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Abstract— Distributed detection of information flows by tim-
ing analysis is considered. Timing measurements are subject
to perturbations and the insertion of chaff noise. Moreover,
communications among distributed traffic sensors are subject to
capacity constraints. With the assumption that the detector is co-
located at a point of measurement, the problem is formulatedas
a distributed hypothesis testing with side-information. The main
challenge is that there is no parametric model for the relaying
of information flows. Under the assumption that the relayingof
flows is subject to bounded delays, distributed detection systems
are designed by converting a centralized detector to distributed
detectors under slot-based quantization. The proposed systems
are evaluated both theoretically and numerically by the proposed
performance measure as a function of the capacity in data
collection. Numerical evaluation shows that separately designing
data compression and detection modules can achieve satisfactory
overall performance.

Index Terms— Information flow, Distributed detection, Side-
information, Chernoff-consistency.

I. I NTRODUCTION

Consider a wireless ad hoc network illustrated in Fig. 1.
Given potential routes through nodesA and B, we are
interested in knowing whether these routes are being used
by eavesdropping the ongoing traffic. Each eavesdropper is
equipped with an energy detector to record the transmission
epochs of the node of interest. Assume negligible measurement
error. Then one of the eavesdroppers,e.g.,the one at nodeA,
reports the (compressed) measurements through a channel of
limited capacity to the other eavesdropper, where a detector
will combine the measurements to make decisions.

This is a problem of detecting information flows by timing
analysis [1]. The advantage of timing analysis is that the mea-
surements are easy to obtain because of the shared medium,
and the detection is applicable even if all the packets are
encrypted and padded. The challenges include perturbations
due to delays, permutations, etc., capacity constraint in the
communication channel, andchaff noise. Chaff noise models
unrelated traffic multiplexed at intermediate nodes as well
as dummy traffic artificially inserted by the nodes to evade
detection. Suppose that the detector is located at one of the
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Fig. 1. In a wireless ad hoc network, eavesdroppers are deployed to collect
processes of transmission epochs, denoted bySi (i = 1, 2), from nodes
A and B, respectively. Then the eavesdropper atA sends measurements
compressed fromS1 to B through a finite capacity channel, and a detector
at the eavesdropper atB detects information flows throughA and B based
on the received measurements andS2.

eavesdroppers, which implies that the raw measurements of
that eavesdropper are perfectly known by the detector, referred
to as the case offull side-information.

Applications of this problem include intrusion detection
and network monitoring in wireless ad hoc networks such as
wireless sensor networks.

A. Related Work

The problem of information flow detection has been studied
in the context of Internet as a countermeasure to stepping-
stone attacks (see [2]). Since Zhang and Paxson [3] first
took a timing-based approach to stepping-stone detection,the
problem has evolved to allow various timing perturbations
such as bounded delay perturbation considered in [4] and
bounded memory perturbation in [1]. Recent work aims at
handling perturbations as well as actively injected chaff noise;
see [1], [5], [6]. All these techniques assume that the raw
measurements are fully available at the detector.

Under data compression, Ahlswede and Csiszár in [7]
considered a related problem of testing the correlation between
two random variables by taking temporallyi.i.d. sample pairs
under limited capacities. Our problem is fundamentally differ-
ent from theirs because timing measurements of flows are not



i.i.d. over time. In previous work [8], we consider the detection
of information flows under equal capacity constraints. In this
paper, we consider the case when the detector is located at
a point of measurement, which brings side-information to
detection.

B. Summary of Results and Organization

We consider the distributed detection of information flows
by timing analysis with side-information. Specifically, by
deploying traffic sensors to measure the transmission epochs of
two nodes and fusing the measurements at one of the sensors,
we want to detect packet flows relayed through these nodes.
Based on the assumption that nodes’ normal transmission
behavior is known, and the relay of packets is subject to
strict delay constraint, we formulate the problem as a partially
nonparametric hypothesis testing under constraints on the
fusion rate.

