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Abstract— Stepping-stone attacks are often used by network Stepﬂlgsgt—stone
intruders to hide their identities. In a stepping-stone attack,
attacking commands are sent indirectly to the victim through
a chain of compromised hosts acting as “stepping stones”. In
defending against such attacks, it is necessary to detect stepgin
stone connections at the compromised hosts. The use of encrggt
connections by the attacker complicates the detection problem,
and the attacker’'s active timing perturbation and insertion of
chaff make it even more challenging. This paper considers Fig. 1. A stepping-stone attack.
strategies to identify stepping-stone connections when the at-

tacker is able to encrypt the attacking packets and perturb their

timing. Furthermore, the attacker can also add chaff packets in Donoho et al. proposed in [2] the use of stepping-stone
the attacking stream. The paper first considers stepping-stone i

connections subject to packet-conserving transformations byhe monltqrs at each Qateway nO(_:Je for detegtlon. A palr of
attacker. Two activity-based algorithms are proposed to detec INncoming and outgoing streams is calledtepping-stone pair
stepping-stone connections with bounded memory or bounded if it is part of a stepping-stone attack. Otherwise, it islexl
delay perturbation, respectively. These algorithms are provedd g normal pairt. The stepping-stone monitors try to discover
have exponentially decaying false alarm probabilities if normal 5 stepping-stone pairs by examining the incoming-outgoi

traffic can be modelled as Poisson processes. It is shown thatt ffic. | i th itor has t ke decisi b
the proposed algorithms improve the performance of an existing rafc. In practice, the monitor has to maxe decisions Dy

stepping-stone detection algorithm. The paper then addresses Observing live traffic, which may not include the beginning
the detection of stepping-stone connections with both timing or the end of the connection. Therefore, it is desirable tieat
perturbation and chaff. Robust algorithms are developed to detection strategy does not require synchronization betwe
deal with chaff evasion. It is proved that the proposed robust incoming and outgoing streams. Besides, the connectiogs ma

algorithms can tolerate a number of chaff packets proportional . .
to the size of the attacking traffic, and have vanishing false alarm be encrypted€.g., SSH sessions) so that the monitor cannot

probabilities for Poisson traffic. Simulations using synthetic data '€ly on the content of the traffic. Furthermore, a careful
are used to validate the theoretical analysis. Further results usim  attacker may even actively modify the traffic each time it

actual Internet traces are shown to demonstrate the perforrance  passes through a host in order to confuse the monitor.
of the proposed algorithms.
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Index Terms— Intrusion detection, Nonparametric detection,
Network security, Point processes. P A. Related Work
Staniford and Heberlein [1] are the first to consider the prob
I. INTRODUCTION lem of detecting stepping-stone connections. Early tepres
To evade surveillance, network attackers can hide théfe based on the content of the traffic. Seg,,[1], [3]. These
identity by launching the so-called stepping-stone atfddk techniques, however, are not applicable to detecting eiedy
In such an attack, as illustrated in See Fig. 1, the attackegnnections. An alternative is to exploit timing charaistizs
compromises a collection of hosts and uses these hostsoh#he traffic. Zhang and Paxson [4] propose to detect steppin
stepping stones to relay attacking commands. Because esigiie connections by matching the ending of “off” periods
connection is made by a separate remote login, a host in tAedifferent connections. Their approach requires that the
chain can only see the identity of its immediate predecesse@nnections are synchronized. Yoda and Etoh [5] propose an
and the victim only sees the identity of the last host. Thamsf algorithm to identify streams with the same traffic pattern
the identification of attackers requires tracing the chain dut unknown time shift. Wang, Reeves, and Wu [6] propose
stepping stones. A key component in such tracing is tfi@ correlate streams by examining packet interarrival sime
detection of stepping stone connections. and they show that their method works well if connections
tCorresponding author on different paths have d|st|nct|v_e timing characteristithe
T. He and L. Tong are with ihe School of Electrical and Computer Engineerorge dra_Wba,Ck, of these ap,proa‘CheS is that they are vulnerable to
University, Ithaca, NY 14853. Emaift h255@ | t ong@ce. }cor nel | . edu. active timing perturbation by the attacker.
e o e e oo e e oo, There are @ few results on detecting encrypted, timing
award number CCF-0424422) and the following organizations: CiscoHESC HP, ~perturbed stepping-stone connections; see [2], [7], [8le T
IBM, Intel, Microsoft, ORNL, Qualcomm, Pi‘reIIi,Sun and SymAantec, and the.lArBly key assumption of these methods is that the attacker is
Research Laboratory under the Collaborative Technology Alliance Program, Coeperati . . .
Agreement DAAD19-01-2-0011. The U. S. Government is authorized to reprodu@le to perform a packet-conserving transformation on his

and distribute reprints for Government purposes notwithstanding any gbpyrtation traffic. but the transformation is subject to certain camiats
thereon. Part of this work is presented in IEEE International Conference on Acoustics, ! :
Speech, and Signal Processing (ICASSP) 2006, and Conference on Information Sciences

