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Domains of Attraction of Shalvi-Weinstein Receivers

Ming Gu, Member, IEEEand Lang TongMember, IEEE

Abstract—Domains of attraction (DoA) of Shalvi-Weinstein D, positive definite symmetric matrid¥; = I resulting
(SW) receivers are analyzed. It is shown that there is a one-to-one in the steepest ascent method);
correspondence between DoA in the receiver parameter space J continuously differentiable function

and those in the global (or combined channel-receiver) parameter Gi ticular initializati f bitraril Il st .
space. For general noiseless channels, DoA of SW receivers in=>'VEN aparticuiariniializa ioffyy, for arbitrarily small step-size

the global response space are the minimum distance decision/t, the above update approximates the search of optima on the
regions on a unit sphere. In the presence of noise and for the classsurface of the cost function, afiglconverges to a local optimum

of orthogonal channels, DoA of SW receivers for independent f* The domain of attraction (DoA)associated witlf* is a
and identically distributed (i.i.d.) input signals are the minimum neighborhood of* such that the gradient algorithm initialized

distance decision regions on an ellipsoid determined by the . . .
channel coefficients and the noise variance. The DoA in the with any element in the neighborhood leads to the convergence

receiver parameter space are also characterized for the general t0f*. Inthis paper, we are concerned with the largest such neigh-

nonuniformly distributed sources. The size of the DoA is shown borhood.

to be affected by the signal power, the signal constellation, the  Although considerable progress has been made in character-

glct);]S:ulef\]/ ?lh ear(;dttirneac(l;]falf?lgels?]g?\ﬂl—tl\/c\)/g.ir!ltsltsé ﬁ'sf:l’ %‘imﬁ;ﬁ;ﬁ?gézgt izing the locations of CM and SW receivers defined as local op-
9 b 9 tima of their corresponding cost functions [7], [10], [13], [20],

of the constant modulus algorithm are one-to-one correspondent, ) ; A o S
their DoA are different in general. the following questions remain unanswered: i) Given an initial-

Index Terms—Adaptive filters, blind equalization and deconvo- 12ation of the algorithm, where will it converge? ii) How do we
lution. initialize the algorithm so that a receiver will converge to the de-
sired setting? The lack of definitive answers to these questions
is directly related to the lack of characterization of the domains
|. INTRODUCTION of attraction for CM and SW receivers.
HE goal of blind signal estimation is to estimate input sig- The purpose of this paper is to analyze domains of attraction
nals without knowing the channel. Perhaps the most pofr the gradient ascent implementation of the SW cost function.
ular blind equalizer design criteria are the constant moduly$ particular, we are interested in the trajectories of the ordi-
(CM) cost [9], [18] that measures the dispersion of the estimaigry differential equation associated with the gradient of the SW
around a constant, and the Shalvi-Weinstein (SW) cost [15] thiaiM) objective function. Although the analysis is performed
evaluates the fourth-order cumulant under a power constrainipth respect to the statistical average of the SW cost, using sto-
has been shown [13], [17] that, for sub-Gaussian sourtes, chastic approximation [3], it allows us to predict the behavior of
minima of the CM criterion and the maxima of the SW critethe stochastic gradient algorithm implemented in practice.
rion are equivalent in the sense that they differ only by scaling The main results of this paper are as follows. Using the signal
factors. In other words, both criteria lead to receivers with thgyace property, we first show that under the assumptions given
same unbiased mean square error. in Section II-A, the analysis of DoA of the receiver param-
The optimization of CM and SW criteria can be accomplishester can be pursued in the global response space without loss
by the gradient method that guarantees the convergence tgf generality. Analytical results for two special cases are thus
local optimum. The implementation of the gradient maximizashtained next. In the absence of noise, we show that DoA are
tion algorithm has the form the minimum distance decision regions on a unit ball, and the
relative size of the domain of attraction for each receiver re-

foyr =i+ uDeVIR), k=012 @ mains unchanged as long as signal constellations are fixed. In
where the presence of noise, we show that for the class of orthog-
L positive step-size; onal channels and when the input signals have the same con-

stellation, DoA of SW receivers are the minimum distance de-
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Fig. 1. Linear estimation model.

multiple users with different types of signals. Finally, we give asponse space is an exponential hypercone that, when the power
example of DoA for the two-dimensional (2-D) global responseonstraint is applied, agrees with our result of the minimum dis-
In this case, the characterization of SW receivers is completetdhce decision region on the unit ball. More general results, in-
is interesting to note that in spite of the one-to-one corresparitding the situation in the presence of noise, were also consid-
dent relationship existing between SW and CM receivers, theired in Chung’s thesis [5].
DoA are different in general. In the following section, the linear equalization model is de-
The two scenarios—general channels without noise and §F'iPed. The signal space property and the equivalent cost func-
thogonal channels with arbitrary noise—that DoA can be corons in the global response space are presented in Section I
pletely characterized are somewhat restrictive. However, th@y Well- Main results with regard to domains of attraction of
do include many practical applications in communications. B&W receivers and their properties for both the noiseless case and
cause the SW cost is smooth, the characterization of DoA dhe orthogonal channels are given in Section Ill. Conclusion is

tained in this paper approximates well for general channelsgwn in Section IV.
high signal-to-noise ratio (SNR) and for channels that are ap-1hroughout the paper, upper and lower case bold letters de-

proximately orthogonal. The latter may be the result of the trarf&2t€ matrices and vectors, respectively. Key symbols are listed

mission of code division multiple access (CDMA) signals using® follows.

orthogonal codes. In the presence of channel dispersion, thé)' transpose;

signal waveforms from different users are no longer orthogonal.(') pseudo-inverse;

It has been shown that using SW receivers for such a case lead§ "1 €XPectation operator; .

to minimum mean square error (MMSE)-like performance [17]. [IX|l»  ,-norm ofx defined by(3_; x:[*) .

