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ABSTRACT Besides, the connections may be encryptagl,(SSH sessions) so
that the monitor cannot rely on the content of the traffic. Further-
more, a careful attacker may even actively modify the traffic each

Yime it passes through a host in order to confuse the monitor.

Network intruders often hide their identities by sending attacks
through a chain of compromised hosts that are used as “steppin
stones”. The difficulty in defending against such attacks lies in de-
tecting stepping-stone connections at the compromised hosts. In

this paper, to distinguish normal from attacking connections, we 1.1. Related Work
consider strategies that do not depend on the content of the traf- . . i .
fic so that they are applicable to encrypted traffic. \We propose aStanlfor(_j and Heberlein [1_] are the .f'rSt to consider the problem
low complexity detection algorithm that has no miss detection and of s:]epplng-ston;a ﬁonn?fgtlon detecltlosn. _:'hhe earlth_ork IS rtl)alsed
an exponentially-decaying false alarm probability. A sequential on the content of the traffigg., see [1,3]. These techniques help

strategy is then developed to reduce the required number of testin 0 recognize connections on the same |n.tru5|on path t.)y .analyzmg
packets. he content of the packets. Later on timing characteristics of the

Keywords: Stepping-stone detection, intrusion detection al- traﬁ'f arefuske]_d IEIO' deltedct ezcgyp:[rehd séeppgg-itofntehconr;ecﬂo_ns, ex-
gorithms, encrypted stepping-stone attacks, interactive stepping-f"‘mp es of which include [4-6]. The jrawback of these techniques
is that they are vulnerable to the active timing perturbation by the
stone attacks.
attacker.
There are a few results on detecting encrypted, perturbed stepping-
1. INTRODUCTION stone connections; see [2,7,8]. The key assumption of these ap-
. . . proaches is that there is a limit on the attacker’s ability to alter
Stepping-stone attack is a common way for network intruders 10 {he traffic. Specifically, in [2] it is assumed that there igaxi-
concgal their |d§nt|ty. Ina stepplng-stong attack, the attacker COM-ymtolerable delay for attacking packets, in [7] the attackers tim-
promises (multiple) hosts as relay machines, constructs a chain ofi\g perturbation is independent and identically distributed across
connections through these hos_ts using remote login such as Telnebackets, and in [8] there are constraints not only on the maximum
or SSH, and then sends attacking commands through this chain tqe|ay but also on the maximum number of packets that can be sent
the victim [1]. Because each connection is made by a separate réqring the delay. From an algorithmic point of view, Blum, Song
mote login, the next host in the chain can only see the identity of 54 venkataraman [8] develop the first detection algorithms which

its immediate upper stream neighbor, and the victim only sees theyeqyire provable (polynomial) sample sizes to achieve certain false
identity of the last host. Therefore, we have to trace back the chain 415m probabilities.

to find the origin of an attack. Such tracing can be overwhelm-

ing because of the huge volume and highly dynamic nature of the
network traffic. 1.2. Summary of Results and Organization

ste T?na(.jgtr::s rtrI?(l)Sn;f;rl;eétljec;r(]:?\bbziévséopnoosdeel?o[(zj]etgcl?zzgu in Our work is based on the same assumptions as in [8]. In this paper,
pping- - Ach ga y not - PPINGGe consider detecting encrypted, interactive stepping-stone con-
stone pairs by examining the incoming/outgoing traffic. In prac-

tice, the monitor has to make decisions by observing live traffic nections. By "encrypted” we mean that we cannot use the content
Whiéh mav not include the beainning or t%e end of ?he connec‘- of packets. “Interactive connections” means that the new com-

. y o X 9 9 . mands to be sent depend on the feedback of previous commands.
tion. Therefore, it is desirable that the detection strategy does not

require svnchronization between incoming and outdoing streams Therefore, the attacker cannot wait too long for the packets to be
q Y 9 going ‘relayed, and cannot issue packets too fast because he needs time to
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so that the constraint is satisfied. We also consider how to dis- | ]X%((I) ‘
tribute the false alarm constraint to minimize the maximum sam- — 1

ple size, and we show that the minimax distribution reduces the A? () b t
sequential algorithm to a fixed-sample-size algorithm. Our analy-

sis focuses on the error exponent of various algorithms. We show T Nao(I) =

that although our algorithm needs the same order of sample size ‘ N.(I) j

as the algorithm proposed in [8], our algorithm has a much larger a b t
error exponent. (i7) A

The rest of the paper is organized as follows. Section 2 de-
fines the problem. Section 3 presents several detection algorithms
together with the performance analysis and comparison. There are
also simulation results to verify our analysis.

