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Abstract— Distributed detection of information flows by tim- Finite capacity

ing analysis is considered. Timing measurements are subjec

i . . i channel
to perturbations and the insertion of chaff noise. Moreover H T T
Sy

communications among distributed traffic sensors are subjet to
capacity constraints. With the assumption that the detectois co-
located at a point of measurement, the problem is formulatechs
a distributed hypothesis testing with side-information. The main
challenge is that there is no parametric model for the relaymng
of information flows. Under the assumption that the relaying of
flows is subject to bounded delays, distributed detection syems
are designed by converting a centralized detector to distduted
detectors under slot-based quantization. The proposed sisns
are evaluated both theoretically and numerically by the prgosed
performance measure as a function of the capacity in data
collection. Numerical evaluation shows that separately dggning
data compression and detection modules can achieve satisfary

overall performance. - :
. _ . . Fig. 1. In a wireless ad hoc network, eavesdroppers are ylgplm collect
Index Terms—Information flow, Distributed detection, Side-  rocesses of transmission epochs, denotedSpyi = 1, 2), from nodes

information, Chernoff-consistency. A and B, respectively. Then the eavesdropper Atsends measurements
compressed fron$; to B through a finite capacity channel, and a detector
at the eavesdropper & detects information flows througH and B based
on the received measurements &l

Consider a wireless ad hoc network illustrated in Fig. 1.

Given potential routes through node$ and B, we are o )
interested in knowing whether these routes are being ustay¥esdroppers, which implies that the raw measurements of

by eavesdropping the ongoing traffic. Each eavesdroppertiét avesdropper are perfectly known by the detectonregfe
equipped with an energy detector to record the transmissith@s the case diill side-information _ _ _
epochs of the node of interest. Assume negligible measureme APPlications of this problem include intrusion detection
error. Then one of the eavesdroppers.,the one at nodel and network monitoring in wireless ad hoc networks such as
reports the (compressed) measurements through a channdl!6fless sensor networks.
Iimited ca_pacity to the other eavesdropper, vyhere a deteci0 Related Work
will combine the measurements to make decisions.

This is a problem of detecting information flows by timinqn

analysis [1]. The advantage of timing analysis is that thamestone attacks (see [2]). Since Zhang and Paxson [3] first

surements are easy to obtain because of the shared mediyim, , timing-based approach to stepping-stone detedtien
? )

and the detection is applicable even if _aII the packets _problem has evolved to allow various timing perturbations
encrypted and padded. The challenges include perturlsati Och as bounded delay perturbation considered in [4] and

due to delays, permutations, etc., capacity constrainhén tbounded memory perturbation in [1]. Recent work aims at

communication channel, arzhaff noise Chaff noise models ']End"ng perturbations as well as actively injected chafse:

unrelated traffic multiplexed at intermediate nodes as W%e [1], [5], [6]. All these techniques assume that the raw

<  Wireless node M Eavesdropper

|. INTRODUCTION

The problem of information flow detection has been studied
the context of Internet as a countermeasure to stepping-

as dummy traffic artificially inserted by the nodes to eva easurements are fully available at the detector.

detection. Suppose that the detector is located at one of t ®nder data compression, Ahlswede and Csiszar in [7]
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i.i.d. over time. In previous work [8], we consider the detectioA. Problem Statement
of information flgws under equal capacity constra|.nts. lis th L[et S, and S, denote the transmission activities of nodes
paper, we consider the case when the detector is located a

a point of measurement, which brings side-information t’él and B, respectivelyj.e.,

detection. S, = (Si(1), 8i(2), Si(3),..), i=1,2, (1)

B. Summary of Results and Organization w;]ereSi(k) (k > 1) is the kth transmission epoétof A (or
B).

by timing analysis with side-information. Specifically, bYexist subsequenceB; (i = 1, 2) of S;, which satisfy the

deploying traffic sensors to measure the transmission eichoowing definition.