The analysis presented here offers an approximate descriptiofix|la vector norm ofx on matrixA defined byv'x*Ax;

of DoA for mildly distorted channels. Another example thatin- Ca
volves orthogonal channels is space-time coding. Tastkdi. Cax
[16] showed that by constructing space-time block codes withI
columns being orthogonal, decoupled maximum likelihood de- ©:
coding is achieved with remarkable performance at the expense

of almost no extra processing. Other examples include orthog-|5|
onal frequency division multiplexing (OFDM) used in wireless

range space cAAT[12];

range ofl — AAT;

identity matrix;

unit column vector with 1 at théth entry and zero
elsewhere;

size of the sef5.

Il. PROBLEM FORMULATION

communications [19] and the discrete multitone (DMT) imple-

mented for digital subscriber line (DSL) technology [11]. Area. Model

\rgli?:\;vti(;zzt\)/\tl)el:gz[:gzg{ eodrtir:]o[%?.nal transmultiplexers in commu We consider the linear estimation model illustrated in Fig. 1
and described by

There are few results available on the characterization of at-

traction domains for SW or CM receivers. The most relevant is 2

a paper by Benvenistet al. [1], where they considered a class ©)

of objective functions that include the Sato algorithm as a spe-

cial case and characterized DoA in the absence of noise for taere the input signaé € R" is transmitted through the

blind equalization problem. Our results differ from theirs in twghannelH € R*N (the impulse response matrix) and

ways. First, their analysis does not apply directly to smooth cdrrupted by the additive white Gaussian noises R .

functions such as the SW criterion. Second, we have includedrhe linear estimatof € R is designed to estimate one of

several parameters in the model ignored in [1]. Specifically, WB€ components ig, says;. The estimation is blind in the sense

have included noise and considered sources with different poéat only the marginal statistics of ands are used, and the

and statistical properties. It is interesting, however, to note tH&tannel matrixt is assumed to be unknown. Vectpr= H'f

some of our results coincide with theirs, even when the cd§presents the global response between the signal to be esti-

functions considered are different. A recent study of the Doated(s;) and the estimator outpyt

for fractionally spaced CM equalizers was made by Chung and!n our analysis, we assume the follwing.

Johnson [6]. They showed that under the noise-free assumption,Al) Entries of s are independent sub-Gaussian random

the domain of attraction of alocal CM minimum in the global re- variables.

x = Hs +w,
y=f'x=q's+f'w
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A2) Entries of w are independent and identically dis-Two stochastic gradient algorithms were proposed in [15] for
tributed (i.i.d.) Gaussian random variables with zerpractical implementation.

mean and variance?. CM Cost and CM Algorithm:Proposed earlier than the SW
A3) s andw are independent. algorithm (SWA), the constant modulus criterion [9] aims to
A4) H € RM*N has full column rank. minimize an unconstrained objective function
Becausdl is unknown, it is without loss of generality to as- C e A 5 5
sume thatE{ss'} = L If source signals are unequally pow- Je(£) = E{(|lyl” — )"} (10)
ered, the input vector can be expressedias whereE = \ynerer 2 (E{|s;|*})/(E{|s:|2}) is the dispersion constant.

diag(v€y, ..., vEy) with & being the power of théth user. | oca| minima of (10) constitute CM receivers. The explicit ex-
Since bothH andE are unknown, we can absakbinto H, and pression of the CM cost is obtained as

thus,E {ss*} = I still holds true. The effect of signal power will -
be discussed later. J.(f) = E{y*} — 2rE{y?} + *
= Ku(y) +3EX{y*} — 2rE{y*} +°

B. Cost Functions and Implementations
P = — |[T/*H ||} +3][f|[& — 2r[[f|[R +°. (1)
N—_———

SW Cost and SW Algorithmin order to estimate the input

signal without knowing the channel, Shalvi and Weinstein pro- Js ()

posed a criterion [15] to maximize the cost function The connection of CM and SW receivers is obvious if we impose
N a unit power constraintf||3 = 1 on (11).
J5(£) = [ Ka(y)] ) The constant modulus algorithm (CMA) is the stochastic gra-

subject to the unit power constraiBt|y|2} = 1, whereK,(y) dient method based on the cost function (10) and given by

is the fourth-order cumulant gf A local maximum of this con-

strained optimization is referred to as an SW receiver. To obtain

an explicit form ofJ,(f), by substituting (3) into (4), we have Compared with the (constrained) SWA, this algorithm is easier
to implement.

i1 =B — uxawn (Jrl* =), 1> 0. (12)

Jo(f) = [Ku(f'Hs + f'w)| = [Ky(f'Hs) + Ky(f'w)] Power-Constrained CMAThe analysis of DoA for SW re-
= |K4(ftHs)| ceivers can be more conveniently carried out by considering the
N [ M power-constrained constant modulus (PC-CM) algorithm with
= |K, Z Fihji | si receivers defined as
i=1 Jj=1 A N . 2 AVATEE N . 7
o . fp Sarg min  E{(ly]" - )"} = arg i Jo(f). (13)
= fibji | Ka(si) Examining (5) and (11), it can be seen that under the constraint
i=1 \j=1 Ifll& = 1, J,(f) and.J.(f) have exactly the same form except
N v 4 forasign differgnce, which imp!ies that the minimizgtipn (_)f the
_ Z Fihi | m= ||1‘I1/4Htf||4 ) power-constrained CM cost is |den_t|cal to the maX|m|zat|on of
=\ J ! 4 the SW cost. Therefore, the domain of attraction of an SW re-
ceiver is the same as that of the corresponding receiver obtained
where by a gradient search algorithm for the criterion described in (13).
In optimizing (13), we consider a two-step stochastic approx-
II =diag(my,...,7n), m = —Ky(si) (6) imation procedure

The above derivation makes use of some properties of cumulan
[14] and assumptions A1)-A3) listed in the previous subsection.
As for the constraint, applying{ss’} = I, E{ww'} = ¢’I
andE{sw'} = 0 leads to

f;,
borr = £ — i (2 = 7)) fipr = —F— (14)
([t /lR
wherey > 0 is a step size. Obviously, the first step aims to at-
tain a CM minimum which is co-linear with and a one-to-one
E{|y[*} = B{f'Hss'H'f} + E{f'ww'f} corr_espondent to the SW maximu_m, _vvhereas the projecting op-
_ fHHH + 02D = ||f]3 ) eration serves the purpose of satisfying the power constraint.