and Systems (CISS) 2006. 1Formal definitions are given in Section II.
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Donohoet al. [2] are the first to consider the bounded delayhey prove that this strategy has exponentially decayifggfa
perturbation, where there is a maximum tolerable delay fatarm probability for independent Poisson streams.
each attacking packet. Assuming that a stepping-stoneiair
a renewal process and its relay (detailed analysis is dane Eo
Poisson processes), they show that substantial correletio ~
be revealed even with timing perturbation. Wang and Reevedn this paper, we consider the problem of detecting en-
in [7] take a watermark-based approach. They show hawypted stepping-stone connections subject to the attacke
to correlate stepping-stone connections with independedt active modification. Our strategy does not use the content of
identically distributed perturbation by introducing watteark the traffic. Nor is synchronization or active traffic mangutidn
into packet interarrival times. Blunet al. [8] work along required. We first consider detecting stepping-stone peits
the same line as [2] except that they also assume that theunded perturbation but no chaff, and then generalize our
attacker has a bounded peak rate, and they remove the Poisigiaction schemes to handle chaff packets. We formulate
assumption on the attacking traffic. They propose a detectithe problem of detecting stepping-stone connections as a
algorithm called “DETECT-ATTACKS” (DA) with no miss, hypothesis testing of independent against correlatedtpoin
and they are the first to prove that their algorithm requirespgiocesses. For the traffic perturbation by the attacker, we
polynomial number of packets to satisfy certain false alaraonsider two types of constraints: (i) the host has bounded
constraint. memory; (ii) attacking packets have bounded delay. While the
A more general category of stepping-stone connectionskisunded delay condition is a key in [2], [8]-[10], the boudde
the one allowing non-packet-conserving transformatibtese memory constraint, to the best of our knowledge, has not been
the attacker has the ability to mix attacking traffic with nonaddressed in the literature.
attacking traffic, including dummy traffic called chaff, tceele Under the bounded memory assumption, we develop a
detection, or he can repacketize his traffic so that there is n linear complexity algorithm based on the maximum varia-
1 correspondence between arriving and departing packegs. Tion statistic. The intuition behind this algorithm is thise
repacketization is outside the scope of packet level detgct maximum variation statistic stays bounded for relayeditraf
and should be addressed at a lower level; the insertion gifing through a stepping-stone host with limited memory,
chaff, however, has to be dealt with effectively. Pestgal. but diverges unboundedly for independent traffic. Under the
in [9] propose an active detection scheme which combinbsunded delay assumption, we derive a timing-based algo-
watermarking with packet matching to detect steppingetonthm based on the idea of matching arriving packets with
traffic in chaff. They assume packets have bounded delageparting packets. By restricting the search to maps that
and chaff only appears in the downstream flow. Their scherpeeserve the order of packets, we reduce the complexity from
injects watermarks in the upstream flow, and finds a subse¢onential to linear. We prove that both of the proposed
guence in the downstream flow, whose watermark is closedgorithms have no miss for their targeting stepping-stone
to the injected one. Such an active scheme, however, requipairs, and exponentially decaying false alarm probagediti
the control of the stepping-stone host, and it also revedts independent Poisson processes. We then generalize the
the activities of the detector to the attacker, allowing thattacker model to allow the presence of chaff. We develop two
attacker to compromise the detector by studying its belhavioew algorithms for stepping-stone pairs with both bounded
Donohoet al. [2] point out that in principle it is possible to memory or bounded delay perturbation and chaff. The idea is
correlate stepping-stone traffic even if both (boundedpylelto declare a stream pair normal if the optimal chaff-inserti
and independent chaff are introduced during the relay. Btimalgorithm would have had to insert a certain fraction of €haf
al. [8] modify their algorithm DA into a new algorithm called packets to embed attacking packets into the given stream pai
“DETECT-ATTACKS-CHAFF” (DAC) to deal with chaff. Therefore, the attacker will have to insert at least the same
DAC detects stepping-stone traffic with a limited numbefraction of chaff to evade detection. The threshold on the
of chaff packets by increasing the detection threshold. THction of chaff is chosen to be as large as possible to make
drawback is that such an increase in the threshold leads totl@ attacker’s evasion difficult, but also small enough s th
increase in the false alarm probability, and the attackerstil the false alarm probability will go to zero as the traffic size
evade detection by adding an arbitrarily small fractionludif€ increases.
traffic. Indeed, a fixed number of chaff packets can evade theWe next compare the performance of existing algorithms
detection for an attacking traffic of arbitrary size. In aeett and the proposed algorithms. To make the comparison, we
paper [10], Zhanget al. propose packet matching schemes tanalyze the performance of algorithms DA and DAC proposed
detect stepping-stone traffic with bounded delay pertisbat by Blum et al. [8]. The original analysis by Blunet al.
and/or chaff. For a stepping-stone traffic with bounded yeldocuses on sample size, whereas our result is on error erpone
but without chaff, they propose a detection strategy simtda analysis. Among algorithms dealing with packet-conseayvin
“DETECT-MATCH?” [11], although the detection performanceransformations, we show that the proposed variationébase
on attacking traffic is not proved, and they do not have algorithm has larger false alarm error exponent than the-alg
closed form characterization for the false alarm probgbili rithm DA by Blumet al., and it also outperforms the proposed
For stepping-stone traffic with both bounded delay and chaffiatching-based algorithm when the traffic is sufficientlgtfa
they propose a matching strategy which can detect steppif@r slow traffic, however, the matching-based algorithmizan
stone traffic if the chaff is only inserted in the departingam. much better. For algorithms dealing with chaff, we compare

Summary of Results and Organization
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our algorithms with existing algorithms by Bluret al. and can be generated or dropped at any stepping stone hosts
Zhanget al.[8], [10]. We show that, in contrast to the constanivithout affecting the attack. They are artificially inseftby

chaff tolerance of the algorithms by Bluet al. and Zhanget the attacker to evade detection.

al., our algorithms are capable of handling an amount of chaff We want to test the following binary hypotheses:

growing linearly with the size of the attacking traffic. Thece Ho -
we paid is that the false alarm probabilities of our alganih

no longer have exponentially decaying upper bounds, but die (

(S1, S2) is a normal pair,
S1, S2) is a stepping-stone pair (with or without chaff),

only guaranteed to be vanishing asymptotically. by observing(s\”, s, (...} (i = 1, 2). This is a nonpara-
The rest of the paper is organized as follows. Sectigfietric hypothesis testing problem; no specific assumpibons
Il defines the detection problem. Section Il presents tfe statistical properties @f;, S;) are imposed at this point.

variation-based algorithm and its performance analysteun additional assumptions on normal and stepping-stone pairs

the bounded memory assumption. Section IV developsyall be introduced later when detailed detection algorighm
timing-based algorithm for stepping-stone pairs with lieth and analysis are presented.

delay and analyzes its performance. In Section V, we present

robust algorithms for stepping-stone pairs with both baghd IIl. DETECTING STEPPINGSTONEPAIRS WITH BOUNDED
perturbation and chaff, and analyze their robustness and MEMORY

asymptotic false alarm probabilities. Section VI compates  We consider the problem of detecting stepping-stone pairs
performance of the proposed algorithms with several @gstiwhen the host has bounded memory. Specifically, assume that
algorithms for detecting stepping-stone pairs with or with the host's memory can hold at moaf packetd. Then the
chaff, respectively. Section VIl gives simulation resaltsboth  difference between the number of incoming and the number
synthetic data and internet traces to verify the perforrean®f outgoing packets during any period can never excked

The paper is concluded by Section VIII with a few remarkgve use this property to define such stepping-stone pairs as

on the application of such detection schemes. follows.
Definition 3.1: A pair of streams(S;, S2) is a stepping-
Il. THE PROBLEM STATEMENT stone pair with bounded memory if it is a stepping-stone
Let the packet arrivals on streane represented by a pointPair, and for anya < b,
process [{s€Ti: sela, b} —{s€Tz: s €la, b]}|| < M.
Si=(..., S(_z)l’ S(()i)7 sf), sg),~-.)7 i=1,2 To detect stepping-stone pairs with bounded memory, we

_ derive a counting-based algorithm—DETECT-MAXIMUM-

where sg” (k > 1) is the kth arrival epoch of stream (If VARIATION (DMV).
k <0, itis the(—k+1)th packet before the monitor starts). Let Before presenting the algorithm, we need to introduce some
Ti=1{..., 9, s s s 1 be the set of the elementsdefinitions. Merge(si”, s",...) and (s*, s{”,...) and
in S;. Let S; be the incoming and, the outgoing streams at aorder the union ags;, sz, s3,...). Let Nyj(w) (i = 1, 2) be
particular gateway node. Normally; and.S; are independent. the number of packets monitored # when the total number
If, however, S, is a relay ofS; in a stepping-stone attack, therof monitored packets i®, i.e.,
there will be strong correlation between them as formalized w
. . . A
in the following definition. Ni(w)= Zl{sjesi},