two nodes and fusing the measurements at one of the sensorgefinition 2.1: A pair of processe¢F;, F,) is aninfor-

we want to detect packet flows relayed through these nodggyiion flowif for every realization, there exists a bijection

Based. on the assumption that nodes’ normal_ transmiss?n F, — F, such thatg(s) — s € [0, A] for all s € .
behavior is known, and the relay of packets is subject to
strict delay constraint, we formulate the problem as a piiyti ~ Remarks:The bijectiong is a mapping between the trans-
nonparametric hypothesis testing under constraints on #féssion epochs of the same packets at the two nodes, allowing
fusion rate. permutations during the relay. The condition thatis a

Our goal is to define a rigorous, analytical framework for th@ij€ction imposes packet-conservationonstraintji.e., every
design of distributed flow detection systems and design-pradgformation-carrying packet generates one and only orayrel
tical compression and detection schemes within this fram@@cket. The conditiop(s) —s > 0 is thecausalityconstraint,
work. Generalizing the centralized approach to informmatigVhich means that a packet cannot leave a node before it
flow detection in [1], we take a separated approach, dividijlives: In additiong(s) —s < A imposes ebounded delay
the detection procedure into two stages: data compressf@istraint, meaning that the maximum delay at the relay
and detection. For data compression, we propose a coupféle is bounded byA. The bounded delay constraint, first
of counting-based quantizers based on slotted structune. ProPosed by Donohet al.in [4], is often implied by reliable
detection, we develop threshold detectors based on thealpti COmmunication protocols.

chaff-inserting algorithms to detect the flows of sufficlent we say that a pair of process¢S;, S,) contains an
high rate. We show that the proposed detector can achig¥frmation flowif S; = F; PW, (i =1,2), where(F,, Fy)
Chernoff-consistent detection for chaff noise of positteée s an information flow. The process®¥; (i = 1, 2) are called
even if the fusion capacity is very small. In particular,@iv chaff noise Note that chaff noise does not have to satisfy
a fusion capacity, we derive consistency-rate functionglwh pefinition 2.1.

map the capacity to the maximum fraction of chaff noise for our problem is to test the following hypotheses:
which consistent detection is guaranteed. Comparison ef th

proposed systems shows that slotted quantization, which is Ho: Si, S are independent,

known (see [9]) to have good performance in compressing Hi: (S1, S2) contains an information flow,

Poisson processes, is also preferable in compressingctraffi ] ,
measurements for the purpose of detection. by observing measurements compressed f&nfi = 1, 2).
_ _ ~Assume thatA is known, and the marginal distributions of
The rest of the paper is organized as follows. Sectia) (; — 1, 2) are known (Poisson processes are assumed in

Il formulates the problem. Section Il b”eﬂy Summarizeﬂ]e ana'ysis) and are the same under both hypothem
existing results on centralized flow detection. Sectiongfd that the joint distribution of(S;, S,) under; is not fully

V present a couple of distributed detection systems. Sectigpecified.
VI compares the proposed systems numerically. Then Section
VII concludes the paper with remarks.

)

B. System Architecture

We consider a two-stage detection system used in multiter-
minal inference €.g9.,see [7]), as illustrated in Fig. 2. In the

. . ) .
We use the convention that uppercase letters denote rdﬁga collection stage, encodgf’ compresses the observation

) . . R :
dom variables, lowercase letters realizations, boldfatters ~! Wlt.h duratlon_t nto U < {1"'." ¢’} 1o satisfy the

. : N capacity constraint?. In the detection stage, a detect®r
vectors, and plain letters scalars. Given a realization Ofmaakes a decision Byd, — 6,(UU, Sy) € {0, 1}
point processs, we use§ to denote the set of elements b O, B2 »o

in this realization. Given two realizations of point proses 1A ol o
; " ssume no simultaneous transmission.
((117 az, ...) an(zo(bl’ ba, '(')Z’ EB 1S theofuperposmon operator 2Otherwise, each eavesdropper can detect information flodisidually
defined as(a);2, D (br)7Z, = (ck)gZ,, Whereer < ca < py testing the marginal distribution.
cooand{ag e, U{bele, = {er}i2,. 3We use the convention thatindicatesHo and1 H;.

