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Nonparametric Change Detection and Estimation in
Large Scale Sensor Networks

Ting He, Shai Ben-David, and Lang Tong

Abstract— The problem of detecting changes in the distribution routing scheme. Suppose that the fusion center obtainstsepo
of alarmed sensors is considered. Under a nonparametric change of the locations of alarmed sensors, as illustrated in Fjg. 1
detection framework, we present several detection and estim@hn .41 two separate data collections. In thi report, let the lo-
algorithms based on the Vapnik-Chervonenkis theory. Theoretich ti fal d h ) K 'd tribudi
performance guarantees are obtained by providing error expo- cation or alarmed sensors have some un nown istribugion
nents for false-alarm and miss detection probabilities. Recursive and each samplg; be a set of locations drawn independently
algorithms for the efficient computation of test statistics are according toFP;. The change detection problem considered in
derived. The estimation problem is also considered in which, this paper is one of testing wheth& = P, without making
after detection is made, the location with maximum distribution prior assumptions about the data generating distributigns
change is estimated. . _ Note that P; only specifies the geographical distribution of

Index Terms— Nonparametric change detection, Sensor Net- glarmed sensors. The joint distribution of alarmed and non-
works, Deteciion and estimation algorithms. alarmed sensors is not specified completely. A chang®;in

may be caused by the change of the actual phenomenon or
. INTRODUCTION the change of the sensor lay-out.

We consider the detection of certain phenomenal change in &Uch a general nonparametric assumption comes with a
large-scale randomly deployed sensor field. For example, s€0st of usually requiring large sample size, which rendees t
sors may be designed to detect certain chemical componefgdution in this paper most applicable in large-scale senso
When the sensor measurement exceeds certain threshold,"@f#orks where it is possible to obtain a large amount of
sensor is “alarmed”. The state of a sensor depends on wh&gasor data.
it resides; sensors in some area are more likely to be in thelhere is also a related estimation problem in which, assum-
alarmed state than others are. We are not interested in ¢me eind that the detection of change has been made, we would like
that certain sensors are alarmed. We are interested instEalfnow where in the sensor field the change has occurred, or
in whether there is a change in the geographical distrinutigvhere the change is the most significant (in a sense that will
of alarmed sensors from data collections at two differeRe made precise later).
times. Such a change in distribution could be an indication

of abnormality. A. Summary of Results

In this paper we present a number of nonparametric change
detection and estimation algorithms based on an applitafio
Vapnik-Chervonenkis Theory [2]. The basis of this approach
has been outlined in [3] where we provided a mathematical
characterization of changes in distribution. Our focushis t
paper is on the algorithmic side, aiming at obtaining pcadti
Fig. 1. Reported alarmed sensors (red) in two collections. algorithms that scale with the sample size along with a terta

level of performance guarantee.

We assume that some (not necessarily all) of the alarmedWe first present results that establish a theoretical guar-
sensors are reported to a fusion center, either throughstha u antee of performance. The nonparametric detection problem
mobile access point (SENMA [1]) or using certain in-networkonsidered here depends on the choice of the distance mea-
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on detection error probabilities and establish the comsist Wald-Wolfowitz runs test, or testing the relative order bét

results for the proposed detector and estimator. sample points, e.g. median test, control median test, Mann-
Next we derive a number of practical algorithms. The conwhitney U test, and linear rank statistic tests [6]-[8]. Such

plexity of applying the Vapnik-Chervonenkis Theory cometchniques, however, do not have natural generalizations f

from the search among a (possibly infinite) collection dhe two dimensional sensor network applications.

measurable sets. In particular, given d&téeing the union  This paper is organized as follows. Section Il specifies the

of the samples from the two collectionise., S = S;|JS2, model and defines the detector and the estimator. Section IlI

the key is to reduce the search in an infinite collection of settates the main theorems about the exponential bounds on

(e.g.,planer disks) to a search infaite collectionH(S) (a error probabilities of the detector and the consistencyhef t

function of S). Here we need a constraint ¢6(.S) such that estimator. Section IV presents the detection and estimatio

this reduction does not affect the performance. algorithms, and Section V provides simulation results. We
We consider three commonly used geometrical shapessenclude with comments about the strengths and weaknesses

disks, rectangles, and stripes—as our choices of measuraifi¢he proposed approach.

sets A. For the A-distance measure, i/ = |S| is the

total number of data points in the two collections, we show Il. THE PROBLEM STATEMENT

that a direct implementation of exhaustive search among the The Model

collection of all planer disks has the complex@®(M*). We

bobtimal alaorith he S hi | We consider two probability measurdy and P, on the
prlesent a suboptimal algorithm, the _earc2 in sample-Ce same measurable spac¥, F) where (X, F, P;) models the
Disks (SCD), that has the complexity(M*log M). Under

) . ith random collection of the locations of the alarmed sersors
mild assumptions on?;, the loss of performance of SCD

DenoteS; as the set of locations of alarmed sensors inithe

diminishes as the sample size increases. For the classf axXhlection andS — S11US, the set that contains data from
f'i“%\ned rlectar;géaes, we IShOVé ;gat;he opt|m|al sej\z}rgh iea{ﬁg two collections. We assume that, in each collection, the
n bX'S.'a |g|ne ect:rg; es (h X % as C()ln;pf(?)@é( ').au locations of alarmed sensors are drawn i.i.d. according;fo
suboptimal approach Search in lagonal-ce |ne2 axiIs@lignyng the drawings in different collections are also independ
Rectangles (SDR) reduces the complexityQoM?), again, 1o probability measureB; are not known, and we make no

with diminishin_g loss Of. performance under mild 9ssummi0nspecific assumptions on their form. Note that how unalarmed
For the C(.)"eCt'On O.f strips, we present two glgonthms.rSlez_;\ sensors are distributed is not specified, we can model anpitr
in Axis-aligned Stripes (SA.S) and Search n Random St,”pgarrelations among them; they will not have any impact on
(SRS), both have C(_)mplexny)(M log M)' $|m|lar analy§|s our result. This allows us to model certain types of corezlat
has also been obtained for the relative distance metric. Ss%%sor readings

Table I,' . ) . We introduce a collectiond C F of measurable sets
We implement several algorithms and verify their perfoly, \qqe| the set of geographical areas that are of practical
mance throu_g_h S|_mulat|c_Jn. We also_ answer some prac“?ﬁ‘ﬂerest. The collectiond does not have to be finite or even
questions arising in the implementation of the deteaay., ., ntaple, and is part of the algorithm design. For example,
how to decide the detection threshold and how to estimate mg may be interested in the number of alarmed sensors in a
minimum sample size. circle centered at some locatione X with some radiug-.

If we define A as the collection of measurable subsetsXof
B. Related Work and Organization that we are interested in, it may be reasonable to focus on

L ) the probabilities of sets i (rather than those iF). The
The problem of change detection in sensor field has begn . . L )
. o . . choice of A is subjective, of course, and it depends on the
considered in different (mostly parametric) settings [3]. - : . .
The underlying statistical problem considered in this pa gppllcanon at hand. We will focus in this paper on regular
ying P PaPSeometrical shapes: disks, rectangles, and stripes.