Definition 2.1: A pair of streamg Sy, S2) is anormal pair j=1
if 51 andS; are independent point processes. It Bt@pping- where ., is the indicator function. Sample paths f (w)
stone pairif there exists a bijectioy : 7; — 7, such that and N,(w) are illustrated in Fig. 2. (a).
g(s) —s >0 foranys e 7. Define the cumulative difference betwesn and S, as

The bijec_tiong is a mapping be.tween the arrival and the d(w)éNl(w) — Na(w),
departure times of packets, allowing permutation of packet ) o
during the relay. The condition thatis a bijection imposes a @nd let the maximum variation af(w) be

packet-conservatioonstraint,i.e., no packets are generated U(w)é max d(i) — min d(i).

or dropped at the stepping stones. The conditipf) —s > 0 1<isw 1<isw
is the causality constraint, which means that a packet cann®ee Fig. 2. (b) for an illustration af(w) andv(w).
leave the host before it arrives. If the stepping-stone host has bounded memory, then the

If only a subsequence &; (i = 1, 2) consists of attacking sample path ofi(w) will have bounded variation. Algorithm
packets, then only that part is constrained, as stated in ®V distinguishes normal and stepping-stone pairs by look-

following definition. ing at the maximum variation. Specifically, note that
Definition 2.2: A pair of streams(S;, S2) is a stepping- _ , .

stone pair with chaffif it is the superposition of a stepping- (w) = 15%%?;” (7) = d()|

stone pair(S;, S4) and a pair of chaff stream@&, Cs) ( =  max |(N1(j) — N1(3)) — (N2(j) — Na(d))],

either or both of them can be empty). Isisjsw

StreamC; (i = 1, 2) consists of dummy packets called 2gjnjjar requirement on buffer size has been considered by Gitel Hajek
chaff which do not need to arrive at the victim. Chaff packet the context of timing channels [12].



(b)

Fig. 2. (a) the cumulative coun®¥y; (w) (¢ = 1, 2); (b) the cumulative
differenced(w) and the maximum variation(w).

where|(N1(j) — N1(2)) — (N2(j) — N2 (7))] is the difference in
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by o by making its upper bound equal &g yielding a sample
size

loga(l — p) —log (M + 1)
n =

oz » @

which grows asO(M?log ) as M — oo anda — 0. For
example, if M = 20, (1) says that usind196 packets will
guarantee a false alarm probability no greater th#n

IV. DETECTING STEPPING-STONEPAIRS WITH BOUNDED
DELAY

the number of incoming and the number of outgoing packets
between theth and thejth arrivals. For stepping-stone pairs Many stepping-stone attacks are interactive. In intevacti

with bounded memoni/, this difference is bounded hy/,

stepping-stone attacks, the attacker waits for the feddbhc

i.e., v(w) < M, Vw. Using the maximum variation statistics,the previous commands and sends new commands based on

we define the following detectér

1 ifou(n) <M,

domv (S1, S2, M, n) = { 0 o.w.

the feedback. Therefore, the delay in such interactivecldta

is usually bounded. In this section, we consider detecting
stepping-stone pairs with bounded delay, which is defined as
follows.

The detector can be implemented by the algorithm DMV Definition 4.1: A pair of streams(S,, S2) is a stepping-

shown in Table I.

TABLE |
DETECT-MAXIMUM-VARIATION (DMV).

DETECT-MAXIMUM-VARIATION (S1, S2, M, n):

dmax:dminzo;

forwzlznd( D1 i r
_ w—1)+ T sy €71 |

d(w)—{ dw—1)—1 ifsye€T ’

dmax = max(dmax, d(w));

dmin = min(dmin, d(w));

if dmax — dmin > M return NORMAL;
end
return ATTACK;

Algorithm DMV has complexityO(n) and uses only con-
stant memory @ (log M), to be precist). Any stepping-stone
pair with bounded memory/ will be detected aften packets,

i.e., miss is totally avoided. We only need to be concerne

about the false alarm probability, and it is bounded as faslo

Theorem 3.2:If normal pairs consist of independent Pois-

son processes, then the false alarm probability of DMV
bounded by
(M+1) ,

<
PF((sDMV) >~ l—p

Y

where p = cos 375 Furthermore, if the two Poisson pro--,
cesses have the same rates, then the upper bound is tight \ﬂt%

respect to the error exponeng.,

1
lim - log P (dpw ) = — log p.

n—oo

Proof: See Appendix. ]

Remarks: For a given false alarm probability, we can

guarantee that the false alarm probability of DMV is bounded

3We use the convention that the detector gives the valter 7; and0
for Ho.
4The log in this paper is always natural logarithm.

stone pair with bounded delak if it is a stepping-stone pair,
andg(s) —s < A foranys € T7;.

Our definition of stepping-stone pair with bounded delay
is the same as the one proposed by Donehal. in [2].

The bounded delay model is fundamentally different from the
bounded memory model considered in Section Ill. It has been
shown that the two models have very different scaling bedravi
on the mutual information between the incoming stream and
the outgoing stream [12]. In Section VI-A.2, we will show tha
they also have difference detection performance with @spe
to changes in traffic rates.

We derive a timing-based detection algorithm DETECT-
MATCH (DM) to detect such stepping-stone pairs. Algorithm
DM matches the firstm packets inS; with their possible
relays in.S;, subject to the maximum delaf. For stepping-
stone pairs with bounded delay, there must be at least one
way of matching that satisfies causality and bounded de-
lay constraints—matching the arrivals of packets with the
partures of the same packets. For normal pairs, however,
ch matching may not be possible. Algorithm DM uses this
property to detect stepping-stone pairs with bounded delay
. A few definitions are needed to present the algorithm.
Befinehi(t) to be the index of the first arrival epoch ) on
or after timet, i.e.,

h(t)2inf{k: s > t}.
example,si)( N
see Fig. 4).

Definition 4.2: A matchbetween7; and7; is a collection
of pairs {(sx, s},)}rez Wheres, € 7, ands) € T, such
thats; # s; ands; # s} for anyi # j. A lengthn match
{(sk, sp)Ir_ isvalidif 0 < s}, —s, < Aforallk=1,...,n.

A match{(sg, s}.) tkez is order-preservingf s, < s; implies

si < s; for all &, L.