Our goal is to define a rigorous, analytical framework for the
design of distributed flow detection systems and design prac-
tical compression and detection schemes within this frame-
work. Generalizing the centralized approach to information
flow detection in [1], we take a separated approach, dividing
the detection procedure into two stages: data compression
and detection. For data compression, we propose a couple
of counting-based quantizers based on slotted structure. For
detection, we develop threshold detectors based on the optimal
chaff-inserting algorithms to detect the flows of sufficiently
high rate. We show that the proposed detector can achieve
Chernoff-consistent detection for chaff noise of positiverate
even if the fusion capacity is very small. In particular, given
a fusion capacity, we derive consistency-rate functions which
map the capacity to the maximum fraction of chaff noise for
which consistent detection is guaranteed. Comparison of the
proposed systems shows that slotted quantization, which is
known (see [9]) to have good performance in compressing
Poisson processes, is also preferable in compressing traffic
measurements for the purpose of detection.

The rest of the paper is organized as follows. Section
II formulates the problem. Section III briefly summarizes
existing results on centralized flow detection. Sections IVand
V present a couple of distributed detection systems. Section
VI compares the proposed systems numerically. Then Section
VII concludes the paper with remarks.

II. T HE PROBLEM FORMULATION

We use the convention that uppercase letters denote ran-
dom variables, lowercase letters realizations, boldface letters
vectors, and plain letters scalars. Given a realization of a
point processs, we useS to denote the set of elements
in this realization. Given two realizations of point processes
(a1, a2, . . .) and(b1, b2, . . .),

⊕
is thesuperposition operator

defined as(ak)∞k=1

⊕
(bk)∞k=1 = (ck)∞k=1, wherec1 ≤ c2 ≤

. . . and{ak}∞k=1 ∪ {bk}∞k=1 = {ck}∞k=1.

A. Problem Statement

Let S1 and S2 denote the transmission activities of nodes
A andB, respectively,i.e.,

Si = (Si(1), Si(2), Si(3), . . .), i = 1, 2, (1)

whereSi(k) (k ≥ 1) is thekth transmission epoch1 of A (or
B).

If the nodes are transmitting an information flow, then there
exist subsequencesFi (i = 1, 2) of Si, which satisfy the
following definition.

Definition 2.1: A pair of processes(F1, F2) is an infor-
mation flow if for every realization, there exists a bijection
g : F1 → F2 such thatg(s) − s ∈ [0, ∆] for all s ∈ F1.

Remarks:The bijectiong is a mapping between the trans-
mission epochs of the same packets at the two nodes, allowing
permutations during the relay. The condition thatg is a
bijection imposes apacket-conservationconstraint,i.e., every
information-carrying packet generates one and only one relay
packet. The conditiong(s)− s ≥ 0 is thecausalityconstraint,
which means that a packet cannot leave a node before it
arrives. In addition,g(s) − s ≤ ∆ imposes abounded delay
constraint, meaning that the maximum delay at the relay
node is bounded by∆. The bounded delay constraint, first
proposed by Donohoet al. in [4], is often implied by reliable
communication protocols.

We say that a pair of processes(S1, S2) contains an
information flowif Si = Fi

⊕
Wi (i = 1, 2), where(F1, F2)

is an information flow. The processesWi (i = 1, 2) are called
chaff noise. Note that chaff noise does not have to satisfy
Definition 2.1.

Our problem is to test the following hypotheses:

H0 : S1, S2 are independent,
H1 : (S1, S2) contains an information flow,

(2)

by observing measurements compressed fromSi (i = 1, 2).
Assume that∆ is known, and the marginal distributions of
Si (i = 1, 2) are known (Poisson processes are assumed in
the analysis) and are the same under both hypotheses2. Note
that the joint distribution of(S1, S2) underH1 is not fully
specified.

B. System Architecture

We consider a two-stage detection system used in multiter-
minal inference (e.g.,see [7]), as illustrated in Fig. 2. In the
data collection stage, encoderq(t) compresses the observation
S1 with duration t into U ∈ {1, . . . , etR} to satisfy the
capacity constraintR. In the detection stage, a detectorδt

makes a decision by3 θ̂t = δt(U, S2) ∈ {0, 1}.

1Assume no simultaneous transmission.
2Otherwise, each eavesdropper can detect information flows individually

by testing the marginal distribution.
3We use the convention that0 indicatesH0 and1 H1.
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Fig. 2. A distributed detection system which separates the data collection
and the decision making stages.q(t): encoder ofS1, δt: detector.

C. Performance Measure

Due to the nonparametric model of information flows, the
usual performance measure of detection error probabilities
cannot be applied directly. Instead, we propose a performance
measure based on the amount of chaff noise, measured as
follows.

