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Detecting Encrypted Stepping-stone Connections
Ting He, Student Member, IEEE,and Lang Tong†, Fellow, IEEE

Abstract— Stepping-stone attacks are often used by network
intruders to hide their identities. In a stepping-stone attack,
attacking commands are sent indirectly to the victim through
a chain of compromised hosts acting as “stepping stones”. In
defending against such attacks, it is necessary to detect stepping-
stone connections at the compromised hosts. The use of encrypted
connections by the attacker complicates the detection problem,
and the attacker’s active timing perturbation and insertion of
chaff make it even more challenging. This paper considers
strategies to identify stepping-stone connections when the at-
tacker is able to encrypt the attacking packets and perturb their
timing. Furthermore, the attacker can also add chaff packets in
the attacking stream. The paper first considers stepping-stone
connections subject to packet-conserving transformations bythe
attacker. Two activity-based algorithms are proposed to detect
stepping-stone connections with bounded memory or bounded
delay perturbation, respectively. These algorithms are proved to
have exponentially decaying false alarm probabilities if normal
traffic can be modelled as Poisson processes. It is shown that
the proposed algorithms improve the performance of an existing
stepping-stone detection algorithm. The paper then addresses
the detection of stepping-stone connections with both timing
perturbation and chaff. Robust algorithms are developed to
deal with chaff evasion. It is proved that the proposed robust
algorithms can tolerate a number of chaff packets proportional
to the size of the attacking traffic, and have vanishing false alarm
probabilities for Poisson traffic. Simulations using synthetic data
are used to validate the theoretical analysis. Further results using
actual Internet traces are shown to demonstrate the performance
of the proposed algorithms.

Index Terms— Intrusion detection, Nonparametric detection,
Network security, Point processes.

I. I NTRODUCTION

To evade surveillance, network attackers can hide their
identity by launching the so-called stepping-stone attack[1].
In such an attack, as illustrated in See Fig. 1, the attacker
compromises a collection of hosts and uses these hosts as
stepping stones to relay attacking commands. Because each
connection is made by a separate remote login, a host in the
chain can only see the identity of its immediate predecessor,
and the victim only sees the identity of the last host. Therefore,
the identification of attackers requires tracing the chain of
stepping stones. A key component in such tracing is the
detection of stepping stone connections.
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Fig. 1. A stepping-stone attack.

Donoho et al. proposed in [2] the use of stepping-stone
monitors at each gateway node for detection. A pair of
incoming and outgoing streams is called astepping-stone pair
if it is part of a stepping-stone attack. Otherwise, it is called
a normal pair1. The stepping-stone monitors try to discover
all stepping-stone pairs by examining the incoming-outgoing
traffic. In practice, the monitor has to make decisions by
observing live traffic, which may not include the beginning
or the end of the connection. Therefore, it is desirable thatthe
detection strategy does not require synchronization between
incoming and outgoing streams. Besides, the connections may
be encrypted (e.g.,SSH sessions) so that the monitor cannot
rely on the content of the traffic. Furthermore, a careful
attacker may even actively modify the traffic each time it
passes through a host in order to confuse the monitor.

A. Related Work

Staniford and Heberlein [1] are the first to consider the prob-
lem of detecting stepping-stone connections. Early techniques
are based on the content of the traffic. See,e.g.,[1], [3]. These
techniques, however, are not applicable to detecting encrypted
connections. An alternative is to exploit timing characteristics
of the traffic. Zhang and Paxson [4] propose to detect stepping-
stone connections by matching the ending of “off” periods
in different connections. Their approach requires that the
connections are synchronized. Yoda and Etoh [5] propose an
algorithm to identify streams with the same traffic pattern
but unknown time shift. Wang, Reeves, and Wu [6] propose
to correlate streams by examining packet interarrival times,
and they show that their method works well if connections
on different paths have distinctive timing characteristics. The
drawback of these approaches is that they are vulnerable to
active timing perturbation by the attacker.

There are a few results on detecting encrypted, timing
perturbed stepping-stone connections; see [2], [7], [8]. The
key assumption of these methods is that the attacker is
able to perform a packet-conserving transformation on his
traffic, but the transformation is subject to certain constraints.

1Formal definitions are given in Section II.
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Donohoet al. [2] are the first to consider the bounded delay
perturbation, where there is a maximum tolerable delay for
each attacking packet. Assuming that a stepping-stone pairis
a renewal process and its relay (detailed analysis is done for
Poisson processes), they show that substantial correlation can
be revealed even with timing perturbation. Wang and Reeves
in [7] take a watermark-based approach. They show how
to correlate stepping-stone connections with independentand
identically distributed perturbation by introducing watermark
into packet interarrival times. Blumet al. [8] work along
the same line as [2] except that they also assume that the
attacker has a bounded peak rate, and they remove the Poisson
assumption on the attacking traffic. They propose a detection
algorithm called “DETECT-ATTACKS” (DA) with no miss,
and they are the first to prove that their algorithm requires a
polynomial number of packets to satisfy certain false alarm
constraint.

A more general category of stepping-stone connections is
the one allowing non-packet-conserving transformations.Here
the attacker has the ability to mix attacking traffic with non-
attacking traffic, including dummy traffic called chaff, to evade
detection, or he can repacketize his traffic so that there is no 1-
1 correspondence between arriving and departing packets. The
repacketization is outside the scope of packet level detection,
and should be addressed at a lower level; the insertion of
chaff, however, has to be dealt with effectively. Penget al.
in [9] propose an active detection scheme which combines
watermarking with packet matching to detect stepping-stone
traffic in chaff. They assume packets have bounded delays,
and chaff only appears in the downstream flow. Their scheme
injects watermarks in the upstream flow, and finds a subse-
quence in the downstream flow, whose watermark is closest
to the injected one. Such an active scheme, however, requires
the control of the stepping-stone host, and it also reveals
the activities of the detector to the attacker, allowing the
attacker to compromise the detector by studying its behavior.
Donohoet al. [2] point out that in principle it is possible to
correlate stepping-stone traffic even if both (bounded) delay
and independent chaff are introduced during the relay. Blumet
al. [8] modify their algorithm DA into a new algorithm called
“DETECT-ATTACKS-CHAFF” (DAC) to deal with chaff.
DAC detects stepping-stone traffic with a limited number
of chaff packets by increasing the detection threshold. The
drawback is that such an increase in the threshold leads to an
increase in the false alarm probability, and the attacker can still
evade detection by adding an arbitrarily small fraction of chaff
traffic. Indeed, a fixed number of chaff packets can evade the
detection for an attacking traffic of arbitrary size. In a recent
paper [10], Zhanget al. propose packet matching schemes to
detect stepping-stone traffic with bounded delay perturbation
and/or chaff. For a stepping-stone traffic with bounded delay
but without chaff, they propose a detection strategy similar to
“DETECT-MATCH” [11], although the detection performance
on attacking traffic is not proved, and they do not have a
closed form characterization for the false alarm probability.
For stepping-stone traffic with both bounded delay and chaff,
they propose a matching strategy which can detect stepping-
stone traffic if the chaff is only inserted in the departing stream.

They prove that this strategy has exponentially decaying false
alarm probability for independent Poisson streams.