From this definition, it is easy to see that a stepping-stone
pair with bounded delay must have at least one valid match.
Thus one way to detect such stepping-stone pairs is by Igokin
for a valid match between the arrivals and the departures. Th

is the first epoch inSy on or after time



T. HE AND L. TONG

complexity of this approach is, however, exponeftiistead

Now we analyze the performance of DM. We will show

of searching for any valid match, we prove that it suffices tilnat any stepping-stone pairs with bounded delaywill
limit our search to order-preserving, valid matches, atgdtabe detected by, i.e., there is no miss. We have shown

in the following proposition.

by Proposition 4.3 that a stepping-stone pair with bounded

Proposition 4.3:1f {(sg, s})}}_, is a valid match, then delay A must have an order-preserving, valid match, and the

there exists a valid match betweés, }7_, and{s}.}}_, that
is order-preserving.
Proof:
As illustrated in Fig. 3, if{(s1, s}), (s2, s4)} is a valid

problem of finding a valid match is reduced to a simpler
problem of findingssﬁ) (i.e., the match ofsgl)). There are
some constraints on the range <f). The first constraint is
causality, which requiresﬁﬁ) > s§1>. The second is bounded

match which does not preserve the order of packets, we G@lay. Since the monitor may not have started recording from
switch the match to b¢(s, s5), (s2, s1)} such that itis still the beginning of the streams, there may be packets sengbefor
valid but the order is preserved. By this idea, we can reord@e monitor starts and received afterwards. This phenomeno

.{s;}g.zl into sf < s§ < < s, The match{(sg, si)}i_;
is valid and order-preserving.

S1 52
S

S

s 81

Fig. 3. More than one valid match: both the solid and the dditezs are
valid matches.

By Proposition 4.3, it suffices to consider only the matches
that preserve the order of packets, and the problem is reduce
to finding the departure that corresponds to the first atrival

With this idea in mind, we develop the following detector:
6DM(517 SQ) A? n)
1 if 3m € [ha(s{"), ha(A)] s.t.the match

- {(Sg), 8,(‘.2,”,1)}2’=1 is valid,

0 o.w.

however, can only occur during tim@, A) because of the
bounded delay assumption. Thus for any stepping-stone pair
Si)(A) has to be the relay of.") for somek > 1. As a result,

m has to satisfyhg(sgl)) < m < hy(A), as shown in Fig. 4.
Therefore, DM must be able to return “ATTACK”.

S

S2

N
)

ie 1 |
A 2 Sha(A)

h2 (S(ll))
Fig. 4. The match ofsgl): there are three possible candidates.

Next, we show that for independent Poisson normal pairs,
the false alarm probability goes to zero exponentially tated
in the following theorem.

Theorem 4.4:If S; and S, are independent Poisson pro-
cesses of ratea; and \q, respectively, then the false alarm

which is implemented by the algorithm DM as shown ifrobability of DM is bounded by

Table 1.

TABLE I
DETECT-MATCH (DM).

DETECT-MATCH(S1, S2, A, n):

for m = ha(s{"), ..., ha(A)
fork=1,..., n
(1)

it 5. —st) <0ors?) stV > A break;
end
if k==n+1 return ATTACK;
end

return NORMAL,;

Pr(6ou) < ’Vnila
wherey = 1 — e~ M1A28/(a+22)

Proof: See Appendix. ]

Remark: Theorem 4.4 gives a few insights into the prob-
lem. Sincey < 1 — e~ ™min(A,X2)A \we havey — 0 if
min(A1, A2) — 0, i.e.,, DM almost never falsely accuses slow
independent Poisson traffic.

Intuitively, it is easier to match two processes of equatsat
This intuition is strengthened by Theorem 4.4 becatis€
1 — e */2 where A = max()\;, \2), and thus the upper
bound for Poisson traffic of equal rates is larger.

Similar to DMV, we can also estimate the sample size
required by DM to achieve a given false alarm probability

To analyze the complexity of DM, note that the inner l00p, py calculating the value: that makes the upper bound in
hasO(n) operations, and the number of such loops is at MOpteorem 4.4 equal ta, i.e.

1 plus the number of arrivals in the intervmgl), A)in S,.
Thus the complexity of DM is at most

n((# arrivals in[s{”, A) in Sy) +1).

5For example, if there are at mo#t departures during time\, then the
exhaustive search for a lengthvalid match has complexit9 (L™).

n =loga —logy + 1.

For example, if\; = Ay = 1, andA = 10, then a match length
682 suffices to guarantee a false alarm probability bounded by
1%. Note that for this match length, DM needs up2o +
A2A = 1374 packets on the average to find a valid match.
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V. DETECTING STEPPING STONEPAIRS IN CHAFF B. The Bounded Delay Case

So far we have not considered how to detect stepping-stond © St€pping-stone pairs with bounded delay, we can al-
traffic in chaff. In practice, the attacker usually combitredfic Ways match the incoming packets with the outgoing packets

perturbation with the insertion of chaff to evade detection (P€rhaps except for the first few outgoing packets) so that al

this section, we address how to detect bounded memory_rB?tChed pairs satisfy causality and bounded delay. Whef chaf
bounded delay stepping-stone pairs in the presence of. chisiinserted, we may not be able to match all the packets. Ifthe
The key is to allow a limited violation of constraints so thafttacker does not insert enough chaff, however, the atigcki

the detection scheme can still distinguish stepping-spmies rafic ill have much more matched packets than normal
and normal pairs while tolerating certain amount of chaff. taffic. The algorithm is presented in Table 1V. Algorithm
DBDC has complexityO(n).

A. The Bounded Memory Case TABLE IV

As explained in Section Ill, the maximum variation of DETECT-BOUNDED-DELAY-CHAFF (DBDC).
stepping-stone pairs with bounded memaky is always
bounded byl . After inserting chaff, the attacker can make the PETECT-BOUNDED-DELAY-CHAFRS1, Sz, A, n, A):
maximum variation larger thai/. But with a limited number | ¢=Jj=1

of chaff packets, the maximum variation will still be muclkde vc\;hie()z"Jrj <n

than that of independent processes. Based on this ideajowe pr  j s _ ;)

pose an algorithm called “DETECT-BOUNDED-MEMORY- ¢=ct it
CHAFF” (DBMC) presented in Table Ill. Algorithm DBMC | elseifsi® — s/ > A

has complexityO(n). C=C+1Li=i+1;

else
i=i+1Lj=7+1
end
TABLE Ill enfj”d
DETECT-BOUNDED-MEMORY-CHAFF (DBMC). return | ATTACK if ¢ < s
NORMAL  o.w;
DETECT-BOUNDED-MEMORY-CHAFKS1, Sa2, M, n):
S = mergéS1, S2);
d = dmax = dmin = 0; Algorithm DBDC is inspired by an optimal chaff-inserting
¢=0; algorithm called “BOUNDED-GREEDY-MATCH” (BGM)
forw=1:n . .
if (dimax — dimin = M) and (€ = dmax 5w € 71) OF (d = duiny 50 € T2)) | PFOPOSEd by Blunet al. [8]. For every arrival at tim¢, BGM
C=C+1; matches it with the first unmatched departurdtin + A]; if
oS¢ i1 itsweT there is no departure in this interval or all the departuiseh
I=90 d-1 if su € Ta: been matched, BGM inserts a chaff packet at arrtly®GM
dmax = max(dmax, d); also inserts chaff at all the departures which have no dsriva