Il. THE PROBLEM FORMULATION



S| q® Uedl,..., o rate greater than\(1 — 7) if the estimated CTR is no larger
. than the actual CTR.
5 — 0 To calculate the minimum CTR, an optimal chaff-inserting
side-information ¢ algorithm, “Bognded—Grec_ady-Matc_h" _(BGM) proposed by
Sa Blum et al. [5] is used. Given realizations,;, s, and delay

bound A, BGM matches every epoch in s; with the first

Fig. 2. A distributed detection system which separates #ta dollection unmatched epoch iy, s+A] in s,. The estimated CTR is the
and the decision making stageg!): encoder ofSy, &: detector. fraction of unmatched epochs among the total measurements.
It was shown in [5] that BGM calculates the minimum CTR.

It was shown in [1] that the detector with the maximum
consistency has the following form.

Due to the nonparametric model of information flows, the Definition 3.1 (Centralized Detector)Given observations
usual performance measure of detection error probabilitigs;)?_ , the detector is defined as
cannot be applied directly. Instead, we propose a perfocman
measure based on the amount of chaff noise, measured as St((s))y; 7) = {
follows.

Definition 2.2: Given realizationgf;, f;) and (w1, w2) of wherer € [0, 1] is a predetermined threshold, aBTR(t) is
an information flow and its chaff noise, thhaff-to-trafficratio the CTR in(s;)2_, estimated by BGM.
(CTR) in the intervall0, t] is defined as

C. Performance Measure

1 if CTR(t) <,
0 o.w,

It is shown in [1] that there is a single threshdld on

22: Wi N [0, 4| the CTR that separates detectable and undetectable flows.
A ’ AL Actually, this statement holds for general renewal proegss
CTR(t)=—=; ,  CTR=limsupCTR(t), (3) 45 stated below.
> 18N [0, t| e Theorem 3.2:1f S; (i = 1, 2) are renewal processes,
=t then there exists a constant* such that flows with CTR
wheres; =, Pw; (i =1, 2). > C* can be embedded in independent processes and are thus

Based on the notion of CTR, we borrow the idea afindetectable, and all the flows with CKRC* can be detected
Chernoff-consistency in [10] to introduce the followingrpe consistently byd;.
formance measure.

Definition 2.3: A detectord,, is r-consistent(r € [0, 1])
if it is Chernoff-consistent for all the information flows thi

The proof is omitted due to space limit. The goal of this
paper is to characteriz€* for finite capacity constraints.

CTR bounded by a.s? That is, the false alarm probability IV. QUANTIZER DESIGN
Pr(6,) and miss probabilityPy (6, ) will vanish if the CTR  In this section, we present two simple quantizers based on
is bounded by a.s.,i.e., the counting measure.
1) lim Pg(8,) = 0 for any(S;)2_, underH; Definition 4.1: Given a point procesS, aslotted quantizer
2) "ﬂg‘l’lp lim Py (3,) = 0, where with slot lengthT is defﬁned aSy(S)é(Zj)‘J?’;l,_ whereZ; is
(S:)2_,€Py " the number of epochs in thgh slot (.e., the interval[(; —
T, jT)).

Po = {(8:)7—1 : (Si);—; contains an information flow, " Quantization by a slotted quantizer is caligdtted quanti-
and limsup CTR(¢) < r a.s}. zation It is easy to see that the above definition is equivalent
to the pointwise quantizey(t) = |¢/T|, wheret € RT.
The quantization results of a slotted quantizer can be éarth
compressed by the following quantizer.
I1l. CENTRALIZED INFORMATION FLOW DETECTION Definition 4.2: Given a point procesS, aone-bit quantizer
Juth slot lengthT" is defined asAy(S)é(Zj);?‘;l, whereZ; is

t—
The consistencyf a detector is the goupremum ofsuch that
the detector is-consistent.