B. Summary of Results and Organization

In this paper, we consider the problem of detecting en-
crypted stepping-stone connections subject to the attacker’s
active modification. Our strategy does not use the content of
the traffic. Nor is synchronization or active traffic manipulation
required. We first consider detecting stepping-stone pairswith
bounded perturbation but no chaff, and then generalize our
detection schemes to handle chaff packets. We formulate
the problem of detecting stepping-stone connections as a
hypothesis testing of independent against correlated point
processes. For the traffic perturbation by the attacker, we
consider two types of constraints: (i) the host has bounded
memory; (ii) attacking packets have bounded delay. While the
bounded delay condition is a key in [2], [8]–[10], the bounded
memory constraint, to the best of our knowledge, has not been
addressed in the literature.

Under the bounded memory assumption, we develop a
linear complexity algorithm based on the maximum varia-
tion statistic. The intuition behind this algorithm is thatthe
maximum variation statistic stays bounded for relayed traffic
going through a stepping-stone host with limited memory,
but diverges unboundedly for independent traffic. Under the
bounded delay assumption, we derive a timing-based algo-
rithm based on the idea of matching arriving packets with
departing packets. By restricting the search to maps that
preserve the order of packets, we reduce the complexity from
exponential to linear. We prove that both of the proposed
algorithms have no miss for their targeting stepping-stone
pairs, and exponentially decaying false alarm probabilities
for independent Poisson processes. We then generalize the
attacker model to allow the presence of chaff. We develop two
new algorithms for stepping-stone pairs with both bounded
memory or bounded delay perturbation and chaff. The idea is
to declare a stream pair normal if the optimal chaff-inserting
algorithm would have had to insert a certain fraction of chaff
packets to embed attacking packets into the given stream pair.
Therefore, the attacker will have to insert at least the same
fraction of chaff to evade detection. The threshold on the
fraction of chaff is chosen to be as large as possible to make
the attacker’s evasion difficult, but also small enough so that
the false alarm probability will go to zero as the traffic size
increases.

We next compare the performance of existing algorithms
and the proposed algorithms. To make the comparison, we
analyze the performance of algorithms DA and DAC proposed
by Blum et al. [8]. The original analysis by Blumet al.
focuses on sample size, whereas our result is on error exponent
analysis. Among algorithms dealing with packet-conserving
transformations, we show that the proposed variation-based
algorithm has larger false alarm error exponent than the algo-
rithm DA by Blum et al. , and it also outperforms the proposed
matching-based algorithm when the traffic is sufficiently fast.
For slow traffic, however, the matching-based algorithm canbe
much better. For algorithms dealing with chaff, we compare
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our algorithms with existing algorithms by Blumet al. and
Zhanget al. [8], [10]. We show that, in contrast to the constant
chaff tolerance of the algorithms by Blumet al. and Zhanget
al. , our algorithms are capable of handling an amount of chaff
growing linearly with the size of the attacking traffic. The price
we paid is that the false alarm probabilities of our algorithms
no longer have exponentially decaying upper bounds, but are
only guaranteed to be vanishing asymptotically.

The rest of the paper is organized as follows. Section
II defines the detection problem. Section III presents a
variation-based algorithm and its performance analysis under
the bounded memory assumption. Section IV develops a
timing-based algorithm for stepping-stone pairs with bounded
delay and analyzes its performance. In Section V, we present
robust algorithms for stepping-stone pairs with both bounded
perturbation and chaff, and analyze their robustness and
asymptotic false alarm probabilities. Section VI comparesthe
performance of the proposed algorithms with several existing
algorithms for detecting stepping-stone pairs with or without
chaff, respectively. Section VII gives simulation resultson both
synthetic data and internet traces to verify the performance.
The paper is concluded by Section VIII with a few remarks
on the application of such detection schemes.

II. T HE PROBLEM STATEMENT

Let the packet arrivals on streami be represented by a point
process

Si = (. . . , s
(i)
−1, s

(i)
0 , s

(i)
1 , s

(i)
2 , . . .), i = 1, 2

where s
(i)
k (k ≥ 1) is the kth arrival epoch of streami (If

k ≤ 0, it is the(−k+1)th packet before the monitor starts). Let
Ti = {. . . , s

(i)
−1, s

(i)
0 , s

(i)
1 , s

(i)
2 , . . .} be the set of the elements

in Si. Let S1 be the incoming andS2 the outgoing streams at a
particular gateway node. Normally,S1 andS2 are independent.
If, however,S2 is a relay ofS1 in a stepping-stone attack, then
there will be strong correlation between them as formalized
in the following definition.

Definition 2.1: A pair of streams(S1, S2) is anormal pair
if S1 andS2 are independent point processes. It is astepping-
stone pair if there exists a bijectiong : T1 → T2 such that
g(s) − s ≥ 0 for any s ∈ T1.

The bijectiong is a mapping between the arrival and the
departure times of packets, allowing permutation of packets
during the relay. The condition thatg is a bijection imposes a
packet-conservationconstraint,i.e., no packets are generated
or dropped at the stepping stones. The conditiong(s)− s ≥ 0
is the causalityconstraint, which means that a packet cannot
leave the host before it arrives.

If only a subsequence ofSi (i = 1, 2) consists of attacking
packets, then only that part is constrained, as stated in the
following definition.

Definition 2.2: A pair of streams(S1, S2) is a stepping-
stone pair with chaffif it is the superposition of a stepping-
stone pair(S′

1, S′
2) and a pair of chaff streams(C1, C2) (

either or both of them can be empty).
StreamCi (i = 1, 2) consists of dummy packets called

chaff which do not need to arrive at the victim. Chaff packets

can be generated or dropped at any stepping stone hosts
without affecting the attack. They are artificially inserted by
the attacker to evade detection.

We want to test the following binary hypotheses:

H0 : (S1, S2) is a normal pair,

H1 : (S1, S2) is a stepping-stone pair (with or without chaff),

by observing(s(i)
1 , s

(i)
2 , s

(i)
3 , . . .)(i = 1, 2). This is a nonpara-

metric hypothesis testing problem; no specific assumptionson
the statistical properties of(S1, S2) are imposed at this point.
Additional assumptions on normal and stepping-stone pairs
will be introduced later when detailed detection algorithms
and analysis are presented.

III. D ETECTING STEPPING-STONEPAIRS WITH BOUNDED

MEMORY

We consider the problem of detecting stepping-stone pairs
when the host has bounded memory. Specifically, assume that
the host’s memory can hold at mostM packets2. Then the
difference between the number of incoming and the number
of outgoing packets during any period can never exceedM .
We use this property to define such stepping-stone pairs as
follows.

Definition 3.1: A pair of streams(S1, S2) is a stepping-
stone pair with bounded memoryM if it is a stepping-stone
pair, and for anya ≤ b,

∣

∣|{s ∈ T1 : s ∈ [a, b]}| − |{s ∈ T2 : s ∈ [a, b]}|
∣

∣ ≤ M.
To detect stepping-stone pairs with bounded memory, we

derive a counting-based algorithm—DETECT-MAXIMUM-
VARIATION (DMV).

