogonal and the
source signals be i.i.d. Then, SW receivers are given by4

(27)

4For eachq = � e , there always exists a symmetric receiver�q .
Hence, we need only to deal with the positive one.

with the (maximum) domains of attraction5

(28)

where is defined in (26).
Proof:: See the Appendix.

To illustrate Lemma 2 geometrically, let us consider the
special orthonormal channels with unit power input signals
in three dimensions as shown in Fig. 2. In this situation,

and defines a perfect ball.
SW receivers are given by

, and the corresponding is bounded by
There-

fore, the DoA is specified by the intersection of the minimum
distance decision region for and the sphere determined by
the noise. As the SNR increases, the ball will expand, but
the above relationship still holds true. This implies that the
relative size of DoA remains the same for any SNR. In other
words, we always have at an
arbitrary noise level. More general results regarding the size of
DoA will be presented in the next subsection. When ,

turns out to be a unit ball. This noiseless case is the
scenario considered in [1] but for different cost functions. The
conclusion is also the same as in [6] when CM receivers are
power constrained.

As the channel condition changes so that the columns of
are no longer orthonormal (but still orthogonal), or input sig-
nals have distinct power, becomes an ellipsoid. The
boundary points of satisfy with

. Again, we see that DoA are the
minimum distance decision regions but on an ellipsoid.

Now, let us extend the above discussion to a general
case. What if input signals have different constella-
tions? According to (20), SW receivers are obtained as

. To make use of the result in
Lemma 2 , we apply the transformation , which
leads to the following equivalent optimization:

subject to (29)

where is diagonal. Substituting with
(26) yields

diag

diag (30)

Because (29) and (25) are of exactly the same form, a similar
conclusion can be reached as in (27) and (28).

Thus far, we have discussed domains of attraction of SW re-
ceivers in the space of the global system response. Due to the
one-to-one correspondence existing between DoA inand in

5More accurately, the DoA of receiverq should satisfyk� q �
e k < k� q � e k. However, since� is diagonal,kqk = 1 is sym-
metric about all the axes, andD (q) is symmetric aboute . Therefore, we can
simply consider the positive coordinates of DoA.
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, DoA in the receiver parameter space can be obtained accord-
ingly.

Theorem 1: Let the columns of be orthogonal. SW
receivers are given by

(31)

with the (maximum) domains of attraction

(32)

where , and is related to by
.

Proof:: See the Appendix.
Theorem 1 enables us to analyze convergence regions of SW

receivers for multiple users with unequal power and distinct
constellations when columns of are orthogonal. As we men-
tioned before, orthogonal channels play an important part in
communications, and the above results are of practical signif-
icance. One special application is found in synchronous CDMA
systems. Let correspond to the codeword matrix with
spreading gain and users and
be the codeword for theth user. Assume that the source signals
are i.i.d. with unit power. If under certain circumstances [e.g.,
ideal channel without intersymbol interference (ISI)] we have

with , then for any initialization
, as , where

(33)

It is interesting to note that every equalizer will converge to the
corresponding user codeword (up to a scalar) at an arbitrary
noise level. For each code, its DoA is defined by the inter-
section of the minimum distance decision region forand the
sphere determined by the noise level. The geometrical illustra-
tion is exactly the same as in Fig. 2, except that it is now in
domain and is in stead of .

Theorem 1 delineates DoA for SW receivers obtained
by the gradient algorithm in the receiver parameter domain
where practical adaptation is performed, whereas in the global
response space, although implementation is impracticable,
theoretical analysis is easier to carry out. Since both receivers
and their convergence regions are one-to-one correspondent in
these two spaces and DoA obtained inhave rather straightfor-
ward geometrical interpretation (especially for the orthogonal
channel case), the following analysis will be concentrated on
the global response space.

C. What Affect the Size of DOA?

In this subsection, we focus on the problem how the size
of DoA is affected by different elements. Suppose that we are
given receivers and for two different sources with
DoA and , respectively. Let and (

Fig. 2. Domains of attraction for orthonormal channels. Dot: maximum;
square: minimum; triangle: saddle.

) be the corresponding receivers and DoA resulting from the
change of some system parameter (e.g., SNR). Now the question
is, What is the relationship between and given
the relationship between and , say,

? Specifically, is it easier to converge to receiver
than to receiver , or are the two cap-
tured with equal probability ? Finding the
answer to this question will allow us to determine whether and
how we can shrink or enlarge the DoA of a receiver of interest by
changing certain parameter(s). For example, it has been shown
that for the i.i.d. equal power sources and orthonormal channels,

and always have the same size, regardless of the
noise level. Clearly, in this case, it is not possible to expand cer-
tain DoA by simply increasing or reducing the noise variance,
but what happens to the general orthogonal channels and non-
identically distributed sources?