where C. Signal Space Property

Direct analysis of convergence properties of SW receivers
R £ B{xx'} = HH' + ¢°L (8) using the power-constrained constant modulus algorithm is a
formidable task. One way to attack this problem is via trans-
forming the optimization of the receiver coefficierfiso the
optimization with respect to the global system respeps¢ow-
ever, these two optimizations are not equivalent in general. For

3For a sub-Gaussian signalK 4 (s) < 0. The negative sign in this definition convenience, we denotg as the receiVAer parameter space, a

is meant to maker; positive. collection of any linear estimatdr andQ = {q | q = H'f,f €

Therefore, the SW receiver can be obtained from

f. = argmax |TIY/4H!f||% subject to||f||% = 1. (9)



1400 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

F1 as the space for the global response. To make the analydence, corresponding to (5), (11), and (13) obtained in the
in Q justifiable, we resort to an important concept—the signaéceiver parameter domain, we have the following equivalent
space property [17], [20]. counterparts in the global response space:

The signal spacéy; is defined as the column space of the
channel matriXH. A receiverf* is said to have the signal space
property_iff* € Cp,l.e f* = Hv for somev. This implies that SW: J,(q) 2 J((HYq)
the receiver is made of a linear combination of filters matched _ IIY%ql1:. subiect t 2 _ 4 20
to the columns of the channel matii%, or equivalently, the re- = [III™""qlly, subject tol|qlp = (20)
ceiver can be viewed as a cascade of a matched filter and alinear CM: Je(q) 2 Jo((H")'q)
combiner, and it filters out any disturbance not in the direction 3|al|s — 2rllal|3 — 1Y 4q||: ++* (21)
of the signal. Ericson [8] showgd .that. an optimal receiver Qe— PC-CM:q, £ arg min J.(q). (22)
signed from any reasonable criterion includes a matched filter llall3=1
as its front end.

The signal space property of SW receivers was proved in [17]Note that the above one-to-one correspondence exists only
for general heterogeneous sources. For the homogeneous 8gBveen receivers iF and inQ. When we consider the conver-
Gaussian sources considered in this paper, the result still hdig§ice region of a certain receiver, we will deal with a sequence

as follows: Assume thatg L is not empty (.e., M > N). Let {fx}, and eactf, may not be inCy, i.e., there does not nec-
£, be an SW receiver defined as essarily exist a one-to-one correspondent relationship between

two sequence$fy } and{qx| q. = H'f}. This problem will
be discussed next.

> 1

f, = arg max J,(f). (15)
lI£]1E =1
Then [ll. DOMAINS OF ATTRACTION
_ We first give a definition of domains of attraction. The exis-
f,=arg max  J(f). (16)

£eCo, ||l =1 " tence of DoA is guaranteed by the capture theorem [4].
Definition 1: Let g be continuously differentiable and the
In general, introducing constraints alters locations of local opnly local maximum of within some open set. A domain of at-

tima and perhaps creates or removes local optima. The ab#@gtion ofx* is defined as an open sB{x) containingx* such

statement shows that restricting an SW receiver to the sigtiat for any initial pointx, € D(x), the sequence;, generated

space has no effect on the receiver itself. A similar result apy the gradient algorithm according to (1) with an arbitrarily

plies to CM receivers [17], [20]. It is this property that allowsmall step-sizg: > 0 and satisfyingy(xx+1) > g(xx) for all &

us to analyze SW receivers and their DoA in the global resporiyéemains inD(x) and ii) converges te*.

space. To obtain an SW receive* adaptively, consider updatirfy
using a gradient algorithm with an arbitrarily small step-size on
D. Equivalent Cost Functions the ellipsoid||f||% = 1. Atissue is what are the largest possible

_ . DoA of SW receivers. In order to answer this question, we need

Because of the signal space properties of SW and CM g0 some convergence properties of the SW algorithm. Two
ce!vers,.there ex!sts a qne-to-one correspondgnce b?t"vee”ségharios will be considered in this section: the noiseless case
ceivers inJ” and in Q. Given a CM or SW receivef*, sincé 54 the class of orthogonal channels in the presence of noise.
f* € Cu, we have For the latter, the number and the locations of SW receivers have

been completely characterized recently [10].
£ = (H)'q". (17) e v 110]

Therefore, the optimization with respect to the receiver coefﬁf' Relationship Between DoAJi and inQ
cientf is equivalent to that with respect to the system parameterExploring convergence properties f is difficult. While it
q. To obtain the equivalent objective functionsd@for the pre- has been shown that there is a one-to-one correspondence be-
vious three algorithms, we need only to substitute (17) into caween local optima of the SW criterion iR and those inQ,
responding costs and express the output pd#er®} = ||f||% it is not clear that DoA in the two spaces are one-to-one corre-
in terms ofq spondent. In fact, wheH has full column rank with\/ > N, a
pointq; may correspond to infinitely many pointsfidomain,
E{?} = E{(q's + f'w)?} = E{q'ss'q} + E{f'ww'f} but twp different points in@ space will n_ot ha_ve the same in-
. oot . o et 1 ) verse image. Suppose that theresareceivers in¥, which are
=d'q+o’f'f=q [[+o°(H'H)"Ja=lals  denoted as(i = 1,..., ) with corresponding DoAD;(f),
(18) and accordingly, there also existeceiversq®(i = 1,...,v)
in Q with DoA D;(q). The question is, Ar@;(f) andD;(q)
where one-to-one correspondent? Here, we establish this connection
that allows us to pursue the analysis of DoA in the global re-
& =T+(HH) (19) sponse spac€.
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Lemma 1: Let g* be a local maximum of (20) arB(q) be with the (maximum) domains of attraction
its DOA. Then, under assumptions A1)-A#),= (H")q* is a
local maximum of (9) with DoA Di(q) ={aq| lalld =1, 127"/ q - e
<||[@~MVq—ejll, Vi#i, j=1,...,N} (28)

D(f) = {f | H'f € D(q)}. (23)

where® is defined in (26).