: e
belongs to the category of two-sample nonparametric chan%] iven a pair of samples,, S, drawn i.i.d. from distribu-

detection. A classical approach is the KoImogorov-Smirno[\llonsp P, and a collectiond C F. we are interested in
. . - . . 1 2 = ’

two-sample test [6] in which the empirical cumulative disg ., iporihere is a change in probability measuredoand, if

trlbuypns are comparet_:i, "?‘”d.the maximum difference in t'ﬂ?ere is a change, where the maximum change of probability

empirical cumulative distribution functions are used ast te

- . . occurs. Specifically, the detection problem considerechis t
statistics. In a way, the methods presented in this paper _ .

; . ; aper is the test of hypotheses dn
generalize the idea of Kolmogorov-Smirnov test to a more

general collection of measurable sets using general forms Ho: P, =P, vs. Hy:P #P*
of distance measures. Indeeq, the Kolmogorov-Smirnov tw?he estimation problem, on the other hand, is to estimate the
sample test becomes a special case of the SAR (Search in

Axis-aligned Rectangles) algorithm presented in Secthén IeventA € A that gives the maximum change. For example,

A.2. 2The notation( X, F, P;) is standardX is the sample spacé; theo-field,
There is a wealth of nonparametric change detection tegh-the probability measure.

niques for one-dimensional data set in which data are COmf’Note that the probability that an alarmed sensor reportsetdutsion center
may be different across sensors. This probability can berocated intoP;.

pletely ordered. Examples include testing the number of run 43, savsp, (4) = Py(A) forall A € A. H, says3A € A st Pi(A) £
(successive sample points from the same collection) suchmgA).
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using theA-distance measure, that % is a metric follows from [9]. Note that in
Py(A)1Py(4)
A* = argmax |Py(A4) — Px(A)]. generald (P, Po) = 0 or ¢ 4(Py, P2) = 0 does not imply
AeA P, = P,, but implies P, (A) = P,(A),YA € A. If we only
We will also consider a relative measure of change defineddare about sets i, d4 and ¢4 defined above are pseudo-
Section 1I-B. metrics onA.
B. Distance Measures C. Detection and Estimation

To measure “change”, we need some notion of distancewith the distance measure defined, we can now specify the

between two probability distributions. In this paper, wdlwiclass of detectors and estimators considered in this paper.
consider two distance measured:distance and relatived-

distance. Detector §(S1, S2; €): Given two collections of sample points

S1 and S,, drawn i.i.d from probability distributiong> and
A-distance and empirical A-distance [3] Given probability P, respectively, and thresholde (0, 1), for hypotheses,
spaces(X, F, ;) and a collectionA C F, the A-distance vs. H,, the detectdr using theA-distance is defined as
betweenP; and P, is defined as !
1 if dA(Sl,Sg) > €

da(Pi. P2) = sup |[Py(4) = P(A). 1) 0an (S, S2;€) = { 0 otherwise ©)
S

The detectors, , (S1, S2;€) using the relativeA-distance is
defined the same way by replacidg (S1, S2) by ¢.4(S1,.52)
and lettinge € (0,/2).

The empirical A-distanced 4(S1, S2) is similarly defined by
replacingP;(A) by the empirical measure

SiNA . G
Si(A) 2 | |Q | (2 Assuming that a change of probability distribution has

‘ occurred, we define the estimator for the event that gives the
where|S; N A| is the number of points in both; and setA. maximum change in probabilities.

This notion of empiricalA-distanced 4(S1, S2) is related Estimator A*(S;,S,): Given two collection of sample points
to the Kolmogorov-Smirnov two-sample statistic. For theeca S, and S,, drawn i.i.d from probability distributiong?; and
where the domain set is the real line, the Kolmogorov-Smirngp, respectively, the estimator for the event that gives the
test considers maximum change of probability is defined as

Sup |Fy(z) — Fa(x)|, Fi(z) 2 P({y:y<a}) A; (S1,8) = arigax|51(A) — S5 (A)].

as the measure of difference between two distributions.
setting.A to be the set of all the one-sided intervélsoo, x),
d4(51,S52) is the Kolmogorov-Smirnov statistic.

The A-distance does not take into account the relative The definitions given above require searches in a possibly
significance of the change. For example, one could argindinite collection of sets. At the moment, we only specifyath
that changing the probability of a set frof99 to 0.999 is the outcome should be without addressing the algorithnde pr
less significant than a change froirD01 to 0.01; the latter cedure generating it. We will address that issue in Sectibn |
amounts to a ten-fold increase whereas the former repmesent
an increase of about%. For applications in which small Il1l. PERFORMANCEGUARANTEE
pro.bablllty e\{ents are of interests, we mtrodu'ce the m_“@ We present in this section consistency results for the tiatec
notion ofrelat_lveA-dlstancahat takes the relative magnltudes;anol estimator presented earlier. The results are givenein th
of a change into account. forms of error exponents.

Relative and Empirical Relative A-distance Given proba- First let us look at some technical preliminary from [2]. For
bility spaces(X, F, P;) and a collectiond C F, therelative measurable spadeX, ), let A C F. We say a seb C X is
A-distancebetweenP; and P, is defined as shatterableby A if for all B C S, 3A € A s.t.

¢_A(P1,P2) = sup f¢(P1(A),P2(A)), (3) B=AnNS.
AeA

Eﬁﬁe estimator/lj;A (S1,S2) using the relativeA-distance is
defined similarly.

VC-Dimension The Vapnik-Chervonenkis dimension of a

where f4 : [0,1] x [0,1] — [0,+/2] is defined as collection A of sets is

o fr=y=0 4 VC-d(A) = sup{n: 3B s.t. |[B| = n and B is shatterable byd}.
fd) (SL’, y) - ‘a_ﬁl 0.W. . ( )
vt The VC-dimension of a class of sets quantifies its ability

The empirical relative A-distanceis defined similarly by to separate sets of points. Intuitively the VC-dimensioraof
replacing P;(A) with the empirical measure defined in (2). class.A is the maximum number of free parameters needed

The above definition is slightly different from that used in sy yse the convention that the detector gives the valter 7, and0
[3]. It is obvious that| P, (A) — P»(A)| is a metric. The proof for Ho.
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to specify a set ind. For example, ifA = {2D disks}, then Third, note that the VC-dimensios of A has diminishing
we see that at mosi free parameters are needed #-y- effects on the rate of decay of error probabilities. Thect&a
coordinates of the center and a radius, and it is shown tleat tf .4, however, may affect the error exponent through or
VC-dimension ofA is indeed3 [10]. ¢ 4. Furthermore, the selection of has a significant impact
Note that the VC-dimension of a class may be infieitg,, on the complexity of practically implementable algorithms
VC-dimension of the entire-field F is co because any setis Finally, we should also note that, while we have stated the
shatterable byF. above theorem undés;| = n, the results generalized easily
Theorem 3.1 (Detector Error Exponentsgiven probabil- to the case when two collections have difference sizes leyt th
ity spaces(X,F,P;) and a collectionA C F with finite are proportional.
VC-dimensiond, let S; C X be a set ofn sample points  The consistency of the estimator is implied by the following
drawn according taP;. The false alarm probabilities for thetheorem.
detectors defined in (5) are bounded by Theorem 3.2:Given probability spaces(X,F,P;) and
Pelde,) < 8(2n+ 1)dene /32 ©) a collecton A C F with finite VC-dimension, if

< ) » argmax | P (A)—P(A)| is well definedj.e., it is unique, then
—ne AcA
Pr(ds,) < 2(2n+1)% ’ Y Withe probability going tol asn — oo (with high probability),

Furthermore, ifd4(Py, Py) > € and ¢ 4(P1, P») > ¢, the
. . o . J B) — B)| = Pi(A) — P,(A)|.
miss detection probabilities satisfy, respectively, ar,%ng'Sl( ) = 5:(B)| ar%éﬁa’{' 1(4) 2(4)]

Pr(b4,, P, P) < 8(2n+1)d€_”[dA(P1>P2)—€]2/32’ Similarly, if argmax fo(P1(A), P2(A)) is well defined,
= AcA
(8) then with high probability
Pr(0pu, Py P2) < 16(2n + 1)t nloa(PuPo)=e7/16, arg max f,(S1(B), S2(B)) = argmax f,(P1(A), P2(A)).
(9) BeA AcA

) Proof: See Appendix.
Proof: See Appendix.