Formulated in (20), SW receivers are obtained by maximizing
subject to the power constraint . Since

is diagonal, is nothing but a weighted 4-norm, and its
maxima are always attained at whether or not. How-
ever, its minima and saddles, of which the boundary of DoA con-
sists, are usually not the same for different. Therefore, signal
constellations will affect the size of DoA. Generally speaking,
as the shape of the ellipsoid and the boundary of DoA are deter-
mined by and [as defined in (26) and (30)], the size of DoA
depends on the signal power, the signal constellation, the noise
level, and the channel condition. In order to describe the rela-
tive size variation of DoA, we need to examine boundary points

, especially those coordinates satisfying the equality relation-
ship. By the transformation introduced in the
previous subsection, it is easy to obtain these coordinates with
respect to : , where . Thus, a
boundary point of satisfies

(34)
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Fig. 3. Changes of DoA at a fixed noise level. (a)E or d decreases. (b)� decreases. Circle/dot: maximum; square: minimum.

When , we have , which defines the min-
imum distance decision region as obtained for the i.i.d. source
case.

Now, we are able to show the effect of the above-mentioned
four parameters on the size of DoA. We first discuss how, ,
and influence domains of attraction of SW receivers.

Property 1: For fixed noise variance , a decrease in
the th input signal power or the absolute value of its cumulant,
or the th diagonal element of will lead to the decrease in

.
Proof: First, assume that the input has the same constella-

tion, i.e., . Consider the maximum
. Suppose that decreases, whereas other re-

main unchanged. This results in the decrease of, and the el-
lipsoid shrinks at . Further, any point

on the boundary of satisfies .
Since the length of is reduced, the ratio will increase,
which implies that all the boundary points will move toward

, causing the area of to become smaller. A decrease
in produces the same result. Note that when , all the
DoA are of the same size on the unit sphere, and neither the
channel condition nor the signal power will take effect.

Next, we show that this conclusion also holds for signals with
different constellations. Assume that decreases with other

being fixed. Since has nothing to do with , the
ellipsoid remains as before. However, from
(34), we have , which will increase
as decreases, leading to the shrinkage of .

The interpretation of this property in two dimensions is illus-
trated in Fig. 3. Suppose that and .
In Fig. 3(a), as is reduced to due to the decrease in or

, the ellipsoid shrinks from the solid one to the dotted one.
Meanwhile, the angle defining the boundary of turns
smaller (given )

(35)

Hence,

. Particularly, if we make equal to
, then . Further reducing results in

. Here, we see an example that a global

receiver can be transformed into a local receiver (and vice
versa) by varying a system parameter. In Fig. 3(b), the ellipsoid
remains unchanged. However, asdecreases

(36)

causing the decrease in . If, as an extreme example, is
further reduced to zero, which corresponds to a Gaussian source,
then , i.e., the DoA of disappears. This agrees
with the fact that the SWA cannot detect Gaussian random vari-
ables.

For the global SW receiver ,

the boundary points of satisfy
. Thus, if

, then , which leads to the
following conclusion.

Corollary 1: If the source signals have the same constella-
tion, the global SW receiver has the largest domain of attraction.

When we have nonuniform source distributions, a nonglobal
receiver may have the largest DoA, provided that the corre-
sponding source has a negative enough cumulant, i.e., the more
sub-Gaussian a source, the larger the convergence region. Be-
cause the larger the DoA, the easier for the optimum to be cap-
tured, the above result indicates that, in practice, we can de-
crease the cumulant of a (sub-Gaussian) signal of interest to
guarantee the convergence of the corresponding equalizer. Usu-
ally, signals with denser constellations have larger cumulants,
e.g., the cumulant of 8PAM is , whereas that of BPSK
is . Hence, for a communication system with nonidentically
distributed sources, there exists some tradeoff between band-
width efficiency and receiver convergence capability.

We next examine the influence of the noise variance on the
size of DoA. Different fro the previous case, asvaries, all
will change accordingly. Assume thatincreases with other pa-
rameters being fixed. First, we note that the ellipsoid will shrink
at every optimum point due to

(37)
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Fig. 4. Changes of DoA when a increases. (a)d E = d E . (b) d E > d E . Circle/dot: maximum; square: minimum.

