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ABSTRACT

The problem of interest is to characterize to what extent nodes
independently following certain transmission schedules can be hi-
jacked to relay flows of information packets. Information flows
can be embedded in given transmission schedules by properly adding
delays and inserting dummy packets. Such hidden flows are usu-
ally indicators of network intrusion, and it is of interest to know
their rates. The maximum rate of information flow that can be
transmitted without causing the transmission activities to deviate
from given transmission schedules is used to measure the covert
capacity under these schedules. Based on the assumption that in-
formation flows have bounded delays, a theoretical framework is
constructed to quantitively analyze the covert capacity under trans-
mission schedules modeled by renewal processes. Explicit solu-
tion is obtained for Poisson processes. The results suggest a close
correlation between the covert capacity and the traffic burstiness.

Keywords: Covert capacity, Information flow, Transmission
scheduling.

1. INTRODUCTION

Hidden flows of information-carrying packets are usually indica-
tors of network intrusion. For example, in stepping-stone attacks
( [1]), an attacker tries to protect his identity by tunneling through
multiple hosts before attacking the target. To secure the network,
it is crucial to detect hidden information flows.

The task of detecting information flows faces multiple chal-
lenges. For example, as illustrated in Fig. 1, consider detecting the
flow through nodes R1 and R2 in a wireless ad hoc network. Sup-
pose that traffic is encrypted so that no correlation can be deduced
from packet content or length. Moreover, the nodes can hide the
correlation in timing by delaying the transmission of information
packets and multiplexing them with packets of intersecting flows
as well as dummy packets. Such multiplexed packets, which are
not part of the flow of interest, cause noise in detection and are
thus referred to as chaff noise. With proper perturbation and suffi-
cient chaff noise, an information flow can be disguised as traffic of
arbitrary pattern. In particular, the flow can appear identical to in-
dependent traffic following certain transmission schedules. There-
fore, every transmission schedule has certain capacity of being uti-
lized to transmit information flows covertly.
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Fig. 1. In a wireless ad hoc network, an information flow through
R1, R2 (solid line) can be hidden among intersecting flows
(dashed and dash-dot lines) and dummy packets. ◦: wireless node;
Si: process of transmission timestamps.

1.1. Related Work

This work is motivated by the detection of stepping-stone attacks
first studied in [1], where the goal is to detect flows of attacking
traffic by correlating traffic characteristics. To deal with encrypted
traffic, timing characteristics are used in detection. In particular,
Donoho et al. in [2] proposed a flow model based on bounded
delay constraint, and a parallel model based on bounded memory
constraint was proposed in [3]. Chaff noise was briefly addressed
in [2], with the claim that it is impossible to hide information flows
in independent traffic if the perturbation is bounded and the chaff
noise is independent of the flow. This argument, however, breaks
down when the chaff noise and the flow can be correlated.

For arbitrary chaff noise, [4] presented the first timing-based
detector that achieves consistent detection even if chaff noise grows
proportionally with the traffic size; other detectors only handle a
limited number of chaff packets (see references in [4]). Further-
more, in [5], it is shown that there exists a threshold on the noise
level beyond which the flows can be completely undetectable and
below which detectable by a single detector. Analytical charac-
terization of the thresholds are derived, showing that perfect de-
tection can be achieved as the flow path grows. The work in [4]
has been extended to distributed detection, where achievability
results are obtained for detecting flows with quantized measure-
ments; see [6, 7].

1.2. Summary of Results and Organization

Wewant to analyze how much information flow can be transmitted
covertly through nodes following certain transmission schedules.
Our goal is to provide a quantifiable measure for covert informa-
tion flows and study its relationship with statistical properties of
the transmission schedules.
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With arbitrary chaff noise, it is always possible to embed infor-
mation flows into given transmission schedules by properly adding
delays and mixing chaff noise. Once embedded, the flows become
undetectable and thus covert. The maximum rate of such covert
flows normalized by the overall traffic rate gives us a natural mea-
sure of the capacity of covert information flows under the corre-
sponding schedules. Based on this measure, we present a frame-
work for analyzing the covert capacity under transmission sched-
ules modeled by renewal processes. Specifically, we use an algo-
rithm proposed in [8] which can embed the most information pack-
ets into any transmission schedules subject to a strict delay con-
straint. By modeling the behavior of this algorithm as a discrete-
time, continuous-state Markov process, we convert the problem
to one of computing the limiting probabilities of the Markov pro-
cess, which can then be solved either analytically or numerically.
Through simulations, we calculate the covert capacities under var-
ious interarrival distributions. Our results suggest that the covert
capacity tends to increase as the interarrival tailweight decreases
and the traffic becomes less bursty. In particular, Poisson traffic
has a much higher covert capacity than real traces.