A few remarks are in order. First, if the maximum change IV. ALGORITHMS
betweenP, and P, on A exceeds, the detector detects the

change with probability arbitrarily close b as the sample algorithms and their complexities. The key step is to obtain

size goes to infinity. Similarly, if there is no change i) on o - L .
A, then the probability of false alarm also goes to zero. I\ﬁtaotiéest statistics within a finite number of operations, praiity

that the decay rates of the error probabilities are diffendren Wgtg thgirftcs)]\n}pl_eTgy Ltj] gt ‘scales well with the total number of
the two different distance measures are used; from (6,8), t% P Pt 2l

decay rate of false alarm probabilities for the detectongisi G|ve_n sample points = S, |J5; and a possibly infinite
) . : collection of sets4, we need to reduce the search.nto a
¢4 is eight times that using 4.

Second, the above theorem provides a way of decidiSearCh in dinite collection?4(S) A, and replacel4 (51, 52)

the detection threshold for a particular detection criterion. dn (1, 5). It H IS not chosen properly, such a reduction
: . of the search domain may lead to a loss of performance. Thus
For example, the threshold (not necessarily optimal) of the

. . . . we need the notion of completeness when choosing the search

Neyman-Pearson detection for a given sizean be obtained main
from the bounds on false alarm probabilities. Theorem 3. '
suggests that we should chodse ¢) such that CompletenessGiven A being a collection of measurable

d_—ne? /32 subsets of spac&, and S C X be a set of points inX.

8(2n +1)% , <o forda, (10) et H(S) C A be a finite sub-collection of measurable sets

22n 4 1)%e "/t <o for d4,. (11) which is a function ofS. We call the collectiort{(S) complete
for S with respect taA if VA € A, there exists &3 € H(S5)

Taking ¢(n) to make the inequalities equal gives a thresholc;lSuch thatS M A — S B.

)/ Elog w for 44, The significance of the completeness is that({fS; U S5)
€(n) = 220417 o s (12) is complete w.r.t.A, then d(S1,52) = dx(51,52) and
o P $.4(S1, S2) = ¢ (5L, S2)-

We shall think ofe(n) as a measure of detector sensitivity. For the choice ofd, we consider regular geometric areas,
From (8,9) in Theorem 3.1, we see that miss detection prolmg., disks, rectangles, and stripes. We present next six algo-
bility starts to drop exponentially whetin) < d4(P1, P2) or rithms for different choices ofA and sub-collectior{. We
e(n) < ¢a(P1,P2). Thus, roughly,e(n) is a lower bound first present complete algorithms, i.e. the sub-collectibis
on the amount of changes in order for the change to bemplete with respect t@d. Next we give a couple of heuristic
detected with high probability. Furthermore, the smalle t algorithms which simplify the computation at the cost of sslo
e(n), the larger the values dfi4 (P, P2) — €(n)]?/32 and in completeness.

[pa(P1, P2) — €(n)]?/16, and the lower the upper bound on Hereinafter all sets defined are closed sets unless otteerwis
miss detection probability. stated.

We now turn our attention to practically implementable

% log
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A. Complete Algorithms |S1 N Al and|Se N A| for every A € H,, and (iii) finding the

1) Search in Planar Disks (SPD).et A be the collection maximu_m. . . .
of two dimensional disks. Let VC-d denote the VC-dimension Algorithm  SPDg4) (Search in Planar Disks using the

of a class. The following result is proved by [10]: metric ¢.4) is the same as SPBY) except in step (i) where
- the relative empirical measure is computed.
Proposition 4.1: We now analyze the complexity of SPD. The complexities
VC-d(A) = 3. of both SPD{4) and SPD¢4) are O(M*) for sample size
For the set of sample point§ C X, consider the finite M = [S1 U Sa|. This is because there a@()/?) disks to
sub-collection ofA defined by consider, and the counting ¢§; N A| and|S; N A| for each
A disk takesM steps.
Ho(S) = | Holsirsise) (13)

(si,55,58) €T 2) Search in Axis-aligned Rectangles (SARNe now
consider the collectiod of axis-aligned rectangles. Then we

wher .

ere A have the following property:

T = {si,s;,s, € S : s;,5;, 55, are not collineay, -
{6, 83, 547 89 %k 4 Proposition 4.3:

and

A VC-d(A) = 4.

HD<Si; Sj7 Sk:) = {D(Si; Sj7 Sk;), D(Si7 Sja Sk) \ {Sl}a

Proof: It is easy to see that VC{dl) > 4. See Fig. 3. The set
Di(sir 5550\ {85}, - Diser 50500 \ {50, 570581} y () = 9

where D(s;, s;,s) is the disk withs;, s;, and s, on its Lein Loa T
boundary,i.e., Hy(si, s, sk) is D(s;, s;,s;) and all the7
variations for excluding some of th& boundary points. See Un 51
Figure 2. "
D'(s4,85) € Hep D(51,52,83) € Ho 2 ¢ 85,
O 53
ymax S:
Y

Fig. 3.

{s1, $2, 83, 84} is shatterable byA.
For any setS of more thard points. Letz, ., Tmax, Ymins Ymax
be the minimum and the maximum y-coordinates for points
in S, and let the points with these coordinatesshess, s3, s4
(some of them can be the same). Then any axis-aligned

Fig. 2. Members ofHp and Hcp; o: sample point inS1, e: sample point

in S5 rectangle containings, s, s3, s4} containsS. The subset
{s1, s2, s3, s4} cannot be obtained by shatteriggwith A,
In [11] we have proved the following result: and S is not shatterable. Hence VGd) < 4.
|

Proposition 4.2: Let A be the collection of two dimensional
disks. ForS; and S, drawn from P, and P,, if P, and P, ~ Given samplesS; and S, let S = S U S =
are such that any set with Lebesgue measunas probability {(z1,¥1),- -, (za,ya)} where, at the cost ab (M log M),
08, then the finite collectiort,(S; U Ss) in (13) is complete We may assume that; < x> < --- < x). Let the finite

with respect ta4 a.s.(almost surely). collectionx(5) be defined by
A ..
With ,(S) defined above, the algorithm SRD()—Search ~ T=(5) = {R(Yi, yjs Tm, xn) (21, y5) € S,k =i, j,m, n}
in Planar Disks using distance metdg—is given by _ _ (14)
where R(y;, y;j, m, T») IS the rectangle defined by the four
Aty |51(4) = S2(4)[- linesy = yi,y = yj,« = o,z = x,,. See Figure 4.