dmin = min(dmim d),

end to match to. Algorithm DBDC uses a count€rto record the

o ) number of chaff packets which would have been inserted had
QTOTRA’\(;EL '(‘;W? < W1 BGM been used, and reports alarm if the fracti@fi/n) is
o smaller than a predetermined value. It is shown in [8] that
BGM inserts the minimum chaff to embed a stepping-stone
air with bounded delay\ into arbitrary point processgs
¥ the attacker wants to send attacking packets through a
host with delays bounded bxs, he needs to insert at least
%7(1 + AA) chaff packets in every packets to evade DBDC.
Therefore, DBDC is robust against up1@(1 + AA) fraction

return {

If (S1, S2) is a pair of stepping-stone streams passi
through a host with memory sizd, the countel”' in Table Il
counts the number of times the memory would have be
underflowed ¢ = dyn, sw € 72) or overflowed § = d,u
sw € 7T7) if chaff had not been inserted. Algorithm DBMC

o ) . A of chaff.
makes detection if the fractio”/n) is suspiciously small. It can be shown (see [13]) that, for independent Poisson
Since no attacking packet can violate the memory constraint ' o
: processes of rates bounded bythe false alarm probability
(only chaff packets can), the number of chaff packets isatle P .
C. Therefore, to evade DBMC, the attacker has to insert Oft DBDC goes to zero as goes to infinity. The valua is a

) ' ! (?esign parameter representing the tradeoff between rdmsst

leastn /(M +1) chaff packets in every packets. We conclude

) . . and false alarm probability. A smaller would allow DBDC
that DBMC is robust against up o (M +1) fraction of chaff. - = -~ " 00 chaff, but a largérwould enable DBDC to

It is difficult to characterize the false alarm probabilitf/ Ohave vanishing false alarm probability for a wider range of
DBMC in closed form for finiten. As n increases, however, normal traffic

it can be shown that the false alarm probability goes to zero
if normal pairs consist of independent Poisson processes; s 6The original proof in [8] is for independent binomial processbut it
[13]. holds for arbitrary processes.
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VI. COMPARING THEALGORITHMS where

1 if max |d(k’) (w)| < M,
(Sla SQa M) = 1<w<2(M+1)2
0 ow.,

We have introduced techniques for detecting steppingestoyyy,
pairs with various constrained perturbations or a combnat ~**
of perturbation and chaff. In practice, stepping-stonespaiay
vary in what conditions they satisfy depending on the natuvghere d®) (w) (w = 1,..., 2(M + 1)?) is the cumulative
of the attacks. For certain types of stepping-stone paissem difference for packets in thith group.
than one detection algorithm are applicable. The quesson i Blum et al. show that DA has no miss for stepping-stone
how to compare the performance of different algorithms ipairs with bounded delay and bounded peak rate. Moreover,
detecting such stepping-stone pairs. they prove thaR(M + 1)2 log% packets are needed to guar-
antee a false alarm probability no more than

We, however, are interested in the asymptotic behavior of
DA in terms of error exponent. Note that [8] does not compute

1) DMV vs. DA: Blum et al. [8] consider the detection of the error exponent for the false alarm probability of DA. To
stepping-stone pairs that satisfy both the bounded deldy abtain its error exponent, we introduce the following lemma
the bounded peak rate conditions. The underlying idea is thaLemma 6.3:For independent Poisson normal pairs,
in interactive stepping-stone attacks, usually not onlyhis
delay bounded, but the peak rate at which the attacker caa iss Pr{ max |d(i)|< M} <

. . i€{l,...,m} 1
packets is also bounded because he needs time to process the
feedback and type new commands. Specifically, Beimal. and whenm is large enough,
consider stepping-stone pairs with bounded delgyand the
maximum number of arrivals within timeis L(¢). The second
condition, referred to as the bounded peak rate condit®n, i
formalized in the following definition: whereo = cos m and K =

Definition 6..1: A stepping-stone paifS:, S2) hasbounded Proof: See Appendix.
peak rateL(-) if sup |{s € T3 : s € [r, r+¢]}| < L(¢) for all
t>0. '

Let MéL(A) be the largest number of packets the attack

can send during the maximum deldy. Note that stepping- roved that the single group false alarm probability is uppe

stone pairs with bounded delay and bounded peak rate alw. Sinded byt. Hence the false alarm probability of one group
use bounded memory, as stated in the following propositio% upper boanded by

Proposition 6.2: Define N;(a, b) be the number of packets
on S; in an interval [a, b] (e < b). For a stepping-stone o (2D 24V2 i M =1

. . . min - = = 16 I ?
pair with bounded delay and bounded peak rate)ifs the 1—0g ' 9 ! if M > 2.
maximum delay, and/ is the maximum number of packets

A. Algorithms for Packet-conserving Transformations

o.m

)

Pr{ max [d(i)|]< M} > Ko™,
ie{l,...,m}

3oy

sin 5771y
2(M+1)(1—-0)"

[ |
If M is large, we can apply Lemma 6.3 to each group of

2(M + 1)% samples to obtain the upper and lower bounds on
e false alarm probability of that group. Note that in [8isit

that the attacker can send within tindg then Algorithm DA has a false alarm if all the/ [2(M + 1)?]
groups have false alarmsso for large)M, the total false alarm
[Ni(a, b) — Na(a, b)| < M, Va<b, probability satisfies
i.e., the stepping-stone pair uses bounded menidr. 1 n 1\ zar02
pping ' P y (K2(1w+1)2 U) < Pp(dpa) < (—) Y . (2)
Proof: See Appendix. | 2

By Proposition 6.2, we conclude that stepping-stone paif§erefore, for IargeMl, the false-alarm error exponent of DA
with bounded delay and bounded peak rate are also steppiisgat most—log (K 237+9? ¢) and at leastog 2/(2(M +1)?).

stone pajrs with.bounded_delay and bounded memory. Notewe want to compare DA with DMV in detecting stepping-
that the inverse is not true.e., bounded delay and boundedstone pairs with bounded delay and bounded peak rate. By
memory do not imply bounded peak rate. Proposition 6.2, we have shown that such stepping-stome pai

) Blum et al. in [8]" propose a detection algorithm calledsasisty the bounded memory condition. Thus DMV also has
DETECT-ATTACKS” (DA) to detect stepping-stone pairspqg miss. We now compare their false alarm probabilities.

with bounded delay and bounded peak rate. Algorithm DAy first point out that DMV always outperforms DA for

divides samples irby U S, into groups of size2(M +1)?. 54 reaiization. One reason is thaw) > max |d(i)| (see
For each group, it computes the cumulative difference im tha . 1<i<w .
group. Then DA returns “NORMAL” if there exists a groupF g. 5), and another is that DA restarts computation from

i
o O ¢ > U
with cumulative difference greater thad. The detector using d*)(0) = 0 at the beginning of each group, whereas DMV

DA is defined below: keeps increasing the ma>_<imgm vgriatio(’w) across groups.
‘ Therefore, for every realization, if DMV has a false alarm,
n/(2(M+1)?%) . DA must have a false alarm too.
5DA(Sla 527 Ma n) = H 6I§A)(Sl7 827 M)7

1 “In DA, the sample size: is always a multiple o2(M + 1)2.
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that the bounded memory condition is more informative than
the bounded delay condition in detecting stepping-stcaféidr

for AA > 4log ((M + 2)/m). Since the right hand side merely
grows adog M, the memory bound can be advantageous even
for modest rate and large memory. For example Jbe= 106
packets,A = 10 seconds, we only need > 5.1 packets
per second for the bound memory condition to provide better
detection performance.