Before presenting the algorithm, we need to introduce some
definitions. Merge(s

(1)
1 , s

(1)
2 , . . .) and (s

(2)
1 , s

(2)
2 , . . .) and

order the union as(s1, s2, s3, . . .). Let Ni(w) (i = 1, 2) be
the number of packets monitored inSi when the total number
of monitored packets isw, i.e.,

Ni(w)
∆
=

w
∑

j=1

I{sj∈Si},

whereI{·} is the indicator function. Sample paths ofN1(w)
andN2(w) are illustrated in Fig. 2. (a).

Define the cumulative difference betweenS1 andS2 as

d(w)
∆
=N1(w) − N2(w),

and let the maximum variation ofd(w) be

v(w)
∆
= max

1≤i≤w
d(i) − min

1≤i≤w
d(i).

See Fig. 2. (b) for an illustration ofd(w) andv(w).
If the stepping-stone host has bounded memory, then the

sample path ofd(w) will have bounded variation. Algorithm
DMV distinguishes normal and stepping-stone pairs by look-
ing at the maximum variation. Specifically, note that

v(w) = max
1≤i≤j≤w

|d(j) − d(i)|

= max
1≤i≤j≤w

|(N1(j) − N1(i)) − (N2(j) − N2(i))|,

2Similar requirement on buffer size has been considered by Giles and Hajek
in the context of timing channels [12].
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(a) (b)
w w0

0

d(w)

N1(w)

N2(w)

v(w)

Fig. 2. (a) the cumulative countsNi(w) (i = 1, 2); (b) the cumulative
differenced(w) and the maximum variationv(w).

where|(N1(j)−N1(i))−(N2(j)−N2(i))| is the difference in
the number of incoming and the number of outgoing packets
between theith and thejth arrivals. For stepping-stone pairs
with bounded memoryM , this difference is bounded byM ,
i.e., v(w) ≤ M, ∀w. Using the maximum variation statistics,
we define the following detector3:

δDMV(S1, S2, M, n) =

{

1 if v(n) ≤ M,
0 o.w.

The detector can be implemented by the algorithm DMV
shown in Table I.

TABLE I

DETECT-MAXIMUM-VARIATION (DMV).

DETECT-MAXIMUM-VARIATION (S1, S2, M, n):

dmax = dmin = 0;
for w = 1 : n

d(w) =

{

d(w − 1) + 1 if sw ∈ T1

d(w − 1) − 1 if sw ∈ T2
;

dmax = max(dmax, d(w));
dmin = min(dmin, d(w));
if dmax − dmin > M return NORMAL;

end
return ATTACK;

Algorithm DMV has complexityO(n) and uses only con-
stant memory (O(log M), to be precise4). Any stepping-stone
pair with bounded memoryM will be detected aftern packets,
i.e., miss is totally avoided. We only need to be concerned
about the false alarm probability, and it is bounded as follows.

Theorem 3.2:If normal pairs consist of independent Pois-
son processes, then the false alarm probability of DMV is
bounded by

PF (δDMV) ≤
(M + 1)

1 − ρ
ρn,

where ρ = cos π
M+2 . Furthermore, if the two Poisson pro-

cesses have the same rates, then the upper bound is tight with
respect to the error exponent,i.e.,

lim
n→∞

−
1

n
log PF (δDMV) = − log ρ.

Proof: See Appendix.

Remarks: For a given false alarm probabilityα, we can
guarantee that the false alarm probability of DMV is bounded

3We use the convention that the detector gives the value1 for H1 and0
for H0.

4The log in this paper is always natural logarithm.

by α by making its upper bound equal toα, yielding a sample
size

n =
log α(1 − ρ) − log (M + 1)

log ρ
(1)

which grows asO(M2 log M
α ) as M → ∞ and α → 0. For

example, ifM = 20, (1) says that using1196 packets will
guarantee a false alarm probability no greater than1%.

IV. D ETECTING STEPPING-STONEPAIRS WITH BOUNDED

DELAY

Many stepping-stone attacks are interactive. In interactive
stepping-stone attacks, the attacker waits for the feedback of
the previous commands and sends new commands based on
the feedback. Therefore, the delay in such interactive attacks
is usually bounded. In this section, we consider detecting
stepping-stone pairs with bounded delay, which is defined as
follows.

Definition 4.1: A pair of streams(S1, S2) is a stepping-
stone pair with bounded delay∆ if it is a stepping-stone pair,
andg(s) − s ≤ ∆ for any s ∈ T1.

Our definition of stepping-stone pair with bounded delay
is the same as the one proposed by Donohoet al. in [2].
The bounded delay model is fundamentally different from the
bounded memory model considered in Section III. It has been
shown that the two models have very different scaling behavior
on the mutual information between the incoming stream and
the outgoing stream [12]. In Section VI-A.2, we will show that
they also have difference detection performance with respect
to changes in traffic rates.

We derive a timing-based detection algorithm DETECT-
MATCH (DM) to detect such stepping-stone pairs. Algorithm
DM matches the firstn packets inS1 with their possible
relays inS2, subject to the maximum delay∆. For stepping-
stone pairs with bounded delay, there must be at least one
way of matching that satisfies causality and bounded de-
lay constraints—matching the arrivals of packets with the
departures of the same packets. For normal pairs, however,
such matching may not be possible. Algorithm DM uses this
property to detect stepping-stone pairs with bounded delay.

A few definitions are needed to present the algorithm.
Definehi(t) to be the index of the first arrival epoch inSi on
or after timet, i.e.,

hi(t)
∆
= inf{k : s

(i)
k ≥ t}.

For example,s(2)
h2(∆) is the first epoch inS2 on or after time

∆ (see Fig. 4).
Definition 4.2: A matchbetweenT1 andT2 is a collection

of pairs {(sk, s′k)}k∈Z where sk ∈ T1 and s′k ∈ T2, such
that si 6= sj and s′i 6= s′j for any i 6= j. A length-n match
{(sk, s′k)}n

k=1 is valid if 0 ≤ s′k−sk ≤ ∆ for all k = 1, . . . , n.
A match{(sk, s′k)}k∈Z is order-preservingif sk ≤ sl implies
s′k ≤ s′l for all k, l.

From this definition, it is easy to see that a stepping-stone
pair with bounded delay must have at least one valid match.
Thus one way to detect such stepping-stone pairs is by looking
for a valid match between the arrivals and the departures. The



T. HE AND L. TONG 5

complexity of this approach is, however, exponential5. Instead
of searching for any valid match, we prove that it suffices to
limit our search to order-preserving, valid matches, as stated
in the following proposition.

Proposition 4.3: If {(sk, s′k)}n
k=1 is a valid match, then

there exists a valid match between{sk}
n
k=1 and{s′k}

n
k=1 that

is order-preserving.
Proof:

As illustrated in Fig. 3, if{(s1, s′1), (s2, s′2)} is a valid
match which does not preserve the order of packets, we can
switch the match to be{(s1, s′2), (s2, s′1)} such that it is still
valid but the order is preserved. By this idea, we can reorder
{s′k}

n
k=1 into s′′1 ≤ s′′2 ≤ . . . ≤ s′′n. The match{(sk, s′′k)}n

k=1

is valid and order-preserving.