Algorithm  SPD(4) includes three steps: (i) generating Proposition 44:Let A pe the class of t\_/vc_) dimensi.onal
elements ofH,; (i) computing \S‘lsmlA\ _ IS‘QSnr!I ’ by counting axis-aligned .rectangiles. Given anq Ss, the finite collection
! 2 He(S1 U S2) in (14) is complete with respect td.
8This is true if P1,P> are absolutely continuougg., having pdf, because The reason for _th's proposmon-ls thalf for.any axis-aligned
any measurable function has integratidon a0-measure set. rectangleR and givensS, we can find axis-aligned rectangle
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Xz X

S1

1

©3

=T

Yi 3) € He

Y4, 12,

Ya

Fig. 4. Members ofHr

We now analyze the complexity of Algorithm SAR.
SAR(d4) has complexityO(M?3), and SAR¢.4) has com-
plexity O(M*). This is because in computingy, we can use
the fact that

1
ij

(m)) = (£ (n) = f55(m))|

max |(f3;(n) —
max |(f;(n) = f3(n)) = (f}(m) = f3(m))|  (18)
(n) = f3(n)) = min(fL;(m) = f3(m)) (29)
and reduce the two-variable optimization to two one-vdeiab
optimizations, which are done in linear time. To compdig

however, we have to check all th@(M?) (z,,,x,) pairs.
The search is then repeated for all théN/?) (y;,y;) pairs.

2
ij

1
ij

_f2
ij

max(
n

R’ such thatR' NS = RN .S and R’ has at least one sampleNote that the VC-dimension of the collection of axis-aligne
point on each side of the boundary, where points on differergctangles ist while the VC dimension of the collection of

sides are not necessarily different. Sirt¢gincludes all those
rectangles, it is complete w.r4.

Algorithm SAR(_4) computesds(S1,S2). Because of
the ordering inx;’s, the collection; allows a recursive
calculation of distance measures. Specifically, for fiyednd
y; Sty <yj, define

zlz(n) = |SkOR(yivijxlvxn””Sklvk:1a2 (15)
Fij(n) = fh(n)- 12](”) (16)
Then i’;(n) (n=1,..., M) can be computed recursively by

;@(n_1)+|s_lk‘ UYn € [yzvy]]a('rn7yn) GSk
Fn—1 otherwise

k
ij

(n) =

Then find

—

argmax Fj;(n), im, = argmin Fy;(n)
n n

Tmax

1>

NPT A L
l N e Gmin} + 1, % = MAX{ Ernay bruin

The optimal rectangle, for fixeg; andy;, is then given by
R(y;,y;,x1,z,,), and the maximum difference in empirical
probabilities is given byF;; (ima) — Fij (min)-
Finally, compute
d')—{R(Sl,Sg) = max (F'L(Zmax) —

1,5:Yi <Y

Fii(in))-

The pair (i,j) that achieves this maximum gives the best

rectangle inHx.

Algorithm SAR(¢ 4) computesgy, (S, .S2). For fixedy;
andy; (y; < y;), we computef';(n) and f7(n) for n =
1,..., M as before. Compute empirical probabilities for ever
pair x,, < x, by

_ ¢k
=13

Sk(R(Yi, Yj, Tm, Tn)) (n) — Z-’;-(m), k=1,2 (17)

Then optimizing over all the pairs af's andy’s

‘Sl (R(yza YjsTm, xn)) - SQ(R(yia Yjs Tm, xn))
\/51(R(yi,yj,xm,xn>>+sz(R(yi,yj,zm,xn))
2

max
%,7,m,n:
y;<yj,m<n

gives ¢4, (51, 52) and the best rectangle.

planar disks is3, which results in a larger sample sizé for
Algorithm SAR as we discuss later.

3) Search in Axis-aligned Stripes (SAS)he complexities
of algorithms SPD and SAR may be formidable for large
M. This urgent need of reducing complexity gives birth to
a simplified algorithm that deals with axis-aligned stripes
The basic idea is to project sample points ontoand y
coordinates, and then perform change detection/estimatio
each coordinate.

Let A be the collection of vertical stripes, i.e., axis-aligned
rectangles with height equal to the field height. Similarly,
let B be the collection of horizonal stripes. The following
property is true:

Proposition 4.5:
VC-d(AU B) = 4.

Proof: It is easy to see that VC{dl U B) > 4. See Fig. 5.

X
Sle [
82.
S$3-e

S4 @

ﬁig. 5.

The set{s1, s2, s3, 84} IS shatterable byd U 5.

For any setS of more thard points. Lets, s,, s, s, be the
points with the minimum and the maximum y-coordinates
in S accordingly (not necessarily different). Then any veitica
stripe containing{s,, s,} containsS, and any horizonal stripe
containing{s,, s,} also containsS. The subse{s,, s,, S, S.}
cannot be obtained by shatterisgwith A U B, and thusS is
not shatterable byl U 5. Hence VC-dA U B) < 4.
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Given a collection of sample poinis = S; U S,, consider

finite subsets+,(S) C A andH,,(S) C B defined by

[ | We then have

max

A€HvUHK |Sl (A) o (A)|

= max(Fy(m1) — Fo(ma), Fy(n1) — Fy(n2))  (23)

Ho(S) 2 {(V(xi,2;) : si = (2i,9i), 85 = (x5,y;) € S} and the estimation of the changed areaVigz,,,,%m,)
(20) if F’I'<m1) - Fr(m2) > Fy(nl) - F‘y(n2)y or H(y7117yn2)
otherwise.
Ha(S) = {H(yk,w) : sk = (Th,Yx), 51 = (v1,91) € S}
(21) Algorithm SAS ¢ 4) does the same in steps (i), (ii) and (iii),

where V(z;,z;) is the vertical stripe with left and right
boundaryz; andz;, andH (yx, y;) is the horizonal stripe with ¢4, (51, 52) = m

lower and upper boundary, andy;. See Figure 6.

V(.%‘i7 .%‘j)

I
Sp J
Yoo b """
o
) e
Y [
o e o
Lo
Lo
3 o
L !
°
5; ¢
Z; €

Fig. 6. Members ofHy and Hy

— H(yr,y1) € Hy

but (iv) is changed to finding
o 51V (@i,25)) = Sa(V(@i, ;)]

(24)
\/ 51 (V (@i.0,)) 52V (21.2,))

1,5:1<j

where Sy (V(x;,z,)) is given by f (5) — f (i). ¢, (S, S2)
is computed similarly. Then

¢H\/UHH (Sly 52) = maX(¢Hv (517 52)7 ¢HH (517 52))

and the changed area is the stripe on which the maximum is
attained.

€M Now we analyze the complexities of Algorithm SAS,)
and Algorithm SA%¢4). Given M = |S; U Ss|, the
complexity of Algorithm SA%d ) is O(M log M). This is
because by projection, we only need to perform two linear-
complexity searches. Now the dominating part is the sorting
of sample points, which take9(M log M). The complexity
of Algorithm SAS¢ 4) is O(M?) because in the two-variable

Proposition 4.6:Let A be the class of vertical stripes andPptimization there ar@(M?) (x;,z;) pairs to consider.
BB be the class of horizonal stripes. Givenand.S,, the finite

collection™, (51 US2) UH,(S1US2) defined in (20) and (21)

is complete with respect tal U B. , ! . :
The proposition is easy to verify because for any axj@nd this choice should be part of algorithm design. When we

aligned stripe, we can find another axis-aligned stripe wi
the same intersection with and at least one sample point o
each boundary. Thus it suffices to consider stripes with &amp

points on the boundary.