Fig. 1. (¢): No(I) > N1(I); (48): N1(I) > No(I).

at most the packets transmitted[in— A, b], and at least those
transmitted ina, b — A]; see Fig. 1.

2. THE PROBLEM STATEMENT Therefore, for any interval, —pa < Ni(I) — N2(I) < pa.
|
Let Sy, S (Si = (.., s, s, s¥,..), i = 1, 2) be the We can use the maximum differenidé; (I) — N2(I)| over all

incoming and outgoing streams at a particular gateway neahel I'to detect stepping-stone pairs. Noticing that

Ti=A.., s 1, f)), 51 ,...} be the set of the elements . max  |(N1(j) — N1(3)) — (Na(j) — Na(i))| = v(w),
Assume that if(S1, S2) is a normal pair, they are independent !<isisw
Poisson processes. (161, S2) is a stepping-stone pair, then there
exists a bijectiory : 7; — 7> such thad < g(s) —s < A for any
s € Ty; furthermore[{s € S1 : s € [t, t + A]}| < pa for any
t. HereA is the maximum tolerable delay, apd is the largest

we can equivalently use the maximum variation to detect stepping-
stone pairs. The algorithm is shown in Table 3.1.

number of packets the attacker can send withth We want to DETECT-MAXIMUM-VARIATION (S1, S2, pa, n):
test the following binary hypotheses: do—d =0
. . forw=1:n
Ho : (S1, S2) is a normal pair Q) dlw—1)+1 ifsy, €51 .
. . . d(w) = ; ;
Hi (51, S») is a stepping-stone pair. (2) dw—1)—=1 ifs, €52

Amax = Mmax(dmax, d(w));

Amin = min(dmin, d(w));

if dmax — dmin > JAN return NORMAL,;
end

3. DETECTION ALGORITHMSAND PERFORMANCE return ATTACK;
ANALYSIS

by observing(s!”, s{?, s{7. .. ) (i=1, 2).

Table 1. DETECT-MAXIMUM-VARIATION (DMV).

Merge(s{", sV, .. ) and(s{?, s{?,...) and order the union as

S1,82,83,.... LetN;(w)(i = 1,2) be the numberofpacketsfrom ) . .
Algorithm DMV has time complexityO(n) and uses only

S: when the total number of packetsisi.e., N; (w)= Z Is;es;, constant memory@(log pa), to be precise). By Proposition 3.1,
any stepping-stone pair will be detected aftgpacketsj.e., miss
detection is totally avoided. We only need to be concerned about
the false alarm probability, which is bounded as follows.

wherel. is the indicator function. Define the cumulatlve difference
d(w) and the maximum variation(w) as

A A . . .
d(w)=N1(w) = N2(w),  v(w)= max d(i) — min d(i). Theorem 3.2 The false alarm probability of DMV is bounded by
Pr(DMV) < Patl) n

3.1. DETECT-MAXIMUM-VARIATION (DMV) 1—p
Given intervall, let N;(I) be the number of packets ¢h in the where p = cos . Furthermore,
interval I. We notice that the stepping-stone pairs have bounded
difference inN;(I), as stated in the following proposition: nhfio _1 1og Pr(DMV) = — log p.
Proposition 3.1 For stepping-stone pairs, we have Proof: See Appendix. [ ]

ngf) is the arrival epoch of thkth packet on strearsince the monitor
starts (ifk < 0, itis the(—k + 1)th packet before the monitor starts).
) . ) 3The notion ofA andpa is first used in [2] and [8] respectively. Here
Proof: Let I = [a, b]. Ni(I) is the number of incoming  we do not consider inserting chaff packets. See [2] for trezxgtion of
packets in/. By the bounded delay assumptid¥; (1) can include such scenario.

|N1(I) — N2o(I)| < pa Vinterval I.



Remarks: For given false alarm constraitit making the up-
per bound in Theorem 3.2 equaldgields a sample size

=0 (pZAlogp—A> .

, — 1089(1 —p) —log(pa +1)
log p

Blumet al. [8] proposed an algorithm called “DETECT-ATTACKS”

(DA) for stepping-stone detection. Algorithm DA divides samples
into groups of2(pa + 1)? packets each, and computes the cu-
mulative differenced(w) for each group. It returns NORMAL
if |d(w)] > pa in any of the groups. Blunet al. prove that

2(pa + 1) log % packets are required to guarantee a false alarm

probability no more thaa.
We point out that DMV always outperforms DAThe reason
is that sincev(w) > max |d(7)|, for every realization, if DMV

has a false alarm, DA must have a false alarm too.
Now we compare their false alarm probabilities. We have the
following lemma:

Lemma 3.3 For independent Poisson processes and large pa,

1 n
Pr(DA) > (KﬂmwE a) (3)
. x . sin AT W+l)
where o = cos sarmy A4 K = 5555100
Proof: See Appendix. [ ]

From Lemma 3.3 we have that for largg, the error exponent
1
of DA is at most— log (K 2(>a+1? ). By Taylor expansion,
., (L)
2(pa +2)? PA/)’

2
T +log 3 (1
e
PA

2(pa +1)?
Therefore, for largea, the false-alarm error exponent of DMV is
at least3.38 times larger than that of DA.
Fig. 2 plots the simulated false alarm probabilities of DA and
DMV and their bounds It confirms our claim that the false alarm
probability of DMV decays much faster than that of DA.