Definition 2.2: Given realizations(f1, f2) and(w1, w2) of
an information flow and its chaff noise, thechaff-to-traffic ratio
(CTR) in the interval[0, t] is defined as

CTR(t)
∆
=

2∑
i=1

|Wi ∩ [0, t]|
2∑

i=1

|Si ∩ [0, t]|
, CTR

∆
= lim sup

t→∞

CTR(t), (3)

wheresi = fi

⊕
wi (i = 1, 2).

Based on the notion of CTR, we borrow the idea of
Chernoff-consistency in [10] to introduce the following per-
formance measure.

Definition 2.3: A detectorδn is r-consistent(r ∈ [0, 1])
if it is Chernoff-consistent for all the information flows with
CTR bounded byr a.s.4 That is, the false alarm probability
PF (δn) and miss probabilityPM (δn) will vanish if the CTR
is bounded byr a.s.,i.e.,

1) lim
n→∞

PF (δn) = 0 for any (Si)
2
i=1 underH0;

2) sup
(Si)2i=1

∈P0

lim
n→∞

PM (δn) = 0, where

P0 = {(Si)
2
i=1 : (Si)

2
i=1 contains an information flow,

and lim sup
t→∞

CTR(t) ≤ r a.s.}.
The consistencyof a detector is the supremum ofr such that
the detector isr-consistent.

III. C ENTRALIZED INFORMATION FLOW DETECTION

There has been solutions for the case of centralized de-
tection (i.e., R = ∞) in [1]. Specifically, it was shown that
if Si (i = 1, 2) are Poisson processes, then the maximum
consistency of a centralized detector is equal to1/(1 + λ∆),
whereλ is the maximum rate ofSi. The idea of detection is
that detection should be claimed if it is suspiciously easy for
an information flow to generate the received measurements.
Specifically, the detector estimates the CTR in the measure-
ments and make detection if the estimated CTR is below
certain thresholdτ . Detection can be guaranteed for flows of

4Here “a.s.” means almost surely.

rate greater thanλ(1 − τ) if the estimated CTR is no larger
than the actual CTR.

To calculate the minimum CTR, an optimal chaff-inserting
algorithm, “Bounded-Greedy-Match” (BGM) proposed by
Blum et al. [5] is used. Given realizationss1, s2 and delay
bound∆, BGM matches every epochs in s1 with the first
unmatched epoch in[s, s+∆] in s2. The estimated CTR is the
fraction of unmatched epochs among the total measurements.
It was shown in [5] that BGM calculates the minimum CTR.

It was shown in [1] that the detector with the maximum
consistency has the following form.

Definition 3.1 (Centralized Detector):Given observations
(si)

2
i=1, the detector is defined as

δt((si)
2
i=1; τ) =

{
1 if ĈTR(t) ≤ τ,
0 o.w.,

whereτ ∈ [0, 1] is a predetermined threshold, and̂CTR(t) is
the CTR in(si)

2
i=1 estimated by BGM.

It is shown in [1] that there is a single thresholdC∗ on
the CTR that separates detectable and undetectable flows.
Actually, this statement holds for general renewal processes,
as stated below.

Theorem 3.2:If Si (i = 1, 2) are renewal processes,
then there exists a constantC∗ such that flows with CTR
≥ C∗ can be embedded in independent processes and are thus
undetectable, and all the flows with CTR< C∗ can be detected
consistently byδt.

The proof is omitted due to space limit. The goal of this
paper is to characterizeC∗ for finite capacity constraints.

IV. QUANTIZER DESIGN

In this section, we present two simple quantizers based on
the counting measure.

Definition 4.1: Given a point processS, aslotted quantizer5

with slot lengthT is defined asγ(S)
∆
=(Zj)

∞
j=1, whereZj is

the number of epochs in thejth slot (i.e., the interval[(j −
1)T, jT )).

Quantization by a slotted quantizer is calledslotted quanti-
zation. It is easy to see that the above definition is equivalent
to the pointwise quantizer̃γ(t) = ⌊t/T ⌋, wheret ∈ R

+.
The quantization results of a slotted quantizer can be further

compressed by the following quantizer.
Definition 4.2: Given a point processS, aone-bit quantizer

with slot lengthT is defined aŝγ(S)
∆
=(Zj)

∞
j=1, whereZj is

the indicator that thejth slot is nonempty.
Quantization by a one-bit quantizer is calledone-bit quan-

tization.
Let X

n = (Xj)
n
j=1 be the quantization result ofS1.