The rest of the paper is organized as follows. Section 2 defines
the problem. Section 3 presents theoretical results, followed by
simulations in Section 4. Then Section 5 concludes the paper.

2. PROBLEM STATEMENT

Let the transmission schedule1 of node Ri (i = 1, 2) be denoted
by a point process Si, i.e.,

Si = (Si(1), Si(2), Si(3), . . .), i = 1, 2,

where Si(k) (k ≥ 1) is the transmission timestamp of the kth
packet at Ri (assume no simultaneous transmissions). We say that
(S1, S2) contains an information flow (F1, F2) if it can be de-
composed2 into processes (Fi)

2

i=1 and (Wi)
2

i=1:

Si = Fi ⊕Wi, i = 1, 2, (1)

where (Wi)
2
i=1 is called chaff noise and (Fi)

2
i=1 an information

flow by the following definition.

Definition 2.1 A pair of processes (F1, F2) is an information
flow if for every realization3 (f1, f2), there exists a bijection g :
F1 → F2 such that g(s) − s ∈ [0, Δ] for all s ∈ F1.

The bijection g is a mapping between the timestamps of the
same packets at R1 and R2. The condition that g is a bijection
ensures packet-conservation. The condition g(s) − s ∈ [0, Δ]
implies causality as well as a maximum delay Δ (this condition
was first used by Donoho et al. in [2]). Assume thatΔ is known.

Given a transmission schedule, we measure the level to which
this schedule can contain information flow as follows.

1In general, a transmission schedule can be stochastic, with each real-
ization denoting a specific sequence of transmission timestamps.

2Given nondecreasing sequences (a1, a2, . . .) and (b1, b2, . . .),
⊕
is

defined as (ak)∞
k=1

⊕ (bk)∞
k=1

= (ck)∞
k=1

, where c1 ≤ c2 ≤ . . . and
{ak}

∞

k=1
∪ {bk}

∞

k=1
= {ck}

∞

k=1
.

3We use lower case letters for realizations and script letters for the sets
of timestamps in the realizations.

Definition 2.2 Given transmission schedule (S1, S2), the relative
capacity of covert information flows (referred to as covert capac-
ity) under this schedule is defined as4

C(S1, S2)
Δ
= sup{r ∈ [0, 1] : ∃(Fi)

2

i=1 such that:
1) (Si)

2

i=1 contains an information flow (Fi)
2

i=1;

2) lim inf
t→∞

2∑
i=1

|Fi ∩ [0, t]|

2∑
i=1

|Si ∩ [0, t]|

≥ r a.s.}.

Intuitively, the covert capacity is the maximum asymptotic
fraction of information packets that can be transmitted (under the
causality and the delay constraints) through two nodes using the
given schedule5. In the sequel, we will focus on schedules that
start simultaneously and have the same rate and distribution. All
distributions are continuous unless explicitly stated otherwise.

3. COMPUTING COVERT CAPACITY

It is difficult to compute the covert capacity directly by Definition
2.2 because it involves an optimization over all the possible ways
of embedding information flows. In this section, we will present a
systematic approach to computing the covert capacity. The idea is
to find the optimal algorithm that can embed the most information
packets and then analyze this algorithm.

3.1. Optimal Embedding Algorithm

The optimal embedding algorithm is called “Bounded GreedyMatch”
(BGM), proposed by Blum et al. in [8]. Given realizations of
transmission schedules (s1, s2), BGM does the following:
1. sequentially match every packet at s in s1 with the first un-
matched packet in [s, s + Δ] in s2;

2. the matched packets form (a realization of) an information
flow and the unmatched ones chaff noise.

It was shown in [8] that BGM embeds the most information pack-
ets for any (s1, s2).