—logp

1
—log (K 2(pa+1)7? o)

3.2. SEQUENTIAL-DMV (SDMV)
In both DA and DMV, the decision of ATTACK requires a fixed

sample size. We hope to make ATTACK decisions sequentially so

Ppvs.samplesizen  py=4, A=1

DA
DA lower bound

v 4
O DMV upper bound

o

0 50 100 150

n

Fig. 2. Pr of algorithms DA and DMV. (Assume normal pairs are
independent Poisson processes with the same rate.)

Usinguv(w) as statistics, we obtain from the proof of Theorem
3.2 that, for normal pairs,

Tw+1

s
Tw+1

1 —cos

Tw <COS

Pr{v(w) < 7w} < éf(m,w), foranyr, > 1.

If 7 2 sup{integerk : f(k, w) < ¢q.,¢}, and the decision rule is
to return ATTACK if v(w) < 7, then the false alarm probability
of the wth iteration is bounded by.,6. Therefore we have the
sequential algorithm in Table 3.2.

SEQUENTIAL-DMV(S}, Sz, pa, 6, q):

Amax = dmin = 0;
forw=1, 2,...

_fdw—=1)4+1 ifsy,€S .
A0V = dw—1)—1 ifsyeSs

dmax = max(dmaX7 d(w)),

dmin = min(dmn, d(w));

if dmax — dmin > pA return NORMAL,

7 = sup{integerk : f(k, w) < qud};

if dmax — dmin < 7 return ATTACK;
end

Table 2. SEQUENTIAL-DMV (SDMV).

Algorithm SDMV also uses the maximum variation as the
statistic, and therefore can be thought of as a sequential version

that we can possibly use fewer packets. To this end, we proposes Dy, The vectorq is part of the algorithm design. Ideally, we
to use an iterative algorithm and divide the total false alarm con- \\.4nt to choose to minimize the average sample size. If the at-

straint among iterations. Specifically, we split the total false alarm
probability § into ¢1 9, g290, g3, ..., whereq = (q1, g, ...) sat-

isfiesq, > 0 and Y ¢, = 1. If, in each iteratiorw, the false

w=1
alarm probability is bounded by, §, then by union bound we see
that the total false alarm will be bounded &y

4Note that in terms of the order of sample size with respegixand
6, DMV and DA are comparable.

5Note that the sample size of DA has to be a multiple of the grazs si
2(pa +1)%

tacker’s strategy is unknown, then we may wish to minimize the
largest sample size. Specifically, if the attacker does the best to
evade detection by keepindw) = pa for all w > pa, then the
bestq is
>w
<9

andq,, = 0 for all w # n. That is, the minimaxq reduces SDMV
to the fixed-sample-size algorithm DMV.

™

(pa +1) <cos e
us

1—COSm

gn =1 forn =inf ¢ w:



4, CONCLUSION and then applying (4) withh = ¢ = % Furthermore, by (5) it is

n thi der d . . _easytoseethatim —<log Pr(DMV) = —log p.

n this paper, we consider detecting stepping-stone connections n—oo .
with bounded delay and bounded peak rate. Our techniques can, i\fgr: thriEroi(f);(r)]deoerTn‘ilfatﬁé%,mna(;ti(?ntl:lat(l?Aizi?];?ls;eoilagn n
rule out independent connection pairs with provable confidencewi?hin 9 Ot?servin tha); ()| group
and hopefully leave a much smaller number of suspicious connec- pa- 9

tions for further examination. Therefore, they are most useful in Pr max ld(i)| < pa} =
the scenario when the total volume of the traffic to be analyzed ie{l,..., 2(pa+1)2}
is large. In [9], we consider detecting stepping-stone connections Pr{N_(pat1), (pat1) > 2(pa + 1)2}’

with bounded delay only or bounded memory. These more general
assumptions will make the detection techniques easier to apply inwe apply (6) witha = b = pa + 1 to lower bound the false alarm

practice. of DA on one group. Then taking the product over all groups gives
the desired result.
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