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Abstract—Stepping-stone attacks are often used by network
intruders to hide their identities. In a stepping-stone attack,
attacking commands are sent indirectly to the victim through
a chain of compromised hosts acting as “stepping stones.” In
defending against such attacks, it is necessary to detect step-
ping-stone connections at the compromised hosts. The use of
encrypted connections by the attacker complicates the detec-
tion problem and the attacker’s active timing perturbation and
insertion of chaff make it even more challenging. This paper
considers strategies to identify stepping-stone connections when
the attacker is able to encrypt the attacking packets and perturb
their timing. Furthermore, the attacker can also add chaff packets
in the attacking stream. The paper first considers stepping-stone
connections subject to packet-conserving transformations by the
attacker. Two activity-based algorithms are proposed to detect
stepping-stone connections with bounded memory or bounded
delay perturbation, respectively. These algorithms are proven to
have exponentially decaying false alarm probabilities if normal
traffic can be modelled as Poisson processes. It is shown that
the proposed algorithms improve the performance of an existing
stepping-stone detection algorithm. This paper then addresses the
detection of stepping-stone connections with both timing pertur-
bation and chaff. Robust algorithms are developed to deal with
chaff evasion. It is proven that the proposed robust algorithms
can tolerate a number of chaff packets proportional to the size of
the attacking traffic, and have vanishing false alarm probabilities
for Poisson traffic. Simulations using synthetic data are used
to validate the theoretical analysis. Further results using actual
Internet traces are shown to demonstrate the performance of the
proposed algorithms.

Index Terms—Intrusion detection, network security, nonpara-
metric detection, testing on point processes.

I. INTRODUCTION

TO EVADE surveillance, network attackers can hide their
identity by launching the so-called stepping-stone attack

[1]. In such an attack, as illustrated in Fig. 1, the attacker com-
promises a collection of hosts and uses these hosts as stepping
stones to relay attacking commands. Because each connection
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Fig. 1. Stepping-stone attack.

is made by a separate remote login, a host in the chain can only
see the identity of its immediate predecessor, and the victim only
sees the identity of the last host. Therefore, the identification of
attackers requires tracing the chain of stepping stones. A key
component in such tracing is the detection of stepping-stone
connections. Donoho et al. proposed in [2] the use of step-
ping-stone monitors at each gateway node for detection. A pair
of incoming and outgoing streams is called a stepping-stone pair
if it is part of a stepping-stone attack. Otherwise, it is called
a normal pair.1 The stepping-stone monitors try to discover
all stepping-stone pairs by examining the incoming-outgoing
traffic. In practice, the monitor has to make decisions by ob-
serving live traffic, which may not include the beginning or the
end of the connection. Therefore, it is desirable that the de-
tection strategy does not require synchronization between in-
coming and outgoing streams. Besides, the connections may be
encrypted so that the monitor cannot rely on the content of the
traffic. Furthermore, a careful attacker may even actively modify
the traffic each time it passes through a host in order to confuse
the monitor.

A. Related Work

Staniford-Chen and Heberlein [1] are the first to consider the
problem of detecting stepping-stone connections. Early tech-
niques are based on the content of the traffic (see, e.g., [1] and
[3]). These techniques, however, are not applicable to detecting
encrypted connections. An alternative is to exploit timing char-
acteristics of the traffic. Zhang and Paxson [4] propose to de-
tect stepping-stone connections by matching the ending of “off”
periods in different connections. Their approach requires that
the connections are synchronized. Yoda and Etoh [5] propose
an algorithm to identify streams with the same traffic pattern
but unknown time shift. Wang et al. [6] propose to correlate
streams by examining packet interarrival times, and they show
that their method works well if connections on different paths
have distinctive timing characteristics. The drawback of these
approaches is that they are vulnerable to active timing perturba-
tion by the attacker.