Second, we need to figure out to what extent it shrinks at each
optimum by comparing the ratio

(38)

which requires evaluating

(39)

Finally, the change in the relative size of DoA can be determined
by checking the variation of the boundary points

(40)

Consider the following two cases.

i) See Fig. 4(a). If for any and , , or
and , then and .
In this situation, defines a perfect ball
( ), and the increase in will cause the whole
ball to shrink proportionally with . Hence,

, i.e., the relative size of the DoA
for each receiver remains unchanged. If ,
then .

ii) See Fig. 4(b). Suppose and
. This leads to and .

Then, , which implies that
the ellipsoid shrinks less at the point with larger,
or larger DoA. Furthermore,
indicates that the larger DoA becomes even larger. If
we have nonuniform source statistics, although the
signal constellation does have an effect on the boundary
[see (34)], it neither exerts any influence on the size
and the shape of the ellipsoid (which depend on
only), nor affects the relative variation of the boundary
[see (40)]. Therefore, if , we always have

, regardless of
values of signal cumulants. This result shows that even
if the global receiver (with the largest ) has a smaller
domain of attraction (due to its larger cumulant), its
convergence region will grow as increases. That is
to say, a worse SNR situation favors the global receiver.
However, this growth has an end when the noise variance
is sufficiently large because

(41)

In all, we have the following result.
Property 2: Given the signal constellation and power and the

channel condition, as the noise variance increases, we have the
following.

i) For the equal power source and orthonormal channel case,
the relative size of all the DoA remains unchanged.

ii) Generally, the DoA corresponding to a larger tends
to increase, or mathematically, if , then

.
Since, in a low SNR scenario, the global receiver tends to

achieve the largest possible domain of attraction, this property
explains why a weak signal may never be detected under noisy
circumstance. In order for all the signals to be captured, one way
is to design i.i.d. signals and channels satisfying the conditions
in i), or alternatively, and more practically, we can decrease the
cumulant of a signal with low power to increase its detection
probability at low SNR.

D. Two-Dimensional Case

To gain an insight into the previous analysis, in this subsec-
tion, we provide an illustrative example in 2-D global response
space for i.i.d. sources. Due to the close relationship between
Shalvi-Weinstein and constant modulus receivers [13], DoA of
the latter are considered as well. We note that although CM and
SW receivers are one-to-one correspondent, such a relationship
does not hold for other stationary points. Since the boundary of
DoA is determined by these stationary points, their domains of
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Fig. 5. Comparison between DoA of SW and CM receivers. Circle: maximum of SWA; square: minimum of SWA; triangle: minimum of CMA; plus: maximum
of CMA; pentagram: saddle of CMA. (a)� = diag(1; 1). (b)� = diag(10; 10). (c)� = diag(2; 5). (d)� = diag(2;10).

attraction are different in general. This key difference is demon-
strated in Fig. 5. The ellipsoid drawn in thick solid line cor-
responds to . Two solid cross lines demarcate the
different DoA of SW receivers on the ellipsoid. For CMA, we
only consider convergence regions defined by due
to the output power constraint of any CM receiver proved in
[20]. Dotted areas are DoA of global CM receivers, whereas
blank regions in between correspond to DoA of local CM re-
ceivers. When there is no noise (see Fig. 5(a)), SW and CM
receivers coincide and have the same DoA on the unit circle.
In the presence of noise, they still can have the same conver-
gence regions (on the ellipsoid), provided that the channel is or-
thonormal and the input signals have the same power as shown
in Fig. 5(b). Note that there is a scalar difference between these
two receivers. This scenario corresponds to the situation illus-
trated in Fig. 4(a). For general orthogonal channels, however,
CM and SW receivers have distinct domains of attraction [see
Fig. 5(c) and (d)], resulting from their different transient be-
havior in convergence. Further, DoA of both SW and CM local
receivers shrink as decreases ( e.g., from to ),
which implies that it is easier to capture the global optimum (as-
sociated with the stronger signal). This observation agrees with
the theoretical result presented in the previous subsection.

As an extension to the orthogonal channel case, we consider
the general 2-D global response. It was proved in [10] that there
are either two or four SW receivers, depending on the noise level
and the channel condition. Further, the numbers of local minima
and maxima of the SW cost are the same, and they alternate on
the ellipsoid defined by . Hence, domains of attraction
of SW receivers are bounded by the minima of the SW cost

(see Fig. 6). Because the location of each SW receiver cannot
be obtained analytically, it is not easy to characterize the size
of DoA in general. Nevertheless, from the simulation, it is not
surprising to see that the global receiver always has a larger DoA
than the local one.