Conversely, iff* is a local maximum of (9) an@(f) its DoA, Proof:: See the Appendix.

thenq* = H'f* is a local maximum of (20) with DoA To illustrate Lemma 2 geometrically, let us consider the
special orthonormal channels with unit power input signals

D(q) = {q | q = H'f,f € D(f)}. (24) in three dimensions as shown in Fig. 2. In this situation,
® = (1 + o3I and||q|l3 = 1 defines a perfect ball.
Proof: : See the Appendix. SW receivers are given by®@ = 1/(vV1+o02)ei(i =

Therefore, DoA inQ and those i are also one-to-one cor-1,2,3), and the correspondingD;(q) is bounded by
respondent in the sense that for any receiyér with D;(q), {alllallz =1.@ =a. @ > @.j # 4,k #i,k #j}. There-
there exists a uniqu&® with D;(f), and vice versa, althoughfore, the DoA is specified by the intersection of the minimum
different points inD;(f) may have the same image ;(q) distance decision region fer; and the sphere determined by
underq = Hf. Furthermore, if a sequendgy; } in Q con- the noise. As the SNR increases, the ball will expand, but
verges tag("), any corresponding sequeng } in F will con-  the above relationship still holds true. This implies that the
verge tof(?. D;(q) is simply a projection ofD;(f) in lower relative size of DoA remains the same for any SNR. In other

dimensions. From this point of view, we can analyze domaingords, we always haviD,(q)| = |D2(q)| = |Ps(q)| at an

of attraction in the global response space. arbitrary noise level. More general results regarding the size of
DoA will be presented in the next subsection. Wher= 0,

B. Domains of Attraction for Noiseless or Orthogonal llall% = 1 turns out to be a unit ball. This noiseless case is the

Channels scenario considered in [1] but for different cost functions. The

It was shown in [10] that each SW receivg) is co-linear conclusion is glso the same as in [6] when CM receivers are
ower constrained.

with e; if and only if either there is no noise or the columns of .
H are orthogonal. In both cases, mat#xdefined in (19) is di- As the channel condition chang_es SO that the COll.erH O.f
are no longer orthonormal (but still orthogonal), or input sig-

agonal. Our goal in this subsection is to characterize domainsno s have distinct powefig||% = 1 becomes an ellipsoid. The
attraction for these two cases. Since the analysis for the noise- q inte pr q ‘I>t._ o= g (Vi p/. .'th
less channe® = I) is a special case of that for the orthogonaﬁ)oiJn ary pointgj of Di(q) satisty¢iq; = ¢;g;(vj # i) Wi
channels® = I+ o2A, A is diagonal), the characterization of il = ¢xawlk # j k # 1). Again, we see that DoA are the
DoA will be focused mainly on the general orthogonal channél''mum distance decision regions but on an ellipsoid.

case. We begin our discussion in the global response space an ow, let us, e>§tend th_e above dlscus_smn to a general
. . . case. What if input signals have different constella-
then in the receiver parameter domain.

e . : )
Suppose that the input sequence has the same probabilityafsqs' According to (20), SW receivers are obtained as

Sl 1/4, 114 ;
tribution but possibly unequal power with power matixde- 94 = 28 ™MaX|qjz =1 |[TF"q]l;. To make use of the result in

. s .
scribed in the system model. Then, SW receivers can be &gMmma 2, we apply the transformatign= I1 (+/*p, which
tained from the following criterion: leads to the following equivalent optimization:

4 ; 2
. max , Subject t =1 29
max ||q||;, subject to||q||% =1 (25) Pl jecttofp|lr (29)

wherel’ = II-/9 &I1-(/4) s diagonal. Substituting with
whereq = (HE)'f, and® = I + ¢’E~"'(H'H)"'E~'. Let (26) yields

H'H = diag(dy,...,dy). This leads to

1+—02 1+ a?
$ =diag [ 1+ o’ 14+ a? I‘zdiag( d‘g‘,..., dws,\,>
B g dlgl’“.’ ngN A/71 TN
. 1 1 &7,
=di i i _; 26 :dlag Sy 5 ’fyizi’]r. (30)
= |ag PRI ) ¢z— —- ( ) ry% 7]2V =
& N 1+ d(-ys- 14 d;&;

1

The diagonality ofP enables us to find solutions to (25) and theBecausg (29) and (25) are of gxactly the same form, a similar
) conclusion can be reached as in (27) and (28).
corresponding DoA. : . .
Thus far, we have discussed domains of attraction of SW re-
Lemma 2: Let the columns oH ; « » be orthogonal and the _ . .

. L : : ceivers in the space of the global system response. Due to the

source signals be i.i.d. Then, SW receivers are given by - ; )
one-to-one correspondence existing between DoA& iand in

q("’) =¢ie;,, =12 ....N 27) 5More accurately, the DoA of receiver” should satisfy]|®~(1/2)q +
e;]| < ||®~1/2q + e,||. However, sinceP is diagonal)|q||Z = 1 is sym-
4For eachq‘? = ¢;e;, there always exists a symmetric receiveq‘”’.  metric about all the axes, and(q) is symmetric aboué;. Therefore, we can

Hence, we need only to deal with the positive one. simply consider the positive coordinates of DoA.



1402 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

Q, DoA in the receiver parameter space can be obtained accorc
ingly.

Theorem 1: Let the columns oH ,« » be orthogonal. SW
receivers are given by

f(i) - %(Htﬁeia i=1,...,N (31)

T

with the (maximum) domains of attraction

Di(f) = {£ ] [I£[ = 1, | Af — e < [|AL — e
Vi#i, j=1...,N} (32)

whereA = II1/2 &~ (1/2EH!, and® is related tdR by R =
HE®EH'.
Proof:: See the Appendix.