There are a few results on detecting encrypted, timing per-
turbed stepping-stone connections; see [2], [7], and [8]. The
key assumption of these methods is that the attacker is able

1Formal definitions are given in Section II.
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to perform a packet-conserving transformation on his traffic,
but the transformation is subject to certain constraints. Donoho
et al. [2] are the first to consider the bounded delay perturba-
tion, where there is a maximum tolerable delay for each at-
tacking packet. Assuming that a stepping-stone pair is a renewal
process and its relay (detailed analysis is done for Poisson pro-
cesses), they show that substantial correlation can be revealed
even with timing perturbation. Wang and Reeves, in [7], take a
watermark-based approach. They show how to correlate step-
ping-stone connections with independent and identically dis-
tributed perturbation by introducing watermark into packet in-
terarrival times. Blum et al. [8] work along the same line as [2]
except that they also assume that the attacker has a bounded
peak rate, and they remove the Poisson assumption on the at-
tacking traffic. They propose a detection algorithm called “DE-
TECT-ATTACKS” (DA) with no miss, and they are the first
to prove that their algorithm requires a polynomial number of
packets to satisfy certain false alarm constraint.

A more general category of stepping-stone connections is
the one allowing nonpacket-conserving transformations. Here,
the attacker has the ability to mix attacking traffic with nonat-
tacking traffic, including dummy traffic called chaff, to evade
detection, or he can repacketize his traffic so that there is no

correspondence between arriving and departing packets.
The repacketization is outside the scope of packet level detec-
tion, and should be addressed at a lower level; the insertion of
chaff, however, has to be dealt with effectively. Peng et al., in
[9], propose an active detection scheme which combines water-
marking with packet matching to detect stepping-stone traffic
in chaff. They assume packets have bounded delays, and chaff
only appears in the downstream flow. Their scheme injects wa-
termarks in the upstream flow, and finds a subsequence in the
downstream flow, whose watermark is closest to the injected
one. Such an active scheme, however, requires the control of
the stepping-stone host, and it also reveals the activities of the
detector to the attacker, allowing the attacker to compromise
the detector by studying its behavior. Donoho et al. [2] point
out that in principle it is possible to correlate stepping-stone
traffic even if both (bounded) delay and independent chaff are
introduced during the relay. Blum et al. [8] modify their algo-
rithm DA into a new algorithm called “DETECT-ATTACKS-
CHAFF” (DAC) to deal with chaff. DAC detects stepping-stone
traffic with a limited number of chaff packets by increasing the
detection threshold. The drawback is that such an increase in
the threshold leads to an increase in the false alarm probability,
and the attacker can still evade detection by adding an arbi-
trarily small fraction of chaff traffic. Indeed, a fixed number
of chaff packets can evade the detection for an attacking traffic
of arbitrary size. In a recent paper [10], Zhang et al. propose
packet matching schemes to detect stepping-stone traffic with
bounded delay perturbation and/or chaff. For a stepping-stone
traffic with bounded delay but without chaff, they propose a de-
tection strategy similar to “DETECT-MATCH” [11], although
the detection performance on attacking traffic is not proven, and
they do not have a closed-form characterization for the false
alarm probability. For stepping-stone traffic with both bounded
delay and chaff, they propose a matching strategy which can
detect stepping-stone traffic if the chaff is only inserted in the

departing stream. They prove that this strategy has exponen-
tially decaying false alarm probability for independent Poisson
streams.

B. Summary of Results and Organization

In this paper, we consider the problem of detecting encrypted
stepping-stone connections subject to the attacker’s active
modification. Our strategy does not use the content of the
traffic. Nor is synchronization or active traffic manipulation
required. We first consider detecting stepping-stone pairs with
bounded perturbation but no chaff, and then generalize our
detection schemes to handle chaff packets. We formulate the
problem of detecting stepping-stone connections as a hypoth-
esis testing of independent against correlated point processes.
For the traffic perturbation by the attacker, we consider two
types of constraints: 1) the host has bounded memory and 2)
attacking packets have bounded delay. While the bounded delay
condition is a key in [2] and [8]–[10], the bounded memory
constraint, to the best of our knowledge, has not been addressed
in the literature.