Given S, Algorithm SASd4) performs the following

search

max
AEHvUHK

The algorithm includes the following steps: (i) project
sample points onte andy coordinates; (ii) sort the projected"
sample points into increasing order; (iii) in thecoordinate
(we haver; < xo <--- < uzyp), fori=1,..., M, compute

151(4) — S2(A)].

£ (i) 2 8,(V(0,2:)) (k = 1,2) recursively by

L[ fEi-1)
fo={ iy

z 2

and then computd, (i) 2

1
RER Ty

if s; €

otherwise

Sk

FA(i) — f2(i); computeF, (j) £

Sy (H(0,y;)) — Sa(H(0,y;)) similarly; (iv) find

my = argmax [, (i), me = argmin F; (4).

3

3

ny = argmax Fy(j), ng = argmin Fy ().

J

J

; (22)

4) Search in Random Stripes (SR8lopte that in Algorithm
SAS the choice of: andy axes for projection is subjective,

khow nothing about the change, introducing randomness may
fgive more robustness to the algorithms.

For ¢ randomly selected fronf0, 3], chose.A? to be the
collection of vertical stripes rotated (counter-clockejisby

6, and B’ to be the collection of horizonal stripes rotated
by 6. Define H%(S) and H!(S) to be members of4?, B’
accordingly, with sample points on the boundary, which is
similar to definitions (20,21).

We claim similar properties fad?UB? andHf(S)UHI(S),
e.,VC-d(A?uB?) = 4 andH?(S)UHY(S) is complete with
respect taA? U BY. Note that introducing does not increase
the VC-dimension to5 because the projection direction is
randomly chosen but not optimized over.

Algorithm SRS is a randomized variation of Algorithm
SAS. It is based on the same projection and search idea as
in Algorithm  SAS. The difference is when performing the
projection, we project sample points onto random direstion
instead of the fixed directions af andy axes. The rest of the
algorithm is the same as Algorithm SAS.

Algorithm SRS has the same order of complexity as Algo-
rithm SAS in computing botld 4, and¢ 4. The advantage of
Algorithm SRS is that it is more robust than Algorithm SAS.
Specifically, as a randomized algorithm, SRS will perform
equally well under a wider range of change patterns (the way
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change occurs) while SAS can be affected significantly yenerally, if probability measureB; are such that any disk
the change pattern. For example, SAS is vulnerable to tivith positive Lebesgue measure has positive probabiliignt
pattern where changes always occur along a tilted line deanghe loss of performance vanishes asymptotically. Consider
45° or 135°, because in that case the increasing and decreasttisk and an arbitrary neighborhood of its center, the strong
parts of the change will largely get cancelled when propctéaw of large numbers guarantees that as sample size goes
onto axes. to infinity, there is a sample point within this neighborhood

A quick comment is in order. Both Algorithm SAS andof the center almost surely. This implies that as sample size
Algorithm SRS can be easily generalized to algorithms gfoes to infinity, Algorithm SCD will give the same output
multiple projections. By doing multiple projections anddi as Algorithm SPDj.e., the search of SCD is asymptotically
searches, we can increase the accuracy of the algorithne atdbmplete.
cost of a constant factor increase in the complexity. Algorithm SCD(d 4) computes
B. Heuristic Algorithms A [91(4) = S2(A)]

Some complete algorithms may be good in performance bifie presence of increasing subsets allows the countingproc
too expensive to implement in practice, while the simplifiegure to be incremental, i.e. fix a center and count the number
complete algorithms SAS and SRS may be not sensitig¢ sample points recursively from the inner-most disk to the
enough to detect the changes despite their improved coguter-most disk.
plexities. A trade-off is heuristic algorithms which hawever Algorithm SCD(d_4) does the following:
complexities than their complete counterparts and performrix a centers; and define

reasonably well for certain classes of distributions. A
Fi(j) = Su(D'(si,s5)) — S2(D'(si,85))  (26)

where S, (D' (s;,85)), k € {1,2} is the empirical probability
of D'(s,;, s;) in S. First sort the sample points into increasing

1) Search in sample-Centered Disks (SCDj:calculating
the distances or{, in SPD, it is difficult to reuse the
calculation since sample-defined disks may overlap inranyit ; - 7
ways. We define here a different sub-collection in which glisiPrders;y, sj.. . .. according to their distance 19" (s;, = s,),

form nested sets, which allows the recursive computation gpd thgn sef(jo) = 0 and computé; (ji) (k =1,2,..., M)
recursively by

distances.

Let A be the collection of two dimensional disks. Given ‘ Fi(jy—1) + & if s, €S
sampleS = S (J 52, Heo(S) C A is the sub-collection of Fi(jk) = Fy(je_r) — 15 ifs. €S
sample-centered disks defined by iVh=1) 7 15;] de =22

Next compute
Heo(S) 2 [D'(51,5,) : 50,8, € S} (25) P

where D'(s;, s;) is the disk withs; at the center and; on
the boundary. See Figure 2.

770 = argmax|Fi(j)]. @7)

The search is repeated for all possible Finally, we find

. the maximum amongF;(;*(i))|, Vi, i.e.
Proposition 4.7: o (57 (2))], Vi

VC-d(Hep) = 2. s = argmax |F3 (77 ()] (28)
Proof- Then the optimal disk inH., for A-distance is given by
root: D' (Simap 55+ (imax) )» @Nd the maximum difference is
It is easy to see that VC(#(.,) > 2 because any set of two max |S1(A) — Sa(A)] = |Fi (57 (ma))|-
points can be shattered (a singleton also belongq4). ASHeo
For any setS of 3 points,i.e., S = {s1, s2, s3}. Let Algorithm SCD_4) computes
|s1s2] = max |s;s;]. |51(A) — S2(4)]
i,5€{1,2,3} ARE (A i5aA)
Then {s1, so} cannot be shattered. €., obtained by shatter- 2

ing) because the only way to shatter it is B (s1,s2) or  Clearly when computing; (j), we can getS1 (D' (s;, s;)) and
D'(s2, 1), but they both contaiss. Hence any sucly is not 5, (D’(s;,s;)) by similar update, so we can compute
shatterable, and VC(#(.,) < 2. ,

(s 181D (s0)) — oD 5,

| Gi(j
0) \/ 51D (s1.01) 52D (352))