S1

S2

s1 s2

s′2 s′1
Fig. 3. More than one valid match: both the solid and the dottedlines are
valid matches.

By Proposition 4.3, it suffices to consider only the matches
that preserve the order of packets, and the problem is reduced
to finding the departure that corresponds to the first arrival.
With this idea in mind, we develop the following detector:

δDM(S1, S2, ∆, n)

=











1 if ∃m ∈ [h2(s
(1)
1 ), h2(∆)] s.t. the match

{(s
(1)
k , s

(2)
k+m−1)}

n
k=1 is valid,

0 o.w.

which is implemented by the algorithm DM as shown in
Table II.

TABLE II

DETECT-MATCH (DM).

DETECT-MATCH(S1, S2, ∆, n):

for m = h2(s
(1)
1 ), . . . , h2(∆)

for k = 1, . . . , n

if s
(2)
k+m−1 − s

(1)
k

< 0 or s
(2)
k+m−1 − s

(1)
k

> ∆ break;
end
if k == n + 1 return ATTACK;

end
return NORMAL;

To analyze the complexity of DM, note that the inner loop
hasO(n) operations, and the number of such loops is at most
1 plus the number of arrivals in the interval[s

(1)
1 , ∆) in S2.

Thus the complexity of DM is at most

n((# arrivals in [s
(1)
1 , ∆) in S2) + 1).

5For example, if there are at mostL departures during time∆, then the
exhaustive search for a length-n valid match has complexityO(Ln).

Now we analyze the performance of DM. We will show
that any stepping-stone pairs with bounded delay∆ will
be detected byδDM, i.e., there is no miss. We have shown
by Proposition 4.3 that a stepping-stone pair with bounded
delay∆ must have an order-preserving, valid match, and the
problem of finding a valid match is reduced to a simpler
problem of findings

(2)
m (i.e., the match ofs(1)

1 ). There are
some constraints on the range ofs

(2)
m . The first constraint is

causality, which requiress(2)
m ≥ s

(1)
1 . The second is bounded

delay. Since the monitor may not have started recording from
the beginning of the streams, there may be packets sent before
the monitor starts and received afterwards. This phenomenon,
however, can only occur during time[0, ∆) because of the
bounded delay assumption. Thus for any stepping-stone pair,
s
(2)
h2(∆) has to be the relay ofs(1)

k for somek ≥ 1. As a result,

m has to satisfyh2(s
(1)
1 ) ≤ m ≤ h2(∆), as shown in Fig. 4.

Therefore, DM must be able to return “ATTACK”.

S1

S2

s
(1)
1

∆ s
(2)
h2(∆)s

(2)

h2(s
(1)
1 )

Fig. 4. The match ofs(1)
1 : there are three possible candidates.

Next, we show that for independent Poisson normal pairs,
the false alarm probability goes to zero exponentially, as stated
in the following theorem.

Theorem 4.4:If S1 and S2 are independent Poisson pro-
cesses of ratesλ1 and λ2, respectively, then the false alarm
probability of DM is bounded by

PF (δDM) ≤ γn−1,

whereγ = 1 − e−λ1λ2∆/(λ1+λ2).

Proof: See Appendix.

Remark:Theorem 4.4 gives a few insights into the prob-
lem. Sinceγ ≤ 1 − e−min(λ1, λ2)∆, we haveγ → 0 if
min(λ1, λ2) → 0, i.e., DM almost never falsely accuses slow
independent Poisson traffic.

Intuitively, it is easier to match two processes of equal rates.
This intuition is strengthened by Theorem 4.4 becauseγ ≤
1 − e−λ∆/2, where λ = max(λ1, λ2), and thus the upper
bound for Poisson traffic of equal rates is larger.

Similar to DMV, we can also estimate the sample size
required by DM to achieve a given false alarm probability
α by calculating the valuen that makes the upper bound in
Theorem 4.4 equal toα, i.e.,

n = log α − log γ + 1.

For example, ifλ1 = λ2 = 1, and∆ = 10, then a match length
682 suffices to guarantee a false alarm probability bounded by
1%. Note that for this match length, DM needs up to2n +
λ2∆ = 1374 packets on the average to find a valid match.
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V. DETECTING STEPPING-STONEPAIRS IN CHAFF

So far we have not considered how to detect stepping-stone
traffic in chaff. In practice, the attacker usually combinestraffic
perturbation with the insertion of chaff to evade detection. In
this section, we address how to detect bounded memory or
bounded delay stepping-stone pairs in the presence of chaff.
The key is to allow a limited violation of constraints so that
the detection scheme can still distinguish stepping-stonepairs
and normal pairs while tolerating certain amount of chaff.

A. The Bounded Memory Case

As explained in Section III, the maximum variation of
stepping-stone pairs with bounded memoryM is always
bounded byM . After inserting chaff, the attacker can make the
maximum variation larger thanM . But with a limited number
of chaff packets, the maximum variation will still be much less
than that of independent processes. Based on this idea, we pro-
pose an algorithm called “DETECT-BOUNDED-MEMORY-
CHAFF” (DBMC) presented in Table III. Algorithm DBMC
has complexityO(n).

TABLE III

DETECT-BOUNDED-MEMORY-CHAFF (DBMC).

DETECT-BOUNDED-MEMORY-CHAFF(S1, S2, M, n):

S = merge(S1, S2);
d = dmax = dmin = 0;
C = 0;
for w = 1 : n

if (dmax−dmin = M ) and ((d = dmax, sw ∈ T1) or (d = dmin, sw ∈ T2))
C = C + 1;

else

d =

{

d + 1 if sw ∈ T1,
d − 1 if sw ∈ T2;

dmax = max(dmax, d);
dmin = min(dmin, d);

end
end

return

{

ATTACK if C
n

< 1
M+1

,

NORMAL o.w.;

If (S1, S2) is a pair of stepping-stone streams passing
through a host with memory sizeM , the counterC in Table III
counts the number of times the memory would have been
underflowed (d = dmin, sw ∈ T2) or overflowed (d = dmax,
sw ∈ T1) if chaff had not been inserted. Algorithm DBMC
makes detection if the fraction(C/n) is suspiciously small.
Since no attacking packet can violate the memory constraint
(only chaff packets can), the number of chaff packets is at least
C. Therefore, to evade DBMC, the attacker has to insert at
leastn/(M+1) chaff packets in everyn packets. We conclude
that DBMC is robust against up to1/(M+1) fraction of chaff.

It is difficult to characterize the false alarm probability of
DBMC in closed form for finiten. As n increases, however,
it can be shown that the false alarm probability goes to zero
if normal pairs consist of independent Poisson processes; see
[13].

B. The Bounded Delay Case

For stepping-stone pairs with bounded delay, we can al-
ways match the incoming packets with the outgoing packets
(perhaps except for the first few outgoing packets) so that all
matched pairs satisfy causality and bounded delay. When chaff
is inserted, we may not be able to match all the packets. If the
attacker does not insert enough chaff, however, the attacking
traffic will have much more matched packets than normal
traffic. The algorithm is presented in Table IV. Algorithm
DBDC has complexityO(n).