Theorem 1 enables us to analyze convergence regions of SV
receivers for multiple users with unequal power and distinct
constellations when columns #f are orthogonal. As we men-
tioned bgforg, orthogonal channels play an |mp0rt§nt pa_‘”r%?. 2. Domains of attraction for orthonormal channels. Dot: maximum;
communications, and the above results are of practical &gryﬁjare; minimum:; triangle: saddle.
icance. One special application is found in synchronous CDMA

systems. LelC,,« n correspond to the codeword matrix with . . .
spreading gairM and N users and; 2 Ce; (i = 1,...,N) 1,2) be the corresponding receivers and DoA resulting from the

be the codeword for th#h user. Assume that the source signafe@nge of some system parameter (?.g., SNR). I\/Iow the question

are i.i.d. with unit power. If under certain circumstances [e.a.z' Whatis the relationship betweg'(q)| and|D:'(q)| given

ideal channel without intersymbol interference (1S1)] we have'® relatlonsh|_p_ betW_ee?pl(Q)_ and Dy(q), say, |D1(q_)| =

H = C with C'C = CC! = I, then for any initialization |D2(q)|? Spgmﬂce;lly, is it easier to converge to recei

fy € Di(£), B — ¢ ask — oo, where than to receivery (|} (q)| > |D5(q)]|), or are the two cap-
tured with equal probability| D1/ (q)| = |D2'(q)|)? Finding the

1 answer to this question will allow us to determine whether and

Di(f) = {f | [I£]] = \/ﬁ’ If —cil| <[If =<l how we can shrink or enlarge the DoA of a receiver of interest by
changing certain parameter(s). For example, it has been shown

Viti, j=1,... ,N}. (33) thatforthei.i.d. equal power sources and orthonormal channels,

D1'(q) andD,’(q) always have the same size, regardless of the

Itis interesting to note that every equalizer will converge to tH&iS€ level. Clearly, in this case, itis not possible to expand cer-
corresponding user codeword (up to a scalar) at an arbitrd®)? POA by simply increasing or reducing the noise variance,
noise level. For each code, its DoA is defined by the inter- PUt What happens to the general orthogonal channels and non-
section of the minimum distance decision regiondpand the identically distributed sources? _ o
sphere determined by the noise level. The geometrical illustra-Formulated in (20), SW receivers are obtained by maximizing
tion is exactly the same as in Fig. 2, except that it is noFin _||1—I]_L/4°1||1L subject to the power constralmn?{, = 1. Sincell
domain anct; is in stead ofe;. is diagonal||TI*/*q||} is nothing but a weighted 4-norm, and its
Theorem 1 delineates DoA for SW receivers obtaindg@ximaare always attainedte; whetherll = Tor not. How-
by the gradient algorithm in the receiver parameter domafYe" its minima and saddles,ofwhlc_h the boundary of D_oAcon—
where practical adaptation is performed, whereas in the glofSiits: are usually not the same for differehtTherefore, signal
response space, although implementation is impracticaH’?QPSte"a“O”S will affe_ct the size of DoA. Generally speaking,
theoretical analysis is easier to carry out. Since both receiv@gthe shape of the ellipsoid and the boundary of DoA are deter-
and their convergence regions are one-to-one corresponderT'jied by® andr [as defined in (26) and (30)], the size of DoA
these two spaces and DoA obtainediihave rather straightfor- depends on the signal power, the signal constellatl_on, the noise
ward geometrical interpretation (especially for the orthogon@velq and the _channel condition. In order to describe the r_ela—
channel case), the following analysis will be concentrated &€ Size variation of DoA, we need to examine boundary points
the global response space. q, _espemally those coordmates satlsfylng_the equallty relation-
ship. By the transformation = IT-(/%p introduced in the
C. What Affect the Size of DOA? previous subsection, it is easy to obtain these coordinates with
In thi_s subsection, we focus on the problem how the Si{%supnedc;tyq;.ofiyé% of g:?ésjs;i;lzit:\éhere% Vb Thus. &
of DoA is affected by different elements. Suppose that we are
given receiversy™ and q@ for two different sources with

DoA D;(q) andD,(q), respectively. Let/”) andD;’(q) (i = VTG =TT, J # i (34)
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Fig. 3. Changes of DoA at a fixed noise level. £a)or d, decreases. (bj; decreases. Circle/dot: maximum; square: minimum.

Whenr; = 7 Vi, we havep;§; = ¢,7;, which defines the min- receiver can be transformed into a local receiver (and vice
imum distance decision region as obtained for the i.i.d. sourgersa) by varying a system parameter. In Fig. 3(b), the ellipsoid

case. remains unchanged. However,asdecreases
Now, we are able to show the effect of the above-mentioned
four parameters on the size of DoA. We first discuss i\ 7 o v/ T
3 v pn = 2o VMO VRO B (3

and¢; influence domains qf attragtion of SW receivers. ' 7 [mhdly  T2d2 @
Property 1: For fixed noise variancés # 0), a decrease in

theith inpu_t signal power or the abs_olute value of its cumul_anéausing the decrease|iit; (q)|. If, as an extreme exampte, is

or theith diagonal element dI*H will lead to the decrease in further reduced to zero, which corresponds to a Gaussian source,

1Di(q)]- . . then|D1(q)| = 0, i.e., the DoA ofq(?) disappears. This agrees
Proof: First, assume that the input has the same constelgith the fact that the SWA cannot detect Gaussian random vari-
tion, i.e.,m; = w,i = 1,...,N. Consider the maximug® = aples.

¢1e1. Suppose thaf; decreases, whereas otl#&(k # 1) re- For the global SW receiveg¥ = ¢e;, [ = arg max _¢;,
main unchanged. This results in the decreasg;ofind the el- lsish
lipsoid Y, (¢i/¢:)? = 1 shrinks atq}). Further, any point
q on the boundary oD, (q) satisfies¢1q1 = dugu, kb # 1.