3.2. Analytical Results

The optimality of BGM allows us to use it to compute the covert
capacity. Let us first take a closer look at BGM. In the jth step
of BGM, let yj be the delay in the next pair of unmatched pack-
ets (s1(m), s2(n)), i.e., yj = s2(n) − s1(m). Then as illus-
trated in Fig. 2, if yj < 0 (e.g., y1), then s2(n) will be marked
as chaff noise, and the next pair will be (s1(m), s2(n + 1));
if yj > Δ (e.g., y3), then s1(m) will be chaff noise and the
next pair (s1(m + 1), s2(n)); otherwise (e.g., y2, y4), the pair
(s1(m), s2(n)) is successfully matched, and the next pair will be
(s1(m+1), s2(n+1)). Based on the above observation, we derive
the following property of BGM.

Proposition 3.1 If Si (i = 1, 2) are renewal processes and Yj

(j ≥ 1) defined as above, then (Yj)
∞

j=0 (Y0

Δ
=0) is a Markov pro-

cess.
4Here “a.s.” means almost surely.
5Note that the covert capacity is a deterministic quantity; it is the largest

almost-sure lower bound of the asymptotic fraction of information packets.
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Fig. 2. BGM: sequentially match packets subject to causality and
bounded delay. Chaff packets are in 1-1 correspondence with de-
lays less than 0 or greater than Δ.

Proof: From the above discussion, one can derive that Yj has
the following update:

Yj =

⎧⎨
⎩

Yj−1 + Vj if Yj−1 < 0
Yj−1 − Uj if Yj−1 > Δ
Yj−1 + Vj − Uj o.w.,

(2)

where Uj , Vj denote the interarrivals before the next unmatched
packets in the jth step, as shown in Fig. 2. Since the interarrivals
are independent6, (Yj)

∞

j=0 is Markovian.

The significance of this Markovian property is that it gives
us a convenient way of computing the covert capacity. As illus-
trated in Fig. 2, each Yj within the interval [0, Δ] corresponds to
a pair of matched packets, whereas each Yj outside this interval
corresponds to a chaff packet. Thus, the problem of computing
the covert capacity is reduced to one of calculating the limiting
probabilities of (Yj)

∞

j=0, as stated in the following theorem.

Theorem 3.2 If S1 and S2 are i.i.d. renewal processes with inter-
arrival probability density function (pdf) f(x) (x ≥ 0), suppose ∃
a nondecreasing, right-continuous functionH(x) (x ∈ R) satisfy-
ing lim

x→−∞

H(x) = 0, lim
x→∞

H(x) = 1, and

H(x) = L(x) +

0∫

−∞

H(y)f(x − y)dy +

Δ∫

0

H(y)g(x− y)dy

+

∞∫

Δ

H(y)f(y − x)dy, (3)

where g(x) is the convolution of f(x) and f(−x), defined as

g(x)
Δ
=

∞∫
0

f(y)f(y − x)dy, and

L(x)
Δ
= [F (x) − G(x)] H(0)+[G(x − Δ) + F (Δ − x) − 1] H(Δ),

where F (x),G(x) are the cumulative distribution functions (cdf’s)
of f(x), g(x), respectively. Then the fraction of packets matched
by BGM converges a.s., and the limit (i.e., the covert capacity) is
given by

C(S1, S2) =
2 − 2q

2 − q
, (4)

where q = 1 + H(0) − H(Δ).

6Note that each interarrival is only added (or subtracted) once.

Proof: See Appendix.

Theorem 3.2 provides an analytical way of computing the covert
capacity for renewal processes. The theorem says that for continu-
ous interarrivals, the process (Yj)

∞

j=0 in Proposition 3.1 is ergodic
if invariant probability measure exists. Here H(x) is the limiting
cdf of (Yj)

∞

j=0, and q is the asymptotic fraction of time that Yj’s
fall outside [0, Δ]. Equation (3) does not always have a closed-
form solution; for Poisson processes, however, we have a closed-
form solution as follows.

Corollary 3.3 If Si (i = 1, 2) are independent Poisson processes
of rate λ, then

C(S1, S2) = λΔ/(1 + λΔ). (5)

Proof: In Theorem 3.1 in [4], it was shown that the fraction
of chaff noise inserted by BGM is 1/(1+λΔ). Since the covert ca-
pacity is the complement of this fraction, the desired result holds.