TABLE IV

DETECT-BOUNDED-DELAY-CHAFF (DBDC).

DETECT-BOUNDED-DELAY-CHAFF(S1, S2, ∆, n, λ):

i = j = 1;
C = 0;
while i + j ≤ n

if s
(2)
j − s

(1)
i < 0

C = C + 1; j = j + 1;
else if s(2)

j − s
(1)
i > ∆

C = C + 1; i = i + 1;
else

i = i + 1; j = j + 1;
end

end
end

return

{

ATTACK if C
n

< 1
1+λ∆

,

NORMAL o.w.;

Algorithm DBDC is inspired by an optimal chaff-inserting
algorithm called “BOUNDED-GREEDY-MATCH” (BGM)
proposed by Blumet al. [8]. For every arrival at timet, BGM
matches it with the first unmatched departure in[t, t + ∆]; if
there is no departure in this interval or all the departures have
been matched, BGM inserts a chaff packet at arrivalt; BGM
also inserts chaff at all the departures which have no arrivals
to match to. Algorithm DBDC uses a counterC to record the
number of chaff packets which would have been inserted had
BGM been used, and reports alarm if the fraction(C/n) is
smaller than a predetermined value. It is shown in [8] that
BGM inserts the minimum chaff to embed a stepping-stone
pair with bounded delay∆ into arbitrary point processes6.
If the attacker wants to send attacking packets through a
host with delays bounded by∆, he needs to insert at least
n/(1+λ∆) chaff packets in everyn packets to evade DBDC.
Therefore, DBDC is robust against up to1/(1 +λ∆) fraction
of chaff.

It can be shown (see [13]) that, for independent Poisson
processes of rates bounded byλ, the false alarm probability
of DBDC goes to zero asn goes to infinity. The valueλ is a
design parameter representing the tradeoff between robustness
and false alarm probability. A smallerλ would allow DBDC
to tolerate more chaff, but a largerλ would enable DBDC to
have vanishing false alarm probability for a wider range of
normal traffic.

6The original proof in [8] is for independent binomial processes, but it
holds for arbitrary processes.
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VI. COMPARING THE ALGORITHMS

We have introduced techniques for detecting stepping-stone
pairs with various constrained perturbations or a combination
of perturbation and chaff. In practice, stepping-stone pairs may
vary in what conditions they satisfy depending on the nature
of the attacks. For certain types of stepping-stone pairs, more
than one detection algorithm are applicable. The question is
how to compare the performance of different algorithms in
detecting such stepping-stone pairs.

A. Algorithms for Packet-conserving Transformations

1) DMV vs. DA: Blum et al. [8] consider the detection of
stepping-stone pairs that satisfy both the bounded delay and
the bounded peak rate conditions. The underlying idea is that
in interactive stepping-stone attacks, usually not only isthe
delay bounded, but the peak rate at which the attacker can issue
packets is also bounded because he needs time to process the
feedback and type new commands. Specifically, Blumet al.
consider stepping-stone pairs with bounded delay∆, and the
maximum number of arrivals within timet is L(t). The second
condition, referred to as the bounded peak rate condition, is
formalized in the following definition:

Definition 6.1: A stepping-stone pair(S1, S2) hasbounded
peak rateL(·) if sup

r
|{s ∈ T1 : s ∈ [r, r + t]}| ≤ L(t) for all

t ≥ 0.
Let M

∆
=L(∆) be the largest number of packets the attacker

can send during the maximum delay∆. Note that stepping-
stone pairs with bounded delay and bounded peak rate always
use bounded memory, as stated in the following proposition:

Proposition 6.2:DefineNi(a, b) be the number of packets
on Si in an interval [a, b] (a ≤ b). For a stepping-stone
pair with bounded delay and bounded peak rate, if∆ is the
maximum delay, andM is the maximum number of packets
that the attacker can send within time∆, then

|N1(a, b) − N2(a, b)| ≤ M, ∀a ≤ b,

i.e., the stepping-stone pair uses bounded memoryM .

Proof: See Appendix.

By Proposition 6.2, we conclude that stepping-stone pairs
with bounded delay and bounded peak rate are also stepping-
stone pairs with bounded delay and bounded memory. Note
that the inverse is not true,i.e., bounded delay and bounded
memory do not imply bounded peak rate.

Blum et al. in [8] propose a detection algorithm called
“DETECT-ATTACKS” (DA) to detect stepping-stone pairs
with bounded delay and bounded peak rate. Algorithm DA
divides samples inS1 ∪ S2 into groups of size2(M + 1)2.
For each group, it computes the cumulative difference in that
group. Then DA returns “NORMAL” if there exists a group
with cumulative difference greater thanM . The detector using
DA is defined below:

δDA(S1, S2, M, n) =

n/(2(M+1)2)
∏

k=1

δ
(k)
DA (S1, S2, M),

where

δ
(k)
DA (S1, S2, M) =

{

1 if max
1≤w≤2(M+1)2

|d(k)(w)| ≤ M,

0 o.w.,

where d(k)(w) (w = 1, . . . , 2(M + 1)2) is the cumulative
difference for packets in thekth group.

Blum et al. show that DA has no miss for stepping-stone
pairs with bounded delay and bounded peak rate. Moreover,
they prove that2(M + 1)2 log 1

α packets are needed to guar-
antee a false alarm probability no more thanα.

We, however, are interested in the asymptotic behavior of
DA in terms of error exponent. Note that [8] does not compute
the error exponent for the false alarm probability of DA. To
obtain its error exponent, we introduce the following lemma:

Lemma 6.3:For independent Poisson normal pairs,

Pr{ max
i∈{1,..., m}

|d(i)| ≤ M} ≤
σm

1 − σ
,

and whenm is large enough,

Pr{ max
i∈{1,..., m}

|d(i)| ≤ M} ≥ Kσm,

whereσ = cos π
2(M+1) , andK =

sin π
2(M+1)

2(M+1)(1−σ) .

Proof: See Appendix.

If M is large, we can apply Lemma 6.3 to each group of
2(M + 1)2 samples to obtain the upper and lower bounds on
the false alarm probability of that group. Note that in [8] itis
proved that the single group false alarm probability is upper
bounded by1

2 . Hence the false alarm probability of one group
is upper bounded by

min

(

σ2(M+1)2

1 − σ
,

1

2

)

=

{

2+
√

2
16 if M = 1,

1
2 if M ≥ 2.

Algorithm DA has a false alarm if all then/
[

2(M + 1)2
]

groups have false alarms7, so for largeM , the total false alarm
probability satisfies

(

K
1

2(M+1)2 σ
)n

≤ PF (δDA) ≤

(

1

2

)
n

2(M+1)2

. (2)

Therefore, for largeM , the false-alarm error exponent of DA
is at most− log (K

1
2(M+1)2 σ) and at leastlog 2/(2(M +1)2).

We want to compare DA with DMV in detecting stepping-
stone pairs with bounded delay and bounded peak rate. By
Proposition 6.2, we have shown that such stepping-stone pairs
satisfy the bounded memory condition. Thus DMV also has
no miss. We now compare their false alarm probabilities.