There has been solutions for the case of centralized - . :
tection {.e., R = o0) in [1]. Specifically, it was shown that the '”d'c?‘tof that theith SIOF IS non_emp_ty. .
if S, (i — 1, 2) are Poisson processes, then the maximutirg;?oar?tlzatmn by a one-bit quantizer is callede-bit quan-
consistency of a centralized detector is equal 0l + \A), n n o
where ) is the maximum rate 08;. The idea of detection is M Let X" = }(/Xj)j:l b% the qur?ntlzatut))n re?ult OSﬁ‘ .
that detection should be claimed if it is suspiciously easy f oreover, use (s, 1) to denote t € number of epochs in
an information flow to generate the received measuremen%. in the intervalls, ¢). The capacity constraink can be
Specifically, the detector estimates the CTR in the measu%_pressed as H(X™)
ments and make detection if the estimated CTR is below 1imsup7T <R, 4)
certain threshold. Detection can be guaranteed for flows of noee T

5The same quantizer was used in [9] and was shown to be neanadpti
4Here “a.s” means almost surely. under the absolute-error fidelity critetion.



which, if S; is a Poisson process, is reducedd¢X;)/T < consistency level,(R~'(R)) under a capacity constrait,
R. For ergodic source satisfying (4X™ (for large n) can wherée

be reliably transmitted to the detector. Thus, the problsm i A 1 A A ]
reduced to design detectors for observatiifsandS.. (===~ g ROZHPIAT)/T. (5)
V. DETECTORDESIGN Furthermore, for any; < «,(7), the false alarm probability
Following the idea of centralized detection, we developecays exponentially with.
threshold detectors based on the optimal chaff-insertihg a  proof: See the proof of Theorem 5.2 in [11]. m

orithms for quantized measurements as follows. . . . o
J q Given a capacityR, the functiono, (R~ (R)) specifies the

A. Detection Under Slotted Quantization level of chaff noise under whicld, can achieve consistent
Given measurementé&”, s,), wherex™ is the result of detection while satisfying the capacity constraint. Thiad-

slotted quantization of;, we want to find realizations of an tion, referred to as theonsistency-rate functigrs therefore
information flow (£;)2_, and chaff noisew; (i = 1, 2) such & measure of the performance of distributed flow detection.
1= k)

that i) x" = y(fi @ w1), s2 = £ w», and i) the CTR B petection Under One-Bit Quantization
is minimized. Now thas; is unavailable, we first reconstruct . o . . .
Under one-bit quantization, the chaff-inserting algarith

s1 from x gnd then gpply BGM 1o the reconstructeﬂd P93 Iso utilizes BGM as in SGM except that now the reconstruc-
cesses, as illustrated in Fig. 3. The proposed chaff-imgert

algorithm, “Slotted-Greedy-Match” (SGM), works as follew _tlon 0f sy Is more d|ff_|cu|t since the e?<a<_:t nhumber of epochs
; n - in a nonempty slot is unknown. This issue can be solved
Given (x™, s2), SGM does the following:

R ) by starting matching frons,. As illustrated in Fig. 4, if we
1) construct a batched procéssas busts of; simultaneous geqyentially match each epochsn with the first nonempty
epochs ai{j — 1)T (j > 1), as illustrated in Fig. 3;

; : slot in s that has not been matched, then due to the fact that
2) run BGM on (8, so) with delay boundl” + A. greedy matching is optimal, one can easily show the opttgnali
It is shown in [11] that SGM inserts the minimum number off this scheme. Specifically, the proposed algorithm, dalle
chaff packets for anyx™, s;). “One-bit-Greedy-Match” (OGM), works as following. Given
(x", s2), OGM:
1) match every epoch imss with the earliest unmatched
nonempty slot within delay\, as illustrated in Fig. 4;
2) unmatched epochs become chaff; each unmatched
nonempty slot contains a chaff packet.
Algorithm OGM inserts the minimum chaff noise, as shown
in [11].