IV. CONCLUSION

In this paper, we analyzed domains of attraction for the gra-
dient ascent implementation of the SW criterion. DoA of SW
receivers were characterized for the noiseless and orthogonal
channel cases. When the columns ofare orthogonal, we con-
cluded that in the global response space, DoA of SW receivers
are the minimum distance decision regions on an ellipsoid deter-
mined by the channel condition, the signal power, and the noise
variance. The result obtained in the practical parameter space
enables us to analyze convergence behavior of SW receivers for
input signals with nonuniform statistics and possibly unequal
power in a multiuser system. We further investigated the effect
of system parameters on the relative size variation of domains
of attraction, which provides some insight into the signal de-
sign principles, e.g., at a fixed noise level, in order for a signal
to be easily detected, we can either increase its power or de-
crease its cumulant to make it more sub-Gaussian; if all users
are of same importance, it is necessary to assign a smaller cumu-
lant to a signal without high enough power so that even as SNR
deteriorates it still can be captured. While we have shown the
one-to-one correspondence between DoA in the global response
space and those in the receiver parameter domain based on the
signal space property, how DoA change inis still not clear
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Fig. 6. DoA of SW receivers with (a) two maxima and (b) four maxima. Dot: maximum; square: minimum.

because the mapping from to is possibly one-to-infinity.
Further, DoA of SW receivers in the general high dimensions
remain undefined due to the fact that the convergence proper-
ties are largely unknown in this case.

APPENDIX A
PROOF OFLEMMA 1

The one-to-one correspondence between receiversand
is guaranteed by the signal space property of SW receivers.

We now prove that such relationship also exists for DoA in two
spaces.

First, we claim that if is a stationary point in , then
is also a stationary point in ; conversely, if is a sta-

tionary point in , then are also stationary points
in . Without loss of generality, assume that . For con-
strained optimization, we can form the Lagrange function and
calculate its gradient as

(42)

(43)

or in

(44)

(45)

If is a stationary point, then , i.e.,

(46)

(47)

(48)

Since has full column rank, we have . On the
other hand, if , then

(49)

(50)

(51)

As , may correspond to . Due
to the signal space property, only those nonoptimum stationary
points that constitute the boundary of DoA can have infinitely
many inverse images.

Second, suppose that converges to , i.e., for any
, there exists a neighborhood of and an integer such that

for . Then

(52)

i.e., converges to . This implies that if , then
. Conversely, assume that and

that corresponds to . If for any , and ,
then , i.e., , which contradicts the
assumption. Hence, if , then

.
Third, consider a sequence generated by a gradient as-

cent algorithm with . Suppose that
corresponds to and is associated with

. Since

(53)

any sequence (there could be infinitely many
suchsequences)satisfies .Further, if

and an update , then , and

. Similarly, it canbe shown thata sequence

with has a corresponding sequence
with and if

, then . This completes the proof.
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APPENDIX B
PROOF OFLEMMA 2

Applying Lagrange multiplier theory to the constrained max-
imization in (25), we obtain the maxima as shown in (27) [10].

To prove the DoA part, consider the gradient implementa-
tion of the power-constrained constant modulus criterion. Let

and be a maximum.
Since is diagonal, is
equivalent to . For any th iteration ,
i.e., , we can update it by first maxi-
mizing the cost function

... (54)

and then by projecting back to the ellipsoid

(55)

We note that i) . This is because

(56)

and

(57)

if . ii) . Let

(58)

We will drop the subscript in the following calculation for
convenience. Since , . We thus have (59),
shown at the bottom of the page. Let . Then,

due to . Let and

with probability , . By Jensen’s in-
equality , if is strictly convex, we have

(60)

which implies . Hence, for
sufficiently small , i.e., . Steps i) and ii)
show that for any , by using a gradient ascent al-
gorithm with an arbitrarily small step size, , and

. Since there is one and only one maximum
, and is closed and bounded on the

sphere , , and is the DoA of .
If there exists a point both in and in , then

implies ,
whereas implies

, which contradicts each other. There-
fore, if , . Those points satisfying

for are on the
common boundary of and .

APPENDIX C
PROOF OFTHEOREM 1

According to (29), SW receivers have the form .
Since and , we have

(61)

As for the derivation of the DoA for , we can follow a similar
approach. The DoA of is defined by

(62)

Since

(63)

(59)



1408 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

combined with the fact that , (32)
follows.
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