We first point out that DMV always outperforms DA for
any realization. One reason is thatv(w) ≥ max

1≤i≤w
|d(i)| (see

Fig. 5), and another is that DA restarts computation from
d(k)(0) = 0 at the beginning of each group, whereas DMV
keeps increasing the maximum variationv(w) across groups.
Therefore, for every realization, if DMV has a false alarm,
DA must have a false alarm too.

7In DA, the sample sizen is always a multiple of2(M + 1)2.
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replacements

w

d(w)

0

max
1≤i≤w

|d(i)|

v(w)

Fig. 5. The statistics used by DA and DMV.

Next we compare their false alarm probabilities. In partic-
ular, we are interested in whose false alarm probability hasa
larger error exponent. From Theorem 3.2 and (2), we see that
the false-alarm error exponent of DMV is− log ρ whereas that
of DA is at most− log (K

1
2(M+1)2 σ). By Taylor expansion of

the error exponents, we have that asM → ∞,

− log ρ =
π2

2(M + 2)2
+ o

(

1

M2

)

,

− log (K
1

2(M+1)2 σ) =
π2

4 + log π
2

2(M + 1)2
+ o

(

1

M2

)

.

Therefore, for largeM , the false-alarm error exponent of
DMV is at least3.38 times larger than that of DA.

2) DM vs. DMV: For stepping-stone pairs with both
bounded memory and bounded delay, both DMV and DM
can be used. We are interested in which algorithm performs
better; particularly, we want to compare their asymptotic
performance. Note that we need to give DMV and DM the
same sample size to make a fair comparison. If we define
sample size as the total number of monitored packets in
both the incoming and the outgoing streams, then the sample
size required by DM to find a length-n match is random; it
is at most(# departures in[0, ∆)) + 2n. For largen, the
sample size is approximately2n. Hence we should compare
δDMV(S1, S2, M, 2n) with δDM(S1, S2, ∆, n).

Theorems 3.2 and 4.4 suggest that for Poisson processes of
equal ratesλ, DM is preferable ifγ ≤ ρ2, i.e.,

λ ≤ −
4

∆
log

(

sin
π

M + 2

)

. (3)

Otherwise, DMV is preferable. For example, forM = 40,
and ∆ = 10, the threshold isλ ≤ 1.0375. This threshold
phenomenon has an intuitive explanation. Algorithm DMV
only uses the rank statistics, so it does not depend on the
rate of the traffic; on the other hand, DM performs better on
slower traffic and worse on faster traffic. The reason for the
latter is thatλ → 0 means the inter-arrival time→ ∞, which
is equivalent to having finite inter-arrival time but∆ → 0,
i.e., for extremely slow traffic, almost perfect synchrony is
required to raise an alarm, and thus it is unlikely for DM to
have false alarms. Similarly, ifλ → ∞, the inter-arrival time
→ 0; equivalently, it means having non-zero inter-arrival time
but ∆ → ∞, i.e., the delay constraint is essentially removed,
which causes DM to always raise alarms. Therefore, when the
traffic is sufficiently slow, DM outperforms DMV, and other-
wise DMV performs better than DM. The comparison suggests

that the bounded memory condition is more informative than
the bounded delay condition in detecting stepping-stone traffic
for λ∆ > 4 log ((M + 2)/π). Since the right hand side merely
grows aslog M , the memory bound can be advantageous even
for modest rate and large memory. For example, forM = 106

packets,∆ = 10 seconds, we only needλ > 5.1 packets
per second for the bound memory condition to provide better
detection performance.

B. Algorithms Dealing with Chaff

In Section I-A, we have mentioned several existing detection
schemes dealing with chaff evasion ( [8]–[10]). We now
compare these schemes to our proposed algorithms DBMC
and DBDC.

1) DBMC vs. DAC: Detecting stepping-stone traffic with
both bounded memory perturbation and chaff has not been
addressed in the literature to the best of our knowledge.
In [8], Blum et al. propose an algorithm called “DETECT-
ATTACKS-CHAFF” (DAC) for detecting a more restricted
class of stepping-stone traffic with bounded delay, bounded
peak rate, and chaff. Algorithm DAC works exactly the same
as DA except that the group size is increased from2(M +1)2

to 8(M + 1)2, and the threshold is increased fromM to
2M . It is shown in [8] that DAC is robust against up toM
chaff packets in every8(M +1)2 packets, and for independent
Poisson traffic, the false alarm probability of DAC is bounded
by 2−n/(8(M+1)2).

By Proposition 6.2, DBMC is also applicable to the
stepping-stone traffic Blumet al. consider for DAC. We
compare their performance in terms of robustness and false
alarm probability. As stated in [8], the attacker can evade DAC
by insertingM + 1 chaff packets in a group of8(M + 1)2

packets. As the traffic size increases, the fraction of chaff
needed to evade DAC becomes negligible. Algorithm DBMC,
as argued in Section V-A, is robust against a number of chaff
packets constituting1/(M + 1) fraction the total stepping-
stone traffic. The drawback of DBMC is that its false alarm
probability is only guaranteed asymptotically, whereas DAC
has exponentially decaying false alarm probability.

2) DBDC vs. S-III [10]: For detecting stepping-stone traffic
with both bounded delay and chaff, Penget al. [9] and Zhang
et al. [10] both provide partial solutions for the special case
when chaff only appears in the outgoing traffic. Penget al.
[9] use a watermarking scheme which requires the detector
to actively manipulate the traffic, and thus falls outside the
scope of this paper. Zhanget al. [10] propose a scheme
called “S-III” which matches every arrival atti with the first
unmatched departure in[ti, ti + ∆], and makes detection if
all the arrivals are successfully matched8. Scheme S-III is
proved to have exponentially decaying false alarm probability
for independent Poisson processes. If the attacker can insert
chaff in the incoming traffic, however, one chaff packet is
enough to defeat S-III. Algorithm DBDC, on the other hand,

8In [10], there is also a variation of S-III called “S-IV”, which makes
decision by comparing the minimum deviation among all the valid matches
with a threshold. The false alarm probability of S-IV is no larger than that of
S-III, but S-IV is also easy to be defeated by chaff in the incoming traffic.
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is applicable to cases when both the incoming and outgoing
streams are subject to chaff insertion. Furthermore, DBDC
is robust against chaff traffic of non-zero rate. Its weakness,
similar to DBMC, is that it does not have a guaranteed false
alarm probability for finite sample size.

VII. N UMERICAL RESULTS

We simulate our algorithms on both synthetic data and
traces to verify their performance. For synthetic data, we use
independent Poisson processes of equal rates as our normal
pairs; the goal of using synthetic data is to validate our
analysis. For real data, we use the traces LBL-PKT-4, which
contains an hour’s worth of all wide-area traffic between the
Lawrence Berkeley Laboratory and the rest of the world. The
traces were made by Paxson and were first used in his paper
[14].

A. Simulations on Synthetic Data

In this section, we simulate DA, DMV, and DM on synthetic
independent Poisson processes to verify their false alarm prob-
abilities. We letM = 40 packets,∆ = 10 seconds, and vary
the sample size between2500 and 5000 packets (including
both incoming and outgoing packets)9. The performance of
DA and DMV does not depend on the traffic rate because
they only rely on the relative order of packets. For DM, rate
does play a significant role and will be specified when it is
necessary.