Unfortunately,H., is not complete with respect td. For
some classes of probability distributions, however, ihtuout Then 151 (A) — S (A
that SCD has the same performance as SPD asymptotically. max [51(4) = 5 (4)] = max G;(j).
For example, if there exists some center point such that any A€Heo  [S1(A)+52(4) I
neighborhood around the center has reasonably high proba-
bility, SCD is expected to perform almost as well as SPD.This sort is at the cost ab(M log M).
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The complexities of Algorithm SC@(4) and Algorithm distributions are such that any disk with positive measure
SCD(p4) are of the same order. Their complexity, comparedas positive probability, the loss of performance vanishes
with the O(M*) complexity of Algorithm SPD, is reduced sample size goes to infinity.
to O(M?log M). The dominating term is the sorting of
the sample points according to their distances to a certainAlgorithm SDR{4) and Algorithm SDR¢.4) share the

sample point, which take® ()M log M) for each center, and following steps:
is repeated for\/ centers. Initially, the algorithm builds two matrice§’; and C; to

store the empirical cdf(cumulative distribution functjaf S;
2) Search in Diagonal-defined axis-aligned Rectanglemd S;. Specifically, assuming:; < zo < ... < xp, and
(SDR): Algorithm SDR is a heuristic simplification of Al- y; <y, < ... <y, define
gorithm SAR. A major drawback of Algorithm SAR is that it DA
is much slower in computing 4 distance Q(M*) compared Cu(7:4) = [Sk OV R(0, 5,0, 2)|/|Sk], k = 1,2.
to O(M?) in computingd 4). Aiming at reducing the cost of  ConstructC; and C, recursively:
computingg 4 for rectangles, we propose a simplified variation (i) Sort S by the abscissa and ordinates respectively;
of SAR: Algorithm SDR. Inspired by Kolmogorov-Smirnov
two-sample test [6], we reduce the search to the class of axisDefine functiondy, : {1,..., M} — {0,1}, k = 1,2,
aligned rectangles having sample points on diagonal \e=rtic
Let A be the collection of axis-aligned rectangles. Given
sampleS = S; U S,, consider the following finite subset of Define functiong : {1,..., M} — {1,..., M},

dx(j) = 1 if the sensor with ordinatg; belongs toS;.

A defined by 9(G) = i if (z5,3;) € .
Hoa(S) 2 {RWir Y3, @mswa) : (@ 1i), (@ y;) €S ) .
O (s ), (s i) € S (29) (ii) Compute the first row:
where R(y;, y;, Tm, ) iS the axis-aligned rectangle defined Cr(l,m) = 5]i'§(kl|) if m > g(1) (30)
as in (14). See Fig. 7. — 0 otherwise (31)

ke{l,2},m=1,..., M.
(iii) Compute thej-th row, j =2,..., M

0k (4)

R(Yi, Yj, Tms Tn) Cr(jym) = Cp(j—1,m)+ A if m>g(j) (32)
= Ck(j — 1,m) otherwise (33)

ke{l1,2},m=1,..., M.

Then compute empirical probabilities for membersHyy;:

* © for every rectangleR(y;, y;, Tm, Tn) € Hor, ¢ < j,m < n, its
empirical probabilities are given by
Fig. 7. Members ofHpr
Sk(R(Yi> Yj> T, Tn)) =
Proposition 4.8: S (R(Yi, Yj, Ty Tn)) + jgf:@H " if (zm,y:) 6(354)
VC-d(Hor) = 2. Si(R(Yis Yjs Tmy 7n)) + 55755 OW
Proof: where
. S;(R(yiayjammaxn)) == Ck(]7n) 70](5(1.7”)
It is easy to see that VC{@#{,;) > 2 because any set of two —Cy(j,m) + Cli,m), (35)

points can be shattered (a singleton also belongqt9.

For any setS of 3 points,i.e., S = {s1, s2, s3}. If there k € {1,2}. As seen in Fig. 7, the probability of the bold
is no set inHyx containing S, then S is not shatterable. rectangle is the probability of minus that ofll, minusll,
Otherwise, lets;, s, be the points defining such a seg,., the and pluslV, and we need the amendments to take care of
axis-aligned rectangle with diagonal vertices s, contains boundary points.

S. Then{s1, s2} cannot be shattered because the only way
to shatter it is by the axis-aligned rectangle with s, as
diagonal vertices, but this rectangle also containsHence max |S1(R) — S2(R)],
VC-d(Hpr) < 2. REHor

Then Algorithm SDR{ 4) computes

B and Algorithm SDR$ 4) computes
(R) — S2(R)]

S
Hor IS Not complete w.r.t.A. However, by the same argu- Jhax |15R—SR'
ment as in Algorithm SCD, we see that if the probability o B EES (R
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A|gOI’Ithm SDR@A) and A|gOI’Ithm SDR@A) bOth have 14 The‘oreticale‘lreSholdW‘.r.t.Samp:eSiZe falsea‘larm:a:(‘).OS ‘
complexity O(M?) because constructing matric€s and Cs \ o Wy
takesO(M?) steps and the search exhausts @@/?) rect- | Al " g vedztll
angles inHy,. Note that this algorithm requires a substanti: © o Ved=3

amount of space®(M?), which is due to the space to store
Cy and Cs.

4
©
T

V. SIMULATION
A. Simulation Setup

letection threshold
o
=
T

In the simulation, we consider the case when the distributi~
of collected sensors is a mixture of 2D uniform distribuipn
one on ans x s squareD and the other centered at € D
with radiusr. Specifically, the PDF of the 2D random vecto —
x is given by ' e~

02| * S —
e S  — —
e e e S ———
p
T Zpt(s2—mr2)q XED,HX—X()H <r o \ \ \ \ \ \ \ \ \
_ q D 0 1000 2000 3000 4000 5000 . 6000 7000 8000 9000 10000
DPxo (X) = —7T7’2p+(52—7r7"2)q x e, ||X — X0|| >r sample size

otherwise i i . .
Fig. 8. Detection threshold as a function of the sample sizediiferent

wherexg, p,q, andr are parameters) < r << s and0 < VC-dimension’s

<p<l.
! Tk?is_model corresponds to the scenario when sensors oo oo reset ke A Probebly, | Uerdmenson =2 o g,in= 1000
. . . . . . - n=2000
uniformly distributed inD, and a sensor is alarmed witk T genzion
probability p if it is within distancer from xo € D and ¢ 08" M o n=2000
if it falls outside this distance. If we view the diskx € e e e

0.7 B

D : ||x — xo|| < r} as the area where a noiseless sens
measurement should be “alarm” and the area outside this ¢
be where a noiseless measurement should be “non-alarm”, t2
1 — p is the (uniform) miss detection probability agds the
(uniform) false alarm probability at sensors.

Under hypothesig{,, two sets of sample points are drawi®oas- ]
i.i.d. from the same,; under;, one set of sample points
are drawn frompy,, and the other set of sample points ar °°[ . L ]
drawn independently from,, for some other centex;). Ty

—E—g
—5—a—
Eaf&ﬂ—&ﬂ—&{k{kﬂ—&{k{kﬂ—&{

o
@
T
I

T
O S -

s ‘}

letection thres

02F OO0 00 o

O Q0000000 OO OO

B. Detector SenSItIVIty 0'10 o.‘1 o.‘z 013 o.‘4 o.‘s o.‘e o.‘7 o.‘s o.‘g 1
size

We consider Neyman-Pearson detection with detector size
a, and choose detection threshold according to (12) to guglg. 9. Detection threshold as a function of the detectoe i different
antee that the detector’s false alarm will not exceed sample sizes

Recalling thate(n) measures detector sensitivity, we ex-
amine the relation betweet{n), the VC-dimension and the
distance measure. Note that for fixed false alarm, we neg@yond which the miss detection probability drops sharply.
more sample points to achieve the same threshold for a tébis can be explained using Theorem 3.1, which states that
searching in a class of larger VC-dimension. For searchestii¢ upper bound on miss detection probability begins to drop
classes of the same VC-dimension, the test using relative When e(n) < da(Pr, P,) for 4, or €(n) < ¢u(Pr, P2)
distance needs less sample points to achieve the sameditresior d5.., and once it starts to drop, it drops exponentially.

than the one usingl-distance. See Fig.8. A heuristic argument on the minimum sample size would be
Fig.9 shows that the detection threshold is not sensitive ##at the sample size should be s.t.