Moreover, useY (s, t) to denote the number of epochs in
S2 in the interval [s, t). The capacity constraintR can be
expressed as

lim sup
n→∞

H(Xn)

nT
≤ R, (4)

5The same quantizer was used in [9] and was shown to be near optimal
under the absolute-error fidelity critetion.



which, if S1 is a Poisson process, is reduced toH(X1)/T ≤
R. For ergodic source satisfying (4),Xn (for large n) can
be reliably transmitted to the detector. Thus, the problem is
reduced to design detectors for observationsX

n andS2.

V. DETECTORDESIGN

Following the idea of centralized detection, we develop
threshold detectors based on the optimal chaff-inserting al-
gorithms for quantized measurements as follows.

A. Detection Under Slotted Quantization

Given measurements(xn, s2), wherex
n is the result of

slotted quantization ofs1, we want to find realizations of an
information flow (fi)

2
i=1 and chaff noisewi (i = 1, 2) such

that i) x
n = γ(f1

⊕
w1), s2 = f2

⊕
w2, and ii) the CTR

is minimized. Now thats1 is unavailable, we first reconstruct
s1 from x

n and then apply BGM to the reconstructed pro-
cesses, as illustrated in Fig. 3. The proposed chaff-inserting
algorithm, “Slotted-Greedy-Match” (SGM), works as follows.
Given (xn, s2), SGM does the following:

1) construct a batched processŝ1 as busts ofxj simultaneous
epochs at(j − 1)T (j ≥ 1), as illustrated in Fig. 3;

2) run BGM on(ŝ1, s2) with delay boundT + ∆.

It is shown in [11] that SGM inserts the minimum number of
chaff packets for any(xn, s2).

ŝ1

s2

x
n: 22

∆ 2T

0

0 T

chaff

Fig. 3. SGM: greedy matching between a batched processŝ1 ands2. Epochs
not matched within delayT + ∆ are considered as chaff noise.

Based on SGM, we develop the following detector.
Definition 5.1 (Detector under Slotted Quantization):

Given (xn, s2), define a detectorδI as

δI(x
n, s2) =

{
1 if CI/N ≤ τI,
0 o.w.,

where N =
n∑

j=1

xj + |S2|, and CI is the number of chaff

packets found by SGM in(xn, s2), excluding chaff packets
in6 S2 ∩ [0, ∆).

Intuitively, under H1, since the actual number of chaff
packets has to be at leastCI, δI has vanishing miss probability
as long as the CTR is bounded byτI a.s. UnderH0, δI will have
vanishing false alarm probability ifτI is sufficiently small. The
performance ofδI is guaranteed by the following theorem.

Theorem 5.2:If S1 andS2 are Poisson processes of rates
bounded byλ, and T is large, thenδI can achieve the

6This is because packets in this interval may be relays of packets transmitted
before the detector starts taking observations.

consistency levelαI(R
−1
I (R)) under a capacity constraintR,

where7

αI(T )
∆
=

1√
πλT

− ∆

4T
, RI(T )

∆
=H(Poi(λT ))/T. (5)

Furthermore, for anyτI < αI(T ), the false alarm probability
decays exponentially withn.

Proof: See the proof of Theorem 5.2 in [11].

Given a capacityR, the functionαI(R
−1
I (R)) specifies the

level of chaff noise under whichδI can achieve consistent
detection while satisfying the capacity constraint. This func-
tion, referred to as theconsistency-rate function, is therefore
a measure of the performance of distributed flow detection.

B. Detection Under One-Bit Quantization

Under one-bit quantization, the chaff-inserting algorithm
also utilizes BGM as in SGM except that now the reconstruc-
tion of s1 is more difficult since the exact number of epochs
in a nonempty slot is unknown. This issue can be solved
by starting matching froms2. As illustrated in Fig. 4, if we
sequentially match each epoch ins2 with the first nonempty
slot in s1 that has not been matched, then due to the fact that
greedy matching is optimal, one can easily show the optimality
of this scheme. Specifically, the proposed algorithm, called
“One-bit-Greedy-Match” (OGM), works as following. Given
(xn, s2), OGM:

1) match every epoch ins2 with the earliest unmatched
nonempty slot within delay∆, as illustrated in Fig. 4;

2) unmatched epochs become chaff; each unmatched
nonempty slot contains a chaff packet.