Since the length af; is reduced, the rati@7; /7 ) will increase,

which implies that all the boundary points will move towar
q‘V, causing the area @, (q) to become smaller. A decrease[iO

in d; produces the same result. Note that wheg: 0, all the . SN
. . . When we have nonuniform source distributions, a nonglobal
DoA are of the same size on the unit sphere, and neither the

channel condition nor the signal power will take effect, receiver may have the largest DoA, provided that the corre-

: . . .sponding source has a negative enough cumulant, i.e., the more
Next, we show that this conclusion also holds for signals wi : .
. . . sub-Gaussian a source, the larger the convergence region. Be-
different constellations. Assume that decreases with other

rx(k # 1) being fixed. Sincer, has nothing to do witk,, the cause the larger the DoA, the easier for the optimum to be cap-

ellinsoid SN . (o /632 — 1 remains as before. However fromtured, the above result indicates that, in practice, we can de-
34p E:i=1fqz{¢z)__ hi h il ' crease the cumulant of a (sub-Gaussian) signal of interest to
(as ), \gscrz\:ggls/ qlz)ac;n( v tgktﬁl;/ svh?;?(;)’év)@m Wi mcreaéle guarantee the convergence of the corresponding equalizer. Usu-
%e interpreta{tion olft%is propert;/ in t%vo d(i?rzénsions is iIIusa”y’ signals with denser constellations have larger cumulants,
S e.g., the cumulant of 8PAM is-1.238, wher hat of BPSK
trated in Fig. 3. Suppose that > ¢ and|D1(q)| > |D2(q)|. €.g., the cumulant of 8 §1.238, whereas that of BPS

. : , . is —2. Hence, for a communication system with nonidentically
In Fig. 3(61.)’ agﬁl IS r_educed tg}; due FO the decrease ) or distributed sources, there exists some tradeoff between band-
dy, the ellipsoid shrinks from the solid one to the dotted one,

. . width efficiency and receiver convergence capability.
Meanwhn(_a, the anglé defining the boundary oD, (q) turns We next examine the influence of the noise variance on the
smaller (givenr; = m2)

size of DoA. Different fro the previous case, asaries, allp;
will change accordingly. Assume thaincreases with other pa-

the boundary points of Dyq)  satisfy
(@/a) = (Vrwor/m¢n) (B # Lk = 1,...,N). Thus, if

m = --- = 7w, theng < gx Vk # [, which leads to the
éollowing conclusion.

Corollary 1: If the source signals have the same constella-
n, the global SW receiver has the largest domain of attraction.

L_h N _ @

tan ' = = = & < el = tané. (35) rameters being fixed. First, we note that the ellipsoid will shrink
@ 2 P2on at every optimum point due to
Hence, (|D}(a)l/IPy(a))= (¥ /a'¢ )< (ab/ac)= L
(ID1(a)|/|P=2(q)]). Particularly, if we make¢| equal to ¢ _ i <1 (37)
5, then |Di(q)| = [P4(q)|. Further reducingp; results in T

[Di(q)] < |D5(q)|]. Here, we see an example that a global 3
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Fig. 4. Changes of DoA when a increases.dgf, = d2&:. (b) d1E1 > d2&,. Circle/dot: maximum; square: minimum.

Second, we need to figure out to what extent it shrinks at each  (|D}(q)|/|Dj(q)|) > (IDi(a)|/ID;(q)l), regardless of

optimum by comparing the ratio values of signal cumulants. This result shows that even
if the global receiver (with the largest) has a smaller
, , (1 + 0_2) (1+ o2 ) domain of attraction (due to its larger cumulant), its
(/)Z/(/)Z _ (/)Z(/)J _ djf,'j di& . . 2 .
; = = - (38) convergence region will grow as“ increases. That is
$ilb; i (1 + (Z&_) (1 + d‘j’—gj) to say, a worse SNR situation favors the global receiver.
_ _ _ However, this growth has an end when the noise variance
which requires evaluating is sufficiently large because
p o2 i o2 =
A:<—+ )—( + ) / 1+ d:€;
4E T 4&) T \aE T 4E lm 2= lim LE [ EE g
) ) 1 1 g’ —oo (/)j g’ —oo 14 o2 djg]
= (OJ - g ) < - ) . (39) d;&;
&;E di&

) ) o ~Inall, we have the following result.
F|na”y, the Change in the relative size of DoA can be determ|nedproperty 2: Giventhe Signa' constellation and power and the

by checking the variation of the boundary points channel condition, as the noise variance increases, we have the
GTG g _ VTG S o o
s Ta NN T (40) i) Forthe e_qual_powersourceand orthc_mormal channel case,
J ‘ ‘ the relative size of all the DoA remains unchanged.
Consider the following two cases. ii) Generally, the DoA corresponding to a larger tends
i) See Fig. 4(a). If for any andj, d;&; = d;€;, ord; = d, to |/ncrease,/ or mathematically, i; > ¢;, then
andé; = &, thena = 0 and((¢!/¢0)/(d/6;) = 1. (Pi@I/IDi@l) > (Di(@l/IDi(@)-
In this situation,||q]|2 = 1 defines a perfect ball Since, in a low SNR scenario, the global receiver tends to
(¢i = ¢;), and the increase iar will cause the whole achieve the largest possible domain of attraction, this property
ball to shrink proportionally with¢, = (/)3 Hence, €xplains why a weak signal may never be detected under noisy
((¢:/d,)/(@/3;)) = 1. i.e., the relative size of the DoA circumstance. In order for all the signals to be captured, one way
for each receiver remains unchangedrilf= - - - = 7y, is to design i.i.d. signals and channels satisfying the conditions
then|Di(q)| = --- = |Dv(q)|. in i), or alternatively, and more practically, we can decrease the
i) See Fig. 4(b). Supposer;, = --- = an and cumulant of a signal with low power to increase its detection

di& > d;€;. This leads toA > 0 and¢; > ¢;. Probability atlow SNR.