Fig. 3. SGM: greedy matching between a batched progessidss. Epochs X”;ﬁ 1 0

1
not matched within delay” + A are considered as chaff noise. [ [ X1

Based on SGM, we develop the following detector.
Definition 5.1 (Detector under Slotted Quantization):
Given (x™, s), define a detectad, as

1 if O/N <,

6(x", 80) = . ) ) o
'( ’ 2) 0 o.w, Fig. 4. OGM: Greedy matching starting frosx. Each epoch insy is
matched to the first unmatched nonempty sl@. (z; = 1) that is no more
than A earlier.

=D

where N = Zn: zj + |82|, and C, is the number of chaff
J=1 . .
packets found by SGM irix", s;), excluding chaff packets ~The following detector is developed based on OGM.

in® 85 N[0, A). Definition 5.3 (Detector under One-bit Quantization):
Intuitively, under 7, since the actual number of chaffGiven (x", s2), the detectop, is defined as

packets has to be a_t least, 6, has vanishing miss probability . (1 if C../(an +185]) < 7,

as long as the CTR is bounded hya.s. UndefH, d, will have i(x", s2) = 0 oW

vanishing false alarm probability # is sufficiently small. The _ )
performance of, is guaranteed by the following theorem. WhereC; is the number of chaff packets found by OGM in
Theorem 5.2:If S; and S, are Poisson processes of rate§<"» s2), excluding chaff EaCketS i82 N[0, A), and N, =
bounded by), and T is large, thend, can achieve the —log(1 —z) for z = 1 3 z;. Here Ny is the Maximum
Jj=1

5This is because packets in this interval may be relays ofgiatkansmitted
before the detector starts taking observations. "Here H(Poi(\T)) is the entropy of Poisson distribution with meaf.



Likelihood estimate of the mean number of epochs per slot

S, if Sy is Poisson. 05

The structure ofé, is very similar to that ofd,. Not 0.45
surprisingly, the performance @f can also be characterizec

L 0.4
by a theorem similar to Theorem 5.2.

Theorem 5.4:If S; and S, are independent Poisson pro 035
cesses of maximum rate andT is large, theny, can achieve 03
the consistency-rate functiom, (R, ! (R)), wheré +5025

Al A log2/T if \T'> log 2, 0.2
i (T)_Qe ’ R”(T)_{ h(e *T)/T  o.w., ’ 015
(6)
and the false alarm probability decays exponentially witifi 01
< ay(T). 005,
Proof: See the proof of Theorem 5.6 in [11]. | 0

Comparing Theorems 5.2 and 5.4, we see thafl'am-

creasese, (') decays much faster tha(T"), reflecting the Fig. 5. The consistency-rate functions (R; '(R)) (i = I, Il) and their

decay of detection performance caused by further_qua_mrzat upper bounds & = 1, simulated overl0* slots.): For each\, the three

It, however, does not imply that slotted quantization istdret curves in decreasing order are the upper bound, the camsjstate function

because one-bit quantization allows a much smaller sltgjtlhen under slotted quantization, and the consistency-ratetitmainder one-bit
. uantization.

under the same capacity. a

VI. NUMERICAL COMPARISON

We compare the proposed detection systems by their VII. ConcLusion

consistency-rate functions. It was shown in [11] thatT) This paper has focused on detection in the presence of side-
(i = I, 1l) derived in Theorems 5.2 and 5.4 are looséhformation. Parallel results have also been obtainedawith

lower bounds on the maximum consistencydgf The actual side-_information [8]. It can be §hown that side-informati_lgs
maximum consistency is equal to a constapfT’), which is dominant effect on the detection performance for suffityent
the a.s. limit of the minimum CTR of SGM or OGM underight traffic, whereas quantization scheme matters more for
Ho. Furthermore, it was shown in [11] thatT)2E[ X — heavier traffic.

Y|]/(2AT), whereX andY are independent Poisson random REEERENCES
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