Algorithm OGM inserts the minimum chaff noise, as shown
in [11].

s2

x
n:

∆

T

0 1111

Fig. 4. OGM: Greedy matching starting froms2. Each epoch ins2 is
matched to the first unmatched nonempty slot (i.e., xj = 1) that is no more
than∆ earlier.

The following detector is developed based on OGM.
Definition 5.3 (Detector under One-bit Quantization):

Given (xn, s2), the detectorδII is defined as

δII(x
n, s2) =

{
1 if CII/(nN̂1 + |S2|) ≤ τII ,
0 o.w.,

whereCII is the number of chaff packets found by OGM in
(xn, s2), excluding chaff packets inS2 ∩ [0, ∆), and N̂1 =

− log (1 − x̄) for x̄ = 1
n

n∑
j=1

xj . Here N̂1 is the Maximum

7HereH(Poi(λT )) is the entropy of Poisson distribution with meanλT .



Likelihood estimate of the mean number of epochs per slot in
S1 if S1 is Poisson.

The structure ofδII is very similar to that ofδI. Not
surprisingly, the performance ofδII can also be characterized
by a theorem similar to Theorem 5.2.

Theorem 5.4:If S1 and S2 are independent Poisson pro-
cesses of maximum rateλ, andT is large, thenδII can achieve
the consistency-rate functionαII(R

−1
II (R)), where8

αII(T )
∆
=

1

2
e−λT , RII(T )

∆
=

{
log 2/T if λT ≥ log 2,
h(e−λT )/T o.w.,

,

(6)
and the false alarm probability decays exponentially withn if
τII < αII(T ).

Proof: See the proof of Theorem 5.6 in [11].

Comparing Theorems 5.2 and 5.4, we see that asT in-
creases,αII(T ) decays much faster thanαI(T ), reflecting the
decay of detection performance caused by further quantization.
It, however, does not imply that slotted quantization is better
because one-bit quantization allows a much smaller slot length
under the same capacity.

VI. N UMERICAL COMPARISON

We compare the proposed detection systems by their
consistency-rate functions. It was shown in [11] thatαi(T )
(i = I, II) derived in Theorems 5.2 and 5.4 are loose
lower bounds on the maximum consistency ofδi. The actual
maximum consistency is equal to a constantα∗

i (T ), which is
the a.s. limit of the minimum CTR of SGM or OGM under
H0. Furthermore, it was shown in [11] thatu(T )

∆
=E[|X −

Y |]/(2λT ), whereX andY are independent Poisson random
variables with meanλT , is an upper bound on the consistency
of any detector under slotted or one-bit quantization.

We plot the consistency-rate functionsα∗
i (R

−1
i (R)) (i =

I, II) together with their upper bounds9 u(R−1
i (R)) under

various traffic rates; see Fig. 5. Hereα∗
i (T ) is computed by

simulating SGM or OGM on independent Poisson processes
of rate λ. From these plots, we observe: i) slotted quanti-
zation outperforms one-bit quantization, and their difference
increases withλ; ii) at the sameR, the consistency decreases
with the increase ofλ; iii) the consistency ofδI is close to the
upper bound for smallR.

Observation (i) implies that besides being a good method
for compressing Poisson processes ( [9]), slotted quantization
also performs well in compressing traffic measurements for
detecting flows. Observation (ii) implies that informationflows
in heavy traffic are more difficult to detect than those in
light traffic. This is because asλ increases, the maximum
delay normalized by the mean interarrival time (i.e., λ∆)
will increase, making the delay constraint relatively loose.
Observation (iii) implies that the detectorδI is near optimal
under slotted quantization for sufficiently small capacities.

8Here h(p) is the binary entropy function defined ash(p) = −p log p −

(1 − p) log (1 − p).
9The upper boundu(R−1

II (R)) is much looser thanu(R−1
I (R)), and thus

only the latter is plotted.
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Fig. 5. The consistency-rate functionsα∗

i (R−1
i

(R)) (i = I, II) and their
upper bounds (∆ = 1, simulated over104 slots.): For eachλ, the three
curves in decreasing order are the upper bound, the consistency-rate function
under slotted quantization, and the consistency-rate function under one-bit
quantization.

VII. C ONCLUSION

This paper has focused on detection in the presence of side-
information. Parallel results have also been obtained without
side-information [8]. It can be shown that side-information has
dominant effect on the detection performance for sufficiently
light traffic, whereas quantization scheme matters more for
heavier traffic.
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