Under the bounded memory assumption, we develop a linear
complexity algorithm based on the maximum variation statistic.
The intuition behind this algorithm is that the maximum vari-
ation statistic stays bounded for relayed traffic going through
a stepping-stone host with limited memory, but diverges un-
boundedly for independent traffic. Under the bounded delay
assumption, we derive a timing-based algorithm based on the
idea of matching arriving packets with departing packets. By
restricting the search to maps that preserve the order of packets,
we reduce the complexity from exponential to linear. We prove
that both of the proposed algorithms have no miss for their tar-
geting stepping-stone pairs, and exponentially decaying false
alarm probabilities for independent Poisson processes. We then
generalize the attacker model to allow the presence of chaff. We
develop two new algorithms for stepping-stone pairs with both
bounded memory or bounded delay perturbation and chaff. The
idea is to declare a stream pair normal if the optimal chaff-in-
serting algorithm would have had to insert a certain fraction of
chaff packets to embed attacking packets into the given stream
pair. Therefore, the attacker will have to insert at least the same
fraction of chaff to evade detection. The threshold on the frac-
tion of chaff is chosen to be as large as possible to make the at-
tacker’s evasion difficult, but also small enough so that the false
alarm probability will go to zero as the traffic size increases.

We next compare the performance of existing algorithms and
the proposed algorithms. To make the comparison, we analyze
the performance of algorithms DA and DAC proposed by Blum
et al. [8]. The original analysis by Blum et al. focuses on sample
size, whereas our result is on error exponent analysis. Among
algorithms dealing with packet-conserving transformations, we
show that the proposed variation-based algorithm has larger
false alarm error exponent than the algorithm DA by Blum
et al., and it also outperforms the proposed matching-based
algorithm when the traffic is sufficiently fast. For slow traffic,
however, the matching-based algorithm can be much better.
For algorithms dealing with chaff, we compare our algorithms
with existing algorithms by Blum et al. and Zhang et al. [8],
[10]. We show that, in contrast to the constant chaff tolerance of
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the algorithms by Blum et al. and Zhang et al., our algorithms
are capable of handling an amount of chaff growing linearly
with the size of the attacking traffic. The price we paid is that
the false alarm probabilities of our algorithms no longer have
exponentially decaying upper bounds, but are only guaranteed
to be vanishing asymptotically.

The rest of this paper is organized as follows. Section II de-
fines the detection problem. Section III presents a variation-
based algorithm and its performance analysis under the bounded
memory assumption. Section IV develops a timing-based al-
gorithm for stepping-stone pairs with bounded delay and an-
alyzes its performance. In Section V, we present robust algo-
rithms for stepping-stone pairs with both bounded perturbation
and chaff, and analyze their robustness and asymptotic false
alarm probabilities. Section VI compares the performance of
the proposed algorithms with several existing algorithms for de-
tecting stepping-stone pairs with or without chaff, respectively.
Section VII gives simulation results on both synthetic data and
internet traces to verify the performance. This paper is con-
cluded by Section VIII with a few remarks on the application
of such detection schemes.

II. PROBLEM STATEMENT

Let the packet arrivals on stream be represented by a point
process

where is the th arrival epoch of stream (if ,
it is the th packet before the monitor starts). Let

be the set of the elements in
. Let be the incoming and be the outgoing streams at a

particular gateway node. Normally, and are independent.
If, however, is a relay of in a stepping-stone attack, then
there will be strong correlation between them as formalized in
the following definition.

Definition 2.1: A pair of streams is a normal pair if
and are independent point processes. It is a stepping-stone

pair if there exists a bijection such that
for any .

The bijection is a mapping between the arrival and the
departure times of packets, allowing permutation of packets
during the relay. The condition that is a bijection imposes a
packet-conservation constraint, i.e., no packets are generated
or dropped at the stepping stones. The condition
is the causality constraint, which means that a packet cannot
leave the host before it arrives.

If only a subsequence of consists of attacking
packets, then only that part is constrained, as stated in the fol-
lowing definition.

Definition 2.2: A pair of streams is a stepping-stone
pair with chaff if it is the superposition of a stepping-stone pair

and a pair of chaff streams (either or both of
them can be empty).

Stream consists of dummy packets called chaff
which do not need to arrive at the victim. Chaff packets can
be generated or dropped at any stepping stone hosts without

Fig. 2. (a) Cumulative counts N (w)(i = 1; 2). (b) Cumulative difference
d(w) and the maximum variation v(w).

affecting the attack. They are artificially inserted by the attacker
to evade detection.

We want to test the following binary hypotheses:

is a normal pair

is a stepping-stone pair

with or without chaff

by observing . This is a nonpara-
metric hypothesis testing problem; no specific assumptions on
the statistical properties of are imposed at this point.
Additional assumptions on normal and stepping-stone pairs will
be introduced later when detailed detection algorithms and anal-
ysis are presented.