Fig. 5. The statistics used by DA and DMV.
B. Algorithms Dealing with Chaff

Next we compare their false alarm probabilities. In partic- In Section I-A, we have mentioned several existing detectio
ular, we are interested in whose false alarm probability dmasschemes dealing with chaff evasion ( [8]-[10]). We now
larger error exponent. From Theorem 3.2 and (2), we see t§aimpare these schemes to our proposed algorithms DBMC
the false-alarm error exponent of DMV islog p whereas that and DBDC.
of DA is at most— log (Kma). By Taylor expansion of 1) DBMC vs. DAC: Detecting s_tepping—stone traffic with
the error exponents, we have that s — oo, both boundgd memory perturbation and chaff has not been

addressed in the literature to the best of our knowledge.

1o _ 7 Lol 2 In [8], Blum et al. propose an algorithm called “DETECT-
&P 2(M + 2)? M2)’ ATTACKS-CHAFF" (DAC) for detecting a more restricted
. 2 tlog™ 1 class of stepping-stone traffic with bounded delay, bounded
—1 K 2(M+1)2 — 4 @ o2 — . .
og ( o) S 1 1)2 +o <M2> peak rate, and chaff. Algorithm DAC works exactly the same

as DA except that the group size is increased fegiv + 1)?
Therefore, for largeM, the false-alarm error exponent ofto 8(M + 1)2, and the threshold is increased frod to
DMV is at least3.38 times larger than that of DA. 2M. It is shown in [8] that DAC is robust against up fd

2) DM vs. DMV: For stepping-stone pairs with bothchaff packets in everg(M +1)2 packets, and for independent
bounded memory and bounded delay, both DMV and DMoisson traffic, the false alarm probability of DAC is boudde
can be used. We are interested in which algorithm perforrog 2—7/8(M+1)?),
better; particularly, we want to compare their asymptotic By Proposition 6.2, DBMC is also applicable to the
performance. Note that we need to give DMV and DM thstepping-stone traffic Blumet al. consider for DAC. We
same sample size to make a fair comparison. If we defisempare their performance in terms of robustness and false
sample size as the total number of monitored packets afarm probability. As stated in [8], the attacker can eva&&€D
both the incoming and the outgoing streams, then the sampleinserting M + 1 chaff packets in a group (M + 1)?
size required by DM to find a length-match is random; it packets. As the traffic size increases, the fraction of chaff
is at most(# departures if0, A)) + 2n. For largen, the needed to evade DAC becomes negligible. Algorithm DBMC,
sample size is approximateBr. Hence we should compareas argued in Section V-A, is robust against a number of chaff

domy (S1, So, M, 2n) with dpy(S1, Sa2, A, n). packets constitutind /(M + 1) fraction the total stepping-
Theorems 3.2 and 4.4 suggest that for Poisson processestohe traffic. The drawback of DBMC is that its false alarm
equal rates\, DM is preferable ify < p?, i.e., probability is only guaranteed asymptotically, whereasCDA
4 . has exponentially decaying false alarm probability.
A< N log (sin m) 3) 2) DBDC vs. S-lll [10]: For detecting stepping-stone traffic

with both bounded delay and chaff, Pesigal. [9] and Zhang
Otherwise, DMV is preferable. For example, f&f = 40, et al. [10] both provide partial solutions for the special case
and A = 10, the threshold is\ < 1.0375. This threshold when chaff only appears in the outgoing traffic. Pezigal.
phenomenon has an intuitive explanation. Algorithm DMV9] use a watermarking scheme which requires the detector
only uses the rank statistics, so it does not depend on tieeactively manipulate the traffic, and thus falls outside th
rate of the traffic; on the other hand, DM performs better ggcope of this paper. Zhangt al. [10] propose a scheme
slower traffic and worse on faster traffic. The reason for thaalled “S-111" which matches every arrival &t with the first
latter is that\ — 0 means the inter-arrival times co, which unmatched departure ift;, ¢; + A], and makes detection if
is equivalent to having finite inter-arrival time bdt — 0, all the arrivals are successfully matcRe®cheme S-lll is
i.e., for extremely slow traffic, almost perfect synchrony igroved to have exponentially decaying false alarm prokigbil
required to raise an alarm, and thus it is unlikely for DM tdor independent Poisson processes. If the attacker cant inse
have false alarms. Similarly, ik — oo, the inter-arrival time chaff in the incoming traffic, however, one chaff packet is
— 0; equivalently, it means having non-zero inter-arrivalégimenough to defeat S-1ll. Algorithm DBDC, on the other hand,
but A — oo, i.e., the delay constraint is essentially removed,
which causes DM to always raise alarms. Therefore, when théln [10], there is also a variation of S-Iil called “S-IV", weih makes

.. . decision by comparing the minimum deviation among all the validches
traffic is sufficiently slow, DM outperforms DMV, and Other'with a threshold. The false alarm probability of S-1V is nogeer than that of
wise DMV performs better than DM. The comparison suggestsil, but S-1V is also easy to be defeated by chaff in the ingw traffic.
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is applicable to cases when both the incoming and outgoi . Peie-eampechen M- AW
streams are subject to chaff insertion. Furthermore, DBL

is robust against chaff traffic of non-zero rate. Its weakne:!
similar to DBMC, is that it does not have a guaranteed fal
alarm probability for finite sample size.

DA

DA upper bound
DA lower bound
DMV

DMV upper bound

+O0%<C0

VII. NUMERICAL RESULTS o
We simulate our algorithms on both synthetic data ar .
traces to verify their performance. For synthetic data, we L
independent Poisson processes of equal rates as our no
pairs; the goal of using synthetic data is to validate o
analysis. For real data, we use the traces LBL-PKT-4, whi
contains an hour’s worth of all wide-area traffic between tt
Lawrence Berkeley Laboratory and the rest of the world. TI *°
traces were made by Paxson and were first used in his pe
[14]. 10 ‘ ‘

0 I I N 1 I I
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
n

A. Simulations on Synthetic Data Fig. 6. Pr(dpa), Pr(domv), and their bounds)M = 40 packets,100000
. . . . Monte Carlo runs.
In this section, we simulate DA, DMV, and DM on synthetic

independent Poisson processes to verify their false alaoin p P_vs.samplesizen  M=40, A=10
abilities. We letM = 40 packets,A = 10 seconds, and vary ‘ ‘
the sample size betwee?b00 and 5000 packets (including
both incoming and outgoing packets)The performance of
DA and DMV does not depend on the traffic rate becau
they only rely on the relative order of packets. For DM, ral
does play a significant role and will be specified when it
necessary.