Then, ((¢/é:)/(¢/¢;)) > 1, which implies that . .

the eIIi(éso{d i{I(rlnjk/s Jl)e)ss at the point with largey, D- Two-Dimensional Case

or larger DoA. Furthermore((¢;/q})/(g:/42;)) < 1 To gain an insight into the previous analysis, in this subsec-
indicates that the larger DoA becomes even larger. tibn, we provide an illustrative example in 2-D global response
we have nonuniform source statistics, although thepace for i.i.d. sources. Due to the close relationship between
signal constellation does have an effect on the bound&®halvi-Weinstein and constant modulus receivers [13], DoA of
[see (34)], it neither exerts any influence on the sizhe latter are considered as well. We note that although CM and
and the shape of the ellipsoid (which depend #n SW receivers are one-to-one correspondent, such a relationship
only), nor affects the relative variation of the boundargoes not hold for other stationary points. Since the boundary of
[see (40)]. Therefore, itl;&; > d,&;, we always have DoA is determined by these stationary points, their domains of
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Fig. 5. Comparison between DoA of SW and CM receivers. Circle: maximum of SWA; square: minimum of SWA, triangle: minimum of CMA; plus: maximum
of CMA; pentagram: saddle of CMA. (a) = diag(1, 1). (b) ® = diag(10.10). (c) ® = diag(2,5). (d) ® = diag(2, 10).

attraction are different in general. This key difference is demo(see Fig. 6). Because the location of each SW receiver cannot
strated in Fig. 5. The ellipsoid drawn in thick solid line corbe obtained analytically, it is not easy to characterize the size
responds td|q||2 = 1. Two solid cross lines demarcate theof DoA in general. Nevertheless, from the simulation, it is not
different DoA of SW receivers on the ellipsoid. For CMA, wesurprising to see that the global receiver always has a larger DoA
only consider convergence regions defined|oy|z < 1 due than the local one.
to the output power constraint of any CM receiver proved in
[20]. Dotted areas are DoA of global CM receivers, whereas
blank regions in between correspond to DoA of local CM re-
ceivers. When there is no noise (see Fig. 5(a)), SW and CMIn this paper, we analyzed domains of attraction for the gra-
receivers coincide and have the same DoA on the unit circtient ascent implementation of the SW criterion. DoA of SW
In the presence of noise, they still can have the same conveseeivers were characterized for the noiseless and orthogonal
gence regions (on the ellipsoid), provided that the channel is ahannel cases. When the columndbére orthogonal, we con-
thonormal and the input signals have the same power as shahrded that in the global response space, DoA of SW receivers
in Fig. 5(b). Note that there is a scalar difference between thesme the minimum distance decision regions on an ellipsoid deter-
two receivers. This scenario corresponds to the situation illusined by the channel condition, the signal power, and the noise
trated in Fig. 4(a). For general orthogonal channels, howeveariance. The result obtained in the practical parameter space
CM and SW receivers have distinct domains of attraction [se@ables us to analyze convergence behavior of SW receivers for
Fig. 5(c) and (d)], resulting from their different transient beinput signals with nonuniform statistics and possibly unequal
havior in convergence. Further, DoA of both SW and CM locglower in a multiuser system. We further investigated the effect
receivers shrink ag, decreases ( e.g., fromy+/5 to 1/1/10), of system parameters on the relative size variation of domains
which implies that it is easier to capture the global optimum (aef attraction, which provides some insight into the signal de-
sociated with the stronger signal). This observation agrees wélign principles, e.g., at a fixed noise level, in order for a signal
the theoretical result presented in the previous subsection. to be easily detected, we can either increase its power or de-
As an extension to the orthogonal channel case, we considegase its cumulant to make it more sub-Gaussian; if all users
the general 2-D global response. It was proved in [10] that theaee of same importance, itis necessary to assign a smaller cumu-
are either two or four SW receivers, depending on the noise leleaht to a signal without high enough power so that even as SNR
and the channel condition. Further, the numbers of local minirdeteriorates it still can be captured. While we have shown the
and maxima of the SW cost are the same, and they alternateooe-to-one correspondence between DoA in the global response
the ellipsoid defined bylq||2, = 1. Hence, domains of attractionspace and those in the receiver parameter domain based on the
of SW receivers are bounded by the minima of the SW cosignal space property, how DoA change#his still not clear

IV. CONCLUSION
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Fig. 6. DoA of SW receivers with (a) two maxima and (b) four maxima. Dot: maximum; square: minimum.

because the mapping fro@ to F is possibly one-to-infinity. SinceH has full column rank, we hav¥’ L(q) = 0. On the
Further, DoA of SW receivers in the general high dimensiomher hand, itVL(g) = 0, then

remain undefined due to the fact that the convergence proper- - 3 .
ties are largely unknown in this case. 4) (f'He;) e; + 22@H'T =0  (49)

APPENDIX A

= 43" (f'He;) He; + 2\H®H'T =0  (50)
PROOF OFLEMMA 1 ‘

— vif)=0  (51)
The one-to-one correspondence between recefférsand B -

q® is guaranteed by the signal space property of SW receivef$ M > IV, @ may correspond ¢’} (I = 1,2,...). Due

We now prove that such relationship also exists for DoA in twi§ the signal space property, only those nonoptimum stationary

spaces. points that constitute the boundary of DoA can have infinitely

First, we claim that iff is a stationary point i, thenq = Many inverse images. 0
H'f is also a stationary point i; conversely, ifq is a sta- Second, suppose thif } Con%e)rges td®, i.e., for anye >
tionary pointinQ, then{f|H!f = q} are also stationary pointso' there(ie)msts a neighborhoodt’ and an integeK such that
in 7. Without loss of generality, assume tidt= I. For con- |Ifx = £*[| < ¢/a(er = [[H]|) for & > K. Then
strained optimization, we can form the Lagrange function an(ﬂ ol _ + )
calculate its gradient as A I HH (f’“ -f )H