We have shown the advantage of DMV over DA and have
quantified their difference in terms of error exponent asM →
∞ in Section VI-A.1. We now show how their performance
compares for finiteM . In Fig. 6, we plot the simulated false
alarm probabilities of DMV and DA, together with the upper
bound onPF (δDMV) from Theorem 3.2 and the asymptotic
upper and lower bounds onPF (δDA) from (2). Simulation
shows that the asymptotic bounds in (2) are valid even for
relatively smallM (M = 40). Furthermore, it confirms our
claim that the false alarm probability of DMV decays much
faster than that of DA.

We simulate DM for different traffic rates (λ =
3, 3.5, 4, 4.5). The simulation results are plotted in Fig. 7.
The upper bounds in Theorem 4.4 for rates between3 and
4.5 are close to1; the actual false alarm probabilities obtained
from simulation are much lower. The plot shows that the upper
bound in Theorem 4.4 is not tight, but it correctly predicts the
fact thatPF (δDM) increases with the increase of traffic rate, as
argued in Section VI-A.2.

Furthermore, we make an overall comparison by plotting
the simulated false alarm probabilities of DA, DMV and DM
together in Fig. 8. From the plot it is clear that the comparison
between DM and DMV depends on the traffic rate. In our
simulation,M = 40, ∆ = 10, the threshold rate estimated
by (3) is about1.0375. The simulation verifies the existence
of such a threshold rate because the false alarm probability
of DM decays faster than that of DMV forλ = 3.5 and

9Note that since DA requires the sample size to be a multiple of2(M +
1)2 = 3362 packets, we extend the sample size for DA to6724.
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Fig. 6. PF (δDA), PF (δDMV ), and their bounds;M = 40 packets,100000
Monte Carlo runs.
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Fig. 7. PF (δDM) under various rates;∆ = 10 seconds,100000 Monte Carlo
runs.

slower forλ = 4.5. Note, however, that in the estimation of the
threshold rate we are conservative about DM. This is because
for DMV, Theorem 3.2 gives the exact error exponent, whereas
for DM, Theorem 4.4 only characterizes a lower bound on its
error exponent (which is shown to be not tight). Therefore,
we expect that the actual threshold rate is larger than the one
estimated by (3),e.g., in the simulation the threshold rate is
about4 .

B. Simulations on Traces

We extract134 flows from the TCP packets in LBL-PKT-4.
Each flow has at least1000 packets, and4 of them have at
least10000 packets. For the testing of false alarm probabilities,
we take all combinations of the134 flows, filter out the pairs
satisfying the definition of stepping-stone pairs with bounded
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Fig. 8. PF (δDA), PF (δDMV ), and PF (δDM); M = 40 packets,∆ = 10
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memory or bounded delay10, and treat the rest as normal pairs.
For the testing of miss probabilities, we introduce independent
timing perturbation and chaff into the4 flows with 10000
packets to generate independent copies of their stepping-stone
relays. To generate bounded delay perturbation, we add to
every packet a delay chosen independently and uniformly from
[0, ∆]. To generate bounded memory perturbation, we divide
packets into segments of sizeM/2, and randomly generate
M/2 relay packets in the(i + 1)th segment fori = 1, 2, . . .
11. Furthermore, we insertNc chaff packets in bothS1 andS2

according to uniform distributions on the range of the flows.
In this section, we letM = 20 packets,∆ = 5 seconds, and
Nc = 1000 packets. In DBDC, we also setλ = 2.6 packets
per second.

We first simulate the false alarm probabilities of DBMC,
DAC, DBDC, and S-III; see Fig. 9. The false alarm prob-
abilities of DBMC, DAC, and DBDC are comparable, and
they do not change much after sample size1000; the false
alarm probability of S-III, however, keeps decreasing after
1000 packets to a much smaller value. From the plot, we see
that the false alarm probabilities of DBMC, DAC, and DBDC
for the traces do not decay exponentially. It is possible that
the false alarm probability of S-III still decays exponentially,
but we do not have enough data in these traces to verify that.

We then simulate the miss probabilities of DBMC and DAC
on the long flows (of size10000) and their synthetic relays
(Fig. 10). For each of the4 long flows, we generate1000
independent relay flows by random segment generation and
uniform chaff insertion. Thus we totally have4000 stepping-
stone pairs with bounded memory in chaff. The simulation
shows that DBMC has much lower miss probability than DAC.

10The filtering is done by running DMV or DM on the entire flow pairs,
and excluding the pairs reported as “ATTACK”.

11The departures in the(i + 1)th segment can be viewed as relays of the
packets arriving in theith segment. It is easy to see that such perturbation
satisfies the bounded memory constraint.
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Fig. 9. PF (δDBMC), PF (δDAC), PF (δDBDC), andPF (δS-III) on LBL-PKT-4
(n is the joint sample size).

In fact, DBMC detects all the stepping-stone pairs in our
simulation, whereas DAC has up to27.58% miss by sample
size 22000. The plot also shows that the miss probability of
DAC increases with the increase of the average number of
chaff packets. This result conforms to our analysis because
the number of chaff packets that are needed to evade DBMC
is proportional to the traffic size, whereas DAC can be evaded
by a fixed number of chaff packets. Note that our robustness
claim about DBMC is conservative; DBMC is robust against
up to1/(M +1) ≈ 0.0476 fraction of chaff no matter how the
chaff packets are inserted. In the simulation, DBMC survives
0.1 fraction of chaff, which implies that the uniform chaff
insertion is not optimal for bounded memory stepping-stone
pairs.
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Fig. 10. PM (δDBMC) andPM (δDAC) (n is the joint sample size).

We next simulate the miss probabilities of DBDC and S-
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III; see Fig. 11. For each of the4 long flows, we generate
1000 independent relay flows by introducing independent
delays and chaff packets. The plot confirms that DBDC has
a much smaller miss probability than S-III; actually, in the
simulation, DBDC has no miss for almost all the sample
sizes12. This is expected because DBDC is robust against up
to a certain fraction of chaff packets no matter where they
are inserted, whereas S-III is vulnerable to the chaff insertion
into S1. We see that in the simulation DBDC successfully
handles0.1 fraction of chaff, which is larger than the fraction
1/(1 + λ∆) ≈ 0.0714 which DBDC is guaranteed to be
able to handle. Similar to the case of DBMC, this shows that
the uniform chaff insertion is not optimal for bounded delay
stepping-stone pairs, either. From Fig. 10 and Fig. 11, we see
that DAC is more robust to chaff than S-III.
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Fig. 11. PM (δDBDC) andPM (δS-III) (n is the joint sample size).

VIII. C ONCLUSION

In this paper, we develop techniques to detect encrypted
stepping-stone connections. These techniques can rule out
independent connection pairs and leave a much smaller num-
ber of suspicious connections for further examination. After
discovering all the stepping-stone connections, one can use
existing serialization methods to determine the intrusionpath
[15].