We have shown the advantage of DMV over DA and ha ., |
guantified their difference in terms of error exponent\ds—
oo in Section VI-A.1. We now show how their performanci
compares for finite/. In Fig. 6, we plot the simulated false
alarm probabilities of DMV and DA, together with the uppe ¢
bound on Pgr(doy) from Theorem 3.2 and the asymptotic
upper and lower bounds ofr(dp.) from (2). Simulation
shows that the asymptotic bounds in (2) are valid even 1

DM, A =3
DM,A =35

0% <& 0

107

relatively smallA/ (M = 40). Furthermore, it confirms our 10 50 P s = w000

claim that the false alarm probability of DMV decays muc.. n

faster th{_m that of DA. . . Fig. 7. Pr(dom) under various rateg) = 10 seconds100000 Monte Carlo
We simulate DM for different traffic rates A( = r(uns.

3, 3.5, 4, 4.5). The simulation results are plotted in Fig. 7.

The upper bounds in Theorem 4.4 for rates betwgemd

4.5 are close td; the actual false alarm probabilities obtaineglower forA = 4.5. Note, however, that in the estimation of the

from simulation are much lower. The plot shows that the upp#treshold rate we are conservative about DM. This is because

bound in Theorem 4.4 is not tight, but it correctly predidte t for DMV, Theorem 3.2 gives the exact error exponent, whereas

fact thatPr(é,v) increases with the increase of traffic rate, ar DM, Theorem 4.4 only characterizes a lower bound on its

argued in Section VI-A.2. error exponent (which is shown to be not tight). Therefore,
Furthermore, we make an overall Comparison by p|ott|ﬂge expect that the actual threshold rate is Iarger than tee on

the simulated false alarm probabilities of DA, DMV and DMestimated by (3)e.g.,in the simulation the threshold rate is

together in Fig. 8. From the plot it is clear that the compmaris about4 .

between DM and DMV depends on the traffic rate. In our

simulat.ion,M =40, A = 10, the .thresh(_)I'd rate est_imatedB. Simulations on Traces

by (3) is aboutl1.0375. The simulation verifies the exstencg We extract!34 flows from the TCP packets in LBL-PKT-4.

of such a threshold rate because the false alarm probab|lJ:1¥Ch flow has at leasto00 packets. andi of them have at

of DM decays faster than that of DMV fok = 3.5 and Packets,

least10000 packets. For the testing of false alarm probabilities,

9Note that since DA requires the sample size to be a multipie(ar + W€ take all combinations of the34 flows, filter out the pairs

1)2 = 3362 packets, we extend the sample size for DAG&24. satisfying the definition of stepping-stone pairs with baeh
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P_vs. sample size n M=40, A=10 o False Alarm Probability
0 10 T T T

10 ! ! ! ! o DA O DBMC
& DMV ¢ DAC
% DM, A=3 * DBDC
o DM, A=35 0 s-ll
+ DM, A=4 )

107 A=, 4 10

-5
10 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

n

5 .

10, — - : : :
2500 3000 3500 4000 4500

I I
5000 5500 6000 6500 7000

n

Fig. 8. Pg(épa), Pr(domv), and Pr(dpm); M = 40 packets,A = 10 Fig. 9. Pp(boemc), Pr(doac), Pr(Soeoc), and Pp(dsm) on LBL-PKT-4
seconds; 00000 Monte Carlo runs. (n is the joint sample size).

memory or bounded del&; and treat the rest as normal pairs" fact, DBMC detects all the stepping-stone pairs in our

For the testing of miss probabilities, we introduce indefgent  Simulation, whereas DAC has up #.58% miss by sample
timing perturbation and chaff into the flows with 10000 SiZ€ 2_2000. The pl_ot also _shows that the miss probability of
packets to generate independent copies of their stepping-s DAC increases w!th the increase of the average _number of
relays. To generate bounded delay perturbation, we add ff packets. This result conforms to our analysis because
every packet a delay chosen independently and uniformiy frg1® number of chaff packets that are needed to evade DBMC
[0, AJ. To generate bounded memory perturbation, we divid® proportional to the traffic size, whereas DAC can be evaded

packets into segments of size/2, and randomly generateby a fixed number of chaff packets. Note that our robustness
M/2 relay packets in théi + 1)th segment for = 1, 2, ... claim about DBMC is conservative; DBMC is robust against

11 Fyrthermore, we insetV, chaff packets in botts; ands, UP t01/(M+1) ~ 0.0476 fraction of chaff no matter how the

according to uniform distributions on the range of the flow&naff packets are inserted. In the simulation, DBMC sursive
In this section, we lef\/ = 20 packets,A = 5 seconds, and 0.1 fraction of chaff, which implies that the uniform chaff

N. = 1000 packets. In DBDC, we also sét = 2.6 packets insertion is not optimal for bounded memory stepping-stone
pai

per second.

We first simulate the false alarm probabilities of DBMC
DAC, DBDC, and S-llI; see Fig. 9. The false alarm prob s : :
abilites of DBMC, DAC, and DBDC are comparable, an
they do not change much after sample sif®0; the false
alarm probability of S-lll, however, keeps decreasing raft
1000 packets to a much smaller value. From the plot, we s
that the false alarm probabilities of DBMC, DAC, and DBD(
for the traces do not decay exponentially. It is possible tF
the false alarm probability of S-Ill still decays exponaiit, ozr ]
but we do not have enough data in these traces to verify tt

We then simulate the miss probabilities of DBMC and DA( °15f ]
on the long flows (of sizd0000) and their synthetic relays
(Fig. 10). For each of the long flows, we generat@000 o1l .
independent relay flows by random segment generation ¢
uniform chaff insertion. Thus we totally havi®00 stepping- o5 |
stone pairs with bounded memory in chaff. The simulatic
shows that DBMC has much lower miss probability than DAC

Miss Detection Probability M =20, NC =1000

0.3 q

0.251 q

L

10The filtering is done by running DMV or DM on the entire flow pmir
and excluding the pairs reported as “ATTACK”. Fig. 10. P/ (S and P (6 n is the ioint sample size).
11The departures in thé 4 1)th segment can be viewed as relays of the 9 1 (Sosmc) w1 (0onc) € ) P )
packets arriving in theth segment. It is easy to see that such perturbation ) . o
satisfies the bounded memory constraint. We next simulate the miss probabilities of DBDC and S-
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lll; see Fig. 11. For each of thé long flows, we generate where{Z,},— o .. are ii.d. random variables taking value in
1000 independent relay flows by introducing independedt-1, 0, 1}. Let p = Pr{Z; = 1}, ¢ = Pr{Z;, = —1}. Define
delays and chaff packets. The plot confirms that DBDC hése hitting timeof —b or a (a, b > 0) as

a much smaller miss probability than S-III; actually, in the .