‘fk £

<|[H*|

<al=¢ E>K (52)
67
L(f) = 3 (f'He;)" + M'Rf 42) o _
- i.e.,{qx } converges te”). This implies thatiff, € D;(f), then
_ PN _ " qr = H'f;, € D;(q). Conversely, assume that € D;(q) and
VL) = 42 (f'He;)” He; +2ARf, R =H®H thatq, corresponds tdf} }. If for any , £}, € D;(f) andj # 4,
‘ 43) thenH't! € D;(q), i.e., qr € D;(q), which contradicts the
assumption. Hence, . € D;(q), then{f}| H'f} = qu, [ =
1,2,.. } C Dz(f)
Third, consider a sequende; } generated by a gradient as-
cent algorithm withJ (qx41) > Js(qr) ¥V k. Suppose thai

orin @

L) =Y (a'e:)* + Aq'®q (44) correspondstéf’} (Ip = 1,2,...) andqy1 is associated with
‘ fir (I, =1,2,...). Since
VI(q) =4 (q'ei)’ei +2)8q, (45) (it}

T () = Julansn) = Jela) = 7, (£°) . Vio, 1s (53)

any sequencéfy.| H'f, = qu} (there could be infinitely many
suchsequences) satisfiesfy 1) > J,(fy) V k. Further, ifq;, €

If £ is a stationary point, theW L(f) = 0, i.e.,

42 (qtei)?’Hei +2\H®q =0 (46) D;(q)andanupdatq;.: € D:(q), then{f,ﬁo} C D;(f), and
‘ {f,ibrl C D;(f). Similarly, itcan be shown thata sequertg}

=0 (47) with J,(fu41) > Jo(fi) (¥ k) has a corresponding sequence
{qk| qr — Htfk} with Js (Qk-l—l) > Js(Qk) and if {fk} C
= HVL(g) =0. (48) D;(f),then{qi} C D;(q). This completes the proof. O

= H |4 (q'e))’e; +2)2q
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APPENDIX B t1 = pup} with probability p;, I = 1,..., N. By Jensen’s in-
PROOF OFLEMMA 2 equalityE{f(t)} > f(E{t}),if f(¢)is strictly convex, we have

Applying Lagrange multiplier theory to the constrained max-

imization in (25), we obtain the maxima as shown in (27) [10]. Z @ P = Z <(ﬂ ) <¢l> o

To prove the DoA part, consider the gradient implementa- 2

tion of the power-constrained constant modulus criterion. Let = Z (Pz </>1)Pl = E{tQ} > (E{t})Q
L(q) = 1/4]lqll andq* = ¢se; (¢ > 0) be a maximum. 1

Since® is diagonal || ®~1/2q — e;|| < || @7/ q —e,]| is 2 2

equivalent tog;q; > #;q;. For anykth iterationqy, € Di(q), = <sz¢?pz> = <Z ﬁ) (60)
i.e., ¢iqir > ¢iq (V5 # 1), we can update it by first maxi-

mizing the cost function which impliesdg(p)/d(p) |u=0> 0. Hence,g(p) > 0 for

Qrt1 = Qi + P 'VL(qk) sufficiently smally, i.e., ||qr+1]|i > |laxl/i. Steps i) and ii)

P L3 show that for anyy,. € D;(q), by using a gradient ascent al-
gorithm with an arbitrarily small step sizq;+1 € D;(q), and
=kt p ; v #>0 % I(qer1) > L(qu). Since there is one and only one maximum

I kP q* = ¢;e; € D;(q), andL(q) is closed and bounded on the
spherelql|2 = 1, qx — q*, andD;(q) is the DoA ofq*.

and then by projecting;.; back to the ellipsoid
Y Prol Qi P If there exists a poin§ both inD;(q) and inD,,(q), then

a N 2 q € Di(q) implies [|[2~/Dg—¢| < [|[2-/PDg—e
qx qik q S { p q-— q m ||
qr+1 = aJ(r;)v a(p) = Z <E + pgp kff)l) - (55) whereasq € D,(q) implies [2=/Dg—en| <
=1 |® (/2 — ||, which contradicts each other. There-
We note that ixy.1 € D;(q). This is because fore, if | # m, Di(q) U Dy,,(q) = 0. Those points satisfying
. |@=/2q —e|| = || 2=/2q — ey, | for I # m are on the
lldesil|% = e qi+1§’€1k+1 common boundary 0P;(q) andD,,,(q). O
1 N @+ pai o7 APPENDIX C
= Z — ) =1 ©8 PROOF OFTHEOREM 1
B According to (29), SW receivers have the fopti) = ~;e;.
and Sinceq = II- /%p andf® = ((HE)!)Tq?, we have
_ 1 3 3 . .
PiGik+1 = m ((/)iqi,k + s qzk) £ = (Ht)TE_IH_1/4p(Z) _ (Ht)T%(E_lﬂ_l/‘*)ei
1 — Dy, 61
>—m (¢iaik + 13 1) \/8_1( )'ei (61)
= 41 (57) Asforthe derivation of the DoA fof<”), we can follow a similar

. ; approach. The DoA o0p(") is defined by
it $igin > G0k i) lar[l5 > [lanlli- Let

2
o) = twst I — a2 Dy(p) = {p Il =
1
= . 58
() D (e + paist)’ Zq”‘ (58) < “F‘l/z’p—ej

—1/2

P—eiH

i

. Vi, j:l,...,N}. (62)

We will drop the subscript: in the following calculation for

convenience. Sinca(0) = 1, g(0) = 0. We thus have (59),

shown at the bottom of the page. Let/#:)> = pi. Then, r~/2p = (H—(1/4)¢>H_(1/4))

> p = lduetolql} = 1.Llett € {t,....ty} and
l

Since
—(1/2)
1-1(1/4)q

=142 e VDEHT (63)

[421 (@ + g é?) q?d)ﬂ a?(p) — [El (@ + naid7) } a(pe) [221( + ng; d)z) ?d)z}
#=0 B at(p)

pH=

=4 [213 o7 — <§lj q?> ] : (59)
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combined with the fact thdlp||7 = |lql|3 = [Ifll& = 1, (32)
follows. O
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