the maximum false alarm. We see that given a certain sample 3 502 1
size, a detectpr with a larger size.would .not have a much e(n) = \/_ 1ng < da(Py, Py) for 4,
smaller detection threshold. Hence increasing the sanigde s n « 36
is usually the only way to improve the accuracy of the detecto (36)

4 2(2n +1)4

e(n) =4/ =1 < da(Pr, Py) for 64,
n

C. Detector Performance 37)
We focus on miss detection in our Monte Carlo simulations.

Fig. 10 and Fig. 11 show the miss detection probability vs. If we know P; and P,, we can calculated (P, P»)
sample size. We observe that there is a threshold sample sind ¢ 4(P;,2) to obtain a lower bound om by solving
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the inequalities (36) and (37). An observation is that thiize affects detection probability only through the thodgh
estimation is close to the minimum sample size requireden tand the threshold is not sensitive to the change of size (see
simulation. For example, in our simulation setup, the ested Fig. 9).
minimum sample sizes for Algorithm SAS and SCD usifyg
distance metric are bott¥25, and that for SCD using relative
A-distance metric i$3. As indicated in Fig. 10 and Fig. 11,

Detection Prob. vs. Detector Size: S(dA) sample size = 3000
0.94

T T T T T T
they all agree well to the sharp drop in missing detectic
probabilities. 0935 |
o—6—6——6—6—4
_o—o
_o—6e—o——o~
Miss Detection vs. Sample Size size:a = 0.05 /
10° : 7 ; Algor 0.93- ]
x@ v igorithm SAS(dA) M * * * " " " "
Y « Algorithm SRS(d,) o e
\ z o ”
\ o Algorithm SCD(d,) £ o * /
| . Algorithm SDR(d,) g 0.925- e
; ‘ S e
1 Q
\ c
{ =}
\ S
| o 092F
| o &
| ©°
\ ¥
- \ 0.915-
o 107 \ —— Algorithm SAS
—< Algorithm SRS
—&— Algorithm SCD
—+— Algorithm SDR
0.91 B
0.905 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
size
0?2 . . . . 1 L Flg 12.
1000 2000 3000 4000 5000 6000 7000

8000

Detection probability o8 , as a function of detector siz&)00
Monte Carlo runs.

Fig. 10. Miss detection probability @¥; , as a function of the sample size:
simulation results. Here = 0.98, ¢ = 0.02, » = s/12. Use 1000 Monte

Detection Prob. vs. Detector Size: B{(pA) sample size = 100
. 0.99 -
Carlo runs T T T T T —— Algorithm SAS
— Algorithm SRS
—-&- Algorithm SCD
—+— Algorithm SDR
0.985 -
o Miss Detection vs. Sample Size size:a = 0.05
10 3 j j j j % Algorithm SAS(@,)
%\? o Algorithm SRS((pA) 0.981 e s
y —%— & o—o—°—H
| o Algorithm SCD(p,) ) /é,—,é,,é——@k B —
\‘3 A Algorithm SDR(g,) z o—&—&
| 20975+
§
= S =8
10 1l 5
g 0.97 -
k]
o
=
o
0.965 -
107
0.96 -
0.955 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1073 L L L L L L L
0 100 200 300 400 500 600 700

I 1 size
800 900 1000
n

Fig. 13. Detection probability o, , as a function of detector siz&)000
Monte Carlo runs.

Fig. 11. Miss detection probability @ , as a function of the sample size:

simulation results. Here = 0.98, ¢ = 0.02, »r = s/12. Use 10000 Monte

Note that by choosing the threshold from the upper bound
Carlo runs.

in (38) and (41), we only guarantee the false alarm is upper
As expected, both threshold and miss detection probabil unded bya. Our simulation shows the actual false alarm

are decreasing functions of sample size, which reflectdetraP qbﬁb_llltyl_can hbe rﬂucr; less _thalmhthe hs'lzde .Of thle detéctor
off between detection precision and sampling time, ener@wcd'n}pr']es" atﬁ e_t_eoretlcr? threlz 0 :jsg 00Se uppe
consumed and data processing expense. ound of tdedactua mlmm_IL_Jrr]n t rgs 0 netfa he to gugrantee
We also plot the detection probability w.rt. the size of'® required detector size. This is because of the nonpariame
the detector. See Fig. 12 and Fig. 13. The plot shows th _ _ , _
detection probability does not increase sianificantly vtk _ For example, in our simulation of Algorithm SAS and SRS, for skemp
) e p Yy . : > g y size up tol0, 000 using1000 Monte Carlo runs, we encounter no false alarm
increase of the detector size, which is expected because dhal.
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nature of the theoretical threshold. This threshold is @dov For any setS, if S contains points from different planes,
to satisfy the size constraint under arbitrary distribogio S is not shatterable because no setAnx {0,1} contains
by the Vapnik-Chervonenkis Theory. Therefore for a givepoints from different planes. I§ only contains points in one

distribution, this threshold may be loose. plane, it is shatterable only j5] < VC-d(.A). Therefore, VC-
For comparison among the algorithms, an obvious obsend{:4 x {0,1}) <VC-d(A).
tion is thatd, , outperformsig, in detection probability. This |

is because on one hand, givemndq, using (36,37) to choose
threshold yields that(n) for ¢ 4 is 1/2v/2 smaller than that
for d 4; on the other hand, we havey (S, S2) > da(S1,52). VII. CONCLUSION

Therefore in our simulation it is easier for algorithms @sin  \\e have presented in this paper a nonparametric approach
statisticg.4(51, S2) to detect a change. However, this is causeg) the detection of changes in the distribution of alarmed
by the specific way to decide the detection threshold, and dQ@nsors. We have provided exponential bounds for the miss
not imply thatd,,, is uniformly better tharyg,, . detection and false alarm probabilities. The error exptsen
An intuitive guideline in algorithm design is that the bettet these probabilities provide useful guideline for detiming
sets in A separate the probability mass i and P, and the number of sample points required.
the simplerA is, the better the detector performance is, €.9. \\e have also proposed several nonparametric change de-
Algorithm - SCD performs better than Algorithm SAS andgction and estimation algorithms. Here we have aimed at
SRS. Moreover, we can introduce random factors into thgqycing the computation complexity while preserving the
algorithm to make it more robust, e.g. we randomize SAfeoretical performance guarantee by using recursiveclsear
to be SRS so as to make it independent of the direction dfategies that reuse earlier computations, which givesvas

which change occurs. near linear-complexity algorithms SAS and SRS. The more
expensive algorithms SCD and SDR also have their roles,
V1. EXTENSION TOFINITE-LEVEL SENSOR despite their near square cost, especially in detectingggsa
MEASUREMENTS of highly clustered distributions. This is because the cear

We have presented our results based on collecting sené@sses in Algorithm  SCD and SDR may yield larger
locations of sensors with the same repoice.( “alarm”). distance than the more simplified classes, which in turnsgive

Extension can be made to applications with finite-level eenéargef error exponents as indicated'ir'm Theorem 3.1. Morgove

measurements. Algorithm  SCD is much more efficient than the exhaustive
Without loss of generality, let each sensor report either #gorithm SPD with complexity)(A/), and Algorithm SDR

is alarmed (say, measurement lewdlor it is not alarmed &lS0 improves the complexity of its exhaustive counterpart

(level 0). In such a case, théth data collection is modelled Algorithm SAR significantly. Complexities of different alg

by probability spacéX x {0, 1}, F, P;) whereF is ao-field rithms presented so far are summed up in the following table.

on X x {0, 1}. Let random variablex € X denote the sensor TABLE |

location, andL € {0,1} denote the sensor report. In thid

collection, (x, L) has joint distributionP;, and the location of

TIME COMPLEXITY COMPARISON

alarmed sensors has conditional distribut®y,— . It is easy dA4 ¢>A4
to see that there are cases wh@nchanges bu|,_, does SPD O(M") O(M)

t. Hence by collecting both types of sensor reports, we are SCD | O(MTlog M) | O(M7 log M)
not. y colliecting yp ports, SAR O(M?) o(M*)
able to detect a wider range of changes. SDR O(M?) o(M?)