simulation, DBDC has no miss for almost all the sample Nopa=inf{n >1: X, =—bora}. “)
sized?. This is expected because DBDC is robust against upThe following lemma is from [16]:
to a certain fraction of chaff packets no matter where they Lemma 8.1:

are inserted, whereas S-lll is vulnerable to the chaff tiser 1 /p a/2 4 1/q b/2 4
into S1. We see that in the simulation DBDC successfullyPr{N—; . =n} < 5 (—) = (—) ——1- (5
handles).1 fraction of chaff, which is larger than the fraction q 51 p 51
1/(1 + AA) =~ 0.0714 which DBDC is guaranteed to bewheres; = L —. If a = b, then for large
able to handle. Similar to the case of DBMC, this shows that L=p=a+2(pa) 2 cos (55
the ur_m‘orm chaff _mserfuon is not opt|mal for boynded delay Pr{N_p o = n} > sm?§1. ©)
stepping-stone pairs, either. From Fig. 10 and Fig. 11, we se 2as]
that DAC is more robust to chaff than S-il. Moreover, there exist constants (v =1,...,a+b—1) and
Miss Detection Probability A=5,N_=1000 Sv (’U = 27 sy @ + b - 1) nOt depending Om’ S't'
1 T T a+b—1 c
ool | Pr{N_; ¢ > n} = S—Z @)
O DBDC v=1 Y
o8r 1 where|s;| <|sy| (v=2,...,a+b—1).
0.7 4 i
Since
0.6 B o
= Pr{N_4 o >n} = Pr{N_y o =1},
s | {N_s, } r:zn;rl {N_s, }
04f 1 (5,6) give upper and lower bounds &{N_; , > n}.
ol | For the proof of Theorem 3.2, note that for independent
' Poisson processes, it is known th#tv) is a simple random
02k 1 walk. Define extreme value¥/,, = _max d(i), L, =
o1l | -_%ﬂn d(i). A false alarm occurs in DMV if and only if
. ‘ N ‘ ‘ U, — L, < M +1. Note that the false alarm probability is the
0 05 1 15 2 25 largest ifd(w) is symmetric {e., p = ¢ = 3). Then we have
2
n x10*
Pr(dowy) = Pr{U,—L,<M+1}
Fig. 11. Pus(Speoc) and Py (6sw) (n is the joint sample size). M1
= Pr{|J{Un<a Ln>—-(M+2-0a)}}
a=1
M+1
VIIl. CONCLUSION < Z Pr{U, < a, Ly, > —(M +2 —a)} (8)
In this paper, we develop techniques to detect encrypted a=1 .
stepping-stone connections. These techniques can rule out < (M+1) P Q)
independent connection pairs and leave a much smaller num- N L—p

ber of suspicious connections for further examination.eAftwhere p = cos 7. Here (8) is by union bound, and (9) is
discovering all the stepping-stone connections, one ca&n W noticing
existing serialization methods to determine the intrugath
[15] PI‘{Un <a, Ln > _(M+2_a)} = PI‘{N_(]\,{+2_G)7 a > n}7
and then applying (5) withh = ¢ = % Furthermore, by (7) it
APPENDIX is easy to see that

. 1
Proof of Theorem 3.2 and Lemma 6.3 lim - log Pr(dowy) = —log p.

The proof is based on the theory of random walk. Let For the proof of Lemma 6.3, note that
X, >0 be a simple random walk.e., )
{Xn}nzo0 P Pr{ie{r?axn} |d(i)] < M} = Pr{N_(pr41), (M+1) > 1}

X9 =0, Xn:Z1+ZQ—|—+Zn,(7’L>O) . . .
Applying (5, 6) witha =b = M +1 andp = ¢ = § gives

121t is except for the sample siZ&000, where we haves misses out of the desired result.
4000 Monte Carlo runs. ]
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Proof of Theorem 4.4

Given a match{(s;, s})}i=1,2..., defineYiés; — s;. Algo-
rithm DM has a false alarm if and only if there existss.t.the
order-preserving matcfi(s;, s;) }i=1,..., » satisfied) <Y; <A
foralli=1,..., n.

For i > 2, define the interarrival times b@iési — Si_1,
and Viés; —si_,. Let Z:2V; — U;. Then

Yi=(si_y —si—1) + () —si_1) = (si = si-1) = Yie1 + Zi.
Therefore, givent;, {Y;}52, is a general random walk with

stepsZ;’'s. We know thatl; andU; are independent Exponen-

tial random variables with meaty A, and 1/, respectively,
and thusZ;’s are i.i.d. with distribution function

Pr{Z; <z} Pr{V,-U; < z}

/ pu, (W) Pr{V; <u+ z}du
max (0, —z)

= sAge if 2>,
)\f_‘sz eM? if 2 <0.

The probability density function (pdf) of; is

A1da o—Aaz i 4 > )

pz(2) =4 N2 ’
1A2 1z 1

YiLe if z<0.

The false alarm probability satisfies
Pr(om) Pr{3s], st.0 <Y* < A}
max Pr{0 <Y} <A|Y; = .
X {0<Yy' <AYi =y}
Fix ay; € [0, A]. Forn > 2, define
pn(z)dzé Pr{Yy ' €0, A], 2 < Y, < z +dz|Y1 = p1 }.

Definep;(z) = (2 —y1) (Dirac delta function). In [16] (page
53) it is shown that

A
/0 Prn_1(x)pz(z —x)dr. (n=2,3,...)

Then we have
A
/ Pn(2n)dzn
0

A
/ pn—l(zn—l)dzn—l
0

<

pn(2)

Pr{0 < Y3 <AlY; =y}

A
/ Pz (2n — Zn—1)dzn
0

A
/ pz(z2 — y1)dze
0
A
/ pz(z3 — z2)dzs - -
0

A
/ Pz (2n — Zn—1)dzn.
0

Lety 2 max J57" p2(2)dz. Simple calculation yields that
te|0,

7y =1—e MA2A/(itA2) Then
Pr{0 <V3' <AV =y} <"

Since this is true for alj; € [0, A], we havePr (o) < 4™ L.
[
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Proof of Proposition 6.2
If b—a <A, then

|N1(a, b) — Na(a, b)| < max(Ni(a, b), Na(a, b)) < M.

Forb—a > A, let N{(a — A, a) be the number of packets
that arrive infla—A, a) and departure after, andN; (b—A, b)
be the number of packets that arrive(in- A, b] and departure
beforeb. Then

Nl(a7 b) = Nl(a7 b_A) +N1(b_Aa b)7
Ny(a, b) = Ni(a, b—A)+ Ni(a—A, a)
+NY (b - A, b),
We have

Ny(a, b) — Ni(a, b)

Nl(a—A, a)+N/(b— A, b)
—Ni(b— A, b).

SinceN{(b— A, b) < N1(b— A, b) andNj(a— A, a) < M,
we have

Ng(a, b) —Nl(a, b) < N{(G—A, a) < M.

SinceNj(a—A,a) >0, N (b—A,b) > 0andN; (b—A,b) <
M, we have

Na(a, b) — Ni(a, b) > —Ny(b— A, b) > —M.
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