We note that the covert capacity in (5) has an interpretation by
queueing theory: by Little’s law, the average number of packets
buffered at the relay node is λΔ.

4. SIMULATIONS

In this section, we study the covert capacities under several types
of interarrival distributions, aiming at revealing the relationship be-
tween covert capacity and statistical properties of the distribution.
Let the mean interarrival time be 1/λ. Using Poisson traffic (i.e.,
exponential interarrival) as a benchmark, we simulate uniform dis-
tribution on [0, 2/λ], Pareto distribution with pdf7

f(x) = βaβx−β−1, a, β ≥ 0, x ≥ a,

and the shifted Pareto distribution (the distribution of X − a for
Pareto random variable X). These distributions represent traffic
both less bursty and burstier than Poisson traffic. The covert ca-
pacities are computed by simulating BGM on pairs of renewal
processes independently generated according to the above distri-
butions.

We first plot the covert capacities as functions of the traffic rate
λ, as shown in Fig. 3. We see that all the covert capacities increase
with λ, which is because as λ increases, the delay bound becomes
relatively larger compared with the interarrival times, verifying the
intuition that it is easier to hide information flows in heavier traf-
fic. Moreover, we see a trend that steady traffic has higher covert
capacity than bursty traffic, e.g., uniform, exponential, and shifted
Pareto distributions have increasing tailweights, resulting in more
burstiness and smaller covert capacities. This observation, how-
ever, does not hold for Pareto distribution, for which the covert
capacity can be either higher (e.g., β = 2) or lower (e.g., β = 1.1)
than exponential.

Next, to further understand the trend of change, we plot the
covert capacities with respect to the shape parameter β; see Fig. 4.
The figure shows that the covert capacity under shifted Pareto dis-
tribution converges to that under exponential distribution as β →
∞, which is as expected because the distributions converge. For

7Here, a is called the position parameter and β the shape parameter of
Pareto distribution.
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Fig. 3. Covert capacities vs. traffic rate λ (Δ = 1, 105 packets per
process).

Pareto distribution, there exists a threshold β∗ ≈ 1.4 on β be-
low which the covert capacity is lower than exponential and above
which it is higher. To explain this phenomenon, note that as β →
∞, Pareto distribution becomes δ(x − 1/λ) with covert capacity
1, whereas as β → 1, it becomes the shifted Pareto distribution.
Since Pareto distribution with β ≈ 0.9 fits the interarrivals of TEL-
NET traces ( [9]), we expect the covert capacity under practical
transmission schedules to be much lower than that under Poisson
schedule. A lesson learned from these simulations is that although
within the same family of distributions, the covert capacity de-
creases with the tailweight, the statement may not hold for differ-
ent types of distributions because the “shape” of the distribution
matters.
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Fig. 4. Covert capacities vs. shape parameter β (λ = 1, Δ = 1,
105 packets per process).

5. CONCLUSION

In this paper, we study the capacity of transmitting information
flows covertly under transmission schedules with predetermined
distributions. We define a mathematical framework for analyzing
the covert capacity, based on which both theoretical and numeri-
cal results are obtained for transmission schedules with i.i.d. inter-
packet delays.

6. APPENDIX

6.1. Proof of Theorem 3.2

It suffices to show that the long-term frequency for Yj to fall out-
side [0, Δ] converges a.s. to q. Then since each Yj corresponds
to two packets if within [0, Δ] but only one packet otherwise, the
asymptotic fraction of matched packets, i.e., the covert capacity, is
given by 2(1 − q)/(2 − q).

We now prove the convergence. It suffices to consider states
reachable from 0. By Theorem 17.1.7 in [10], the long-term fre-
quency of visiting [0, Δ]c converges a.s. to its probability in the
stationary distribution if (Yj)

∞

j=0 is positive Harris. Positivity fol-
lows from the fact that H(x) is the cdf of an invariant probabil-
ity measure of (Yj)

∞

j=0. Harris recurrence follows from that: (i)
(Yj)

∞

j=0 is ψ-irreducible for a maximal irreducibility measure ψ,
(ii) [0, Δ] is a petite set, and (iii) [0, Δ] is a.s. accessible from all
the states (details omitted due to space constraint).
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