To apply the algorithms presented previously, choose class SAS | O(M log M) O(Mj)
A’ to be the collection of sets froml in either 0-plane or SRS | O(Mlog M) oW~

1-plane,i.e., A’ = A x {0,1}. For instance, the collection , o

of planar disks becomes the collection of planar disks with B€Sides running time, one may also care about the amount
either measuremerit or measurement. Algorithms should ©f Storage used for executing the algorithms. Obviods{y/)

be applied to bottD-plane andl-plane and we choose thesSpace is needed to stase andSs, and the extra space needed

larger as the test statistiags(S;,S2) or ¢4(S1,S2). The scales as follows:

detection and estimation performance guarantee still shold TABLE Il
but note that the sample size now becomes the total number SPACE COMPLEXITY COMPARISON
of sensor reports collected (rather than the number of alarm
-di i da PA
collegted). Note that the VC-dimension of such a clats S5O0 ot
remains the same as that 4f sco| o(1) o(1)
SAR | O(1) O(M)
it . SDR | O(M?2) | O(M?)
Proposition 6.1: For a classA of planar sets, sas | o) OM)
VC-d(A x {0,1}) = VC-d(A). SRS| 0Q) | o)
Proof: Comparing these tables, one can see the time-space trade-

It is easy to see that VCfdl x {0,1}) >VC-d(A). off in algorithm design. For example, although Algorithm D
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has comparable running time with Algorithm SCD, it requireB. Proof of Theorem 3.2
much more space to execute, i&/?) instead ofO(1). The Proof: Let VC-d(A) = d < oo. We first prove the
choice of algorithm should be a trade-off between runningegrem for.A-distance.
time, space requirement and detection performance, wéh th | ot
significance of each highly dependent on applications. A = argmax |P,(B) — P»(B)|,
One should be further cautioned that the techniques consid- BeEA
ered in this paper typically require a large number of samplgd define to be
points. Since no information about the distribution is ysed A
and the performance guarantee must hold for all distribstio n = [Pi(A) — P2(A)| — sup [P1(B) — P (B)].
bounds derived here are conservative. While in this paper g;ﬁ
we adhere to the principle of nonparametric approach, t
incorporation of certain prior knowledge about the disttibn,
in the selection of4 for example, would lead to more effective

detection and estimation schemes in practice. Pr{sup ||P(B) — P»(B)| — |S1(B) — S2(B)|| < Q}
BeA -3

tf%e uniqueness ofl saysn > 0.
By results of [12], we have

APPENDIX
A. Proof of Theorem 3.1
Proof: We first prove the theorem for detectors using© With probability> 1 — 8(2n + 1)

the A-distance metrid 4(S1, 52) = SUPAc 4 [S1(A)—S2(A)]. 1S1(A) — S5(A)| — sup |S1(B) — So(B)]
From [12], we have BeA

> 1—8(2n + 1)de /288,

de—nn2/288’

B#A
Pr{dA € A,[|P1(A) — P2(A)] — [51(A4) — S2(A)[| > €}

<8(2n+1)de /32 (38) = |PL(A) — P2(A)] - sup |P1(B) — P(B)|
Under Hy, P, = P,, and the false alarm probability satisfies B#4

—|[S1(A) = Sa(A)| — [P1(A) — Po(A)]
—| sup |S1(B) — Sa2(B)| — sup |P1(B) — P»(B)||(45)
BeA BeA
B#A B#A

PF(CS) = Pr{dA(Sl,Sg) > E;Ho}
— Pr{3A € A |S1(A) — So(A)] > e Ho)
— Pr{3Ac A ||Pi(A) - Po(A)

> n—2sup ||P(B) — P(B)| — |S1(B) — S2(B)|| (46)
—[S1(A) = S2(A)[| > & Ho} BeA
2 n
< 8(2n 4 1)de e /32 @9 = 3 (47)
where inequality (39) follows from (38). That is,

For the miss probability, lefl” = argmax ¢ 4 [P1(4) — Pr{A = argmax|[S;(B)—S2(B)|} > 1-8(2n-+1) e /258,
Py(A)]. BeA -

PM((S,Pl,Pg) = Pr{dA(Sl7SQ)§€;P1,P2} NOW |etn—>oo,
< Pr{[S1(4%) = S2(A7)] < & P, P} lim Pr{A = argmax|S;(B) — S2(B)|} = 1.
< Pr{||Pi(47) — Py(aA")| el
—|S1(A") — Sz (AY)]] For relative A-distance, let

) — ) —el; P (B) - P,(B
> [Py (A7) = Po(A%)] = el s P1, P} A — axgmax LB~ PA(B)
8(2n + 1)defn[IP1(A*)sz(A*)I*e] /32 BeA | PL(B)+P2(B)

2
(40) Let

Now consider relative distance. The proof for relative dis- A
tance metric goes line by line as that for the non-relative "~ fo(P1L(A), P2(A4)) — sup fu(Py(B), P2(B)).

IN

BeA
metric, replacing inequality (38) with the following retsul B#A
from [12], The uniqueness afl saysn > 0.

P2 (¢ 4(S1,92) > €) < 2(2n + 1)(1677152/4 (41) In [9] it is proved thatf,(z,y) is a metric on[0, 1].
) The proof is similar to that ofd-distance. By [12] we have
P [|¢pa(Pr, P2) — ¢.A(S1, S2)| > €]

Ui

< 16(2n 4 1)fe=ne/19 42y P Fo(Si(B) P(B)) < £) 2 1= 8(2n+ 1)t 1,
We have 1=1,2.
Pr(5) < 202n+1)de e/t (43) So with probability> [1 — 8(2n + 1)de—"7"/190]2 we have
Py(6,P1,Py) < 16(2n + 1)demnloalPur)=d?/15(42) F5(S1(A), So(A)) — sup f6(51(B), S2(B))

[ | B#£A
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>

Y

Y

Y

fs(P1(A), P2(A)) = sup fy(P1(B), P2(B))
BeA
B+#A
—[fo(PL(A), P2(A)) — f4(51(A), S2(A4))]
—[ sup fs(P1(B), P2(B)) — sup f,(51(B), S2(B))[(48)
BeA BeA
B#A B#A
n— fo(P1(A),51(A)) — fo(P2(A), 52(A))
—sup fo(P1(B),S1(B)) — sup fs(P2(B),S2(B)) (49)
BeA BeA
B#A B#A
n—2sup fo(Pi(B),S1(B))—2sup fg(Pa(B),S2(B))
BeA BeA
(50)
z (51)
That is,
Pr{A — arg max 2B = 52(B)]
BeA SMB);SAB)
> [1— 8(2n + 1) 7" /10072,
Now let n — oo, the proof completes.
[ |
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