APPENDIX

Proof of Theorem 3.2 and Lemma 6.3

The proof is based on the theory of random walk. Let
{Xn}n≥0 be a simple random walk,i.e.,

X0 = 0, Xn = Z1 + Z2 + . . . + Zn, (n > 0)

12It is except for the sample size3000, where we have6 misses out of
4000 Monte Carlo runs.

where{Zi}i=1, 2,... are i.i.d. random variables taking value in
{−1, 0, 1}. Let p = Pr{Zi = 1}, q = Pr{Zi = −1}. Define
the hitting timeof −b or a (a, b ≥ 0) as

N−b, a = inf{n ≥ 1 : Xn = −b or a}. (4)

The following lemma is from [16]:
Lemma 8.1:

Pr{N−b, a = n} ≤
1

2

(

p

q

)a/2
1

sn−1
1

+
1

2

(

q

p

)b/2
1

sn−1
1

, (5)

wheres1 = 1

1−p−q+2(pq)
1
2 cos ( π

a+b )
. If a = b, then for large

n,

Pr{N−b, a = n} ≥
sin π

2a

2asn−1
1

. (6)

Moreover, there exist constantscv (v = 1, . . . , a + b− 1) and
sv (v = 2, . . . , a + b − 1) not depending onn, s.t.

Pr{N−b, a > n} =

a+b−1
∑

v=1

cv

sn
v

(7)

where|s1| ≤ |sv| (v = 2, . . . , a + b − 1).

Since

Pr{N−b, a > n} =
∞
∑

r=n+1

Pr{N−b, a = r},

(5,6) give upper and lower bounds onPr{N−b, a > n}.
For the proof of Theorem 3.2, note that for independent

Poisson processes, it is known thatd(w) is a simple random
walk. Define extreme valuesUn = max

i=0,..., n
d(i), Ln =

min
i=0,..., n

d(i). A false alarm occurs in DMV if and only if

Un−Ln < M +1. Note that the false alarm probability is the
largest ifd(w) is symmetric (i.e., p = q = 1

2 ). Then we have

PF (δDMV) = Pr{Un − Ln < M + 1}

= Pr{

M+1
⋃

a=1

{Un < a, Ln > −(M + 2 − a)}}

≤
M+1
∑

a=1

Pr{Un < a, Ln > −(M + 2 − a)} (8)

≤ (M + 1)
ρn

1 − ρ
, (9)

whereρ = cos π
M+2 . Here (8) is by union bound, and (9) is

by noticing

Pr{Un < a, Ln > −(M +2−a)} = Pr{N−(M+2−a), a > n},

and then applying (5) withp = q = 1
2 . Furthermore, by (7) it

is easy to see that

lim
n→∞

−
1

n
log PF (δDMV) = − log ρ.

For the proof of Lemma 6.3, note that

Pr{ max
i∈{1,..., n}

|d(i)| ≤ M} = Pr{N−(M+1), (M+1) > n}.

Applying (5, 6) with a = b = M + 1 and p = q = 1
2 gives

the desired result.
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Proof of Theorem 4.4

Given a match{(si, s′i)}i=1, 2,..., defineYi
∆
=s′i − si. Algo-

rithm DM has a false alarm if and only if there existss′1 s.t.the
order-preserving match{(si, s

′
i)}i=1,..., n satisfies0 ≤ Yi ≤ ∆

for all i = 1, . . . , n.
For i ≥ 2, define the interarrival times beUi

∆
=si − si−1,

andVi
∆
=s′i − s′i−1. Let Zi

∆
=Vi − Ui. Then

Yi = (s′i−1 − si−1) + (s′i − s′i−1)− (si − si−1) = Yi−1 + Zi.

Therefore, givenY1, {Yi}
∞
i=2 is a general random walk with

stepsZi’s. We know thatVi andUi are independent Exponen-
tial random variables with mean1/λ2 and1/λ1, respectively,
and thusZi’s are i.i.d. with distribution function

Pr{Zi ≤ z} = Pr{Vi − Ui ≤ z}

=

∫ ∞

max(0, −z)

pUi
(u) Pr{Vi ≤ u + z}du

=

{

1 − λ1

λ1+λ2
e−λ2z if z ≥ 0,

λ2

λ1+λ2
eλ1z if z < 0.

The probability density function (pdf) ofZi is

pZ(z) =

{

λ1λ2

λ1+λ2
e−λ2z if z ≥ 0,

λ1λ2

λ1+λ2
eλ1z if z < 0.

The false alarm probability satisfies

PF (δDM) = Pr{∃s′1, s.t. 0 ≤ Y n
1 ≤ ∆}

≤ max
y1∈[0, ∆]

Pr{0 ≤ Y n
2 ≤ ∆|Y1 = y1}.

Fix a y1 ∈ [0, ∆]. For n ≥ 2, define

pn(z)dz
∆
=Pr{Y n−1

2 ∈ [0, ∆], z < Yn < z + dz|Y1 = y1}.

Definep1(z) = δ(z−y1) (Dirac delta function). In [16] (page
53) it is shown that

pn(z) =

∫ ∆

0

pn−1(x)pZ(z − x)dx. (n = 2, 3, . . .)

Then we have

Pr{0 ≤ Y n
2 ≤ ∆|Y1 = y1} =

∫ ∆

0

pn(zn)dzn

=

∫ ∆

0

pn−1(zn−1)dzn−1

∫ ∆

0

pZ(zn − zn−1)dzn

=

∫ ∆

0

pZ(z2 − y1)dz2

∫ ∆

0

pZ(z3 − z2)dz3 · · ·

∫ ∆

0

pZ(zn − zn−1)dzn.

Let γ
∆
= max

t∈[0, ∆]

∫ ∆−t

−t
pZ(z)dz. Simple calculation yields that

γ = 1 − e−λ1λ2∆/(λ1+λ2). Then

Pr{0 ≤ Y n
2 ≤ ∆|Y1 = y1} ≤ γn−1.

Since this is true for ally1 ∈ [0, ∆], we havePF (δDM) ≤ γn−1.

Proof of Proposition 6.2

If b − a ≤ ∆, then

|N1(a, b) − N2(a, b)| ≤ max(N1(a, b), N2(a, b)) ≤ M.

For b− a > ∆, let N ′
1(a−∆, a) be the number of packets

that arrive in[a−∆, a) and departure aftera, andN ′′
1 (b−∆, b)

be the number of packets that arrive in(b−∆, b] and departure
beforeb. Then

N1(a, b) = N1(a, b − ∆) + N1(b − ∆, b),

N2(a, b) = N1(a, b − ∆) + N ′
1(a − ∆, a)

+N ′′
1 (b − ∆, b),

We have

N2(a, b) − N1(a, b) = N ′
1(a − ∆, a) + N ′′

1 (b − ∆, b)

−N1(b − ∆, b).

SinceN ′′
1 (b−∆, b) ≤ N1(b−∆, b) andN ′

1(a−∆, a) ≤ M ,
we have

N2(a, b) − N1(a, b) ≤ N ′
1(a − ∆, a) ≤ M.

SinceN ′
1(a−∆, a) ≥ 0, N ′′

1 (b−∆, b) ≥ 0 andN1(b−∆, b) ≤
M , we have

N2(a, b) − N1(a, b) ≥ −N1(b − ∆, b) ≥ −M.
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