III. DETECTING STEPPING-STONE PAIRS WITH

BOUNDED MEMORY

We consider the problem of detecting stepping-stone pairs
when the host has bounded memory. Specifically, assume that
the host’s memory can hold at most packets.2 Then, the dif-
ference between the number of incoming and the number of out-
going packets during any period can never exceed . We use
this property to define such stepping-stone pairs as follows.

Definition 3.1: A pair of streams is a stepping-stone
pair with bounded memory if it is a stepping-stone pair, and
for any

To detect stepping-stone pairs with bounded memory, we
derive a counting-based algorithm—DETECT-MAXIMUM-
VARIATION (DMV).

Before presenting the algorithm, we need to introduce some
definitions. Merge and and order
the union as . Let be the number
of packets monitored in when the total number of monitored
packets is , i.e.,

where is the indicator function. Sample paths of and
are illustrated in Fig. 2(a).

2Similar requirement on buffer size has been considered by Giles and Hajek
in the context of timing channels [12].
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TABLE I
DETECT-MAXIMUM-VARIATION (DMV)

Define the cumulative difference between and as

and let the maximum variation of be

See Fig. 2(b) for an illustration of and .
If the stepping-stone host has bounded memory, then the

sample path of will have bounded variation. Algorithm
DMV distinguishes normal and stepping-stone pairs by looking
at the maximum variation. Specifically, note that

where is the difference
in the number of incoming and the number of outgoing packets
between the th and the th arrivals. For stepping-stone pairs
with bounded memory , this difference is bounded by ,
i.e., . Using the maximum variation statistics,
we define the following detector:3

o.w.

The detector can be implemented by the algorithm DMV shown
in Table I.

Algorithm DMV has complexity and uses only constant
memory ( , to be precise).4 Any stepping-stone pair
with bounded memory will be detected after packets, i.e.,
miss is totally avoided. We only need to be concerned about the
false alarm probability, and it is bounded as follows.

Theorem 3.2: If normal pairs consist of independent Poisson
processes, then the false alarm probability of DMV is bounded
by

where . Furthermore, if the two Poisson pro-
cesses have the same rates, then the upper bound is tight with
respect to the error exponent, i.e.,

Proof: See the Appendix.

3We use the convention that the detector gives the value 1 for H and 0 for
H .

4The log in this paper is always natural logarithm.

Remarks: For a given false alarm probability , we can guar-
antee that the false alarm probability of DMV is bounded by
by making its upper bound equal to , yielding a sample size

(1)

which grows as as and .
For example, if , (1) says that using 1196 packets will
guarantee a false alarm probability no greater than 1%.

IV. DETECTING STEPPING-STONE PAIRS

WITH BOUNDED DELAY

Many stepping-stone attacks are interactive. In interactive
stepping-stone attacks, the attacker waits for the feedback of
the previous commands and sends new commands based on
the feedback. Therefore, the delay in such interactive attacks
is usually bounded. In this section, we consider detecting
stepping-stone pairs with bounded delay, which is defined as
follows.

Definition 4.1: A pair of streams is a stepping-stone
pair with bounded delay if it is a stepping-stone pair, and

for any .
Our definition of stepping-stone pair with bounded delay

is the same as the one proposed by Donoho et al. in [2]. The
bounded delay model is fundamentally different from the
bounded memory model considered in Section III. It has been
shown that the two models have very different scaling behavior
on the mutual information between the incoming stream and
the outgoing stream [12]. In Section VI-A-2, we will show that
they also have difference detection performance with respect to
changes in traffic rates.

We derive a timing-based detection algorithm DETECT-
MATCH (DM) to detect such stepping-stone pairs. Algorithm
DM matches the first packets in with their possible relays
in , subject to the maximum delay . For stepping-stone
pairs with bounded delay, there must be at least one way of
matching that satisfies causality and bounded delay constraints,
matching the arrivals of packets with the departures of the
same packets. For normal pairs, however, such matching may
not be possible. Algorithm DM uses this property to detect
stepping-stone pairs with bounded delay.

A few definitions are needed to present the algorithm. Define
to be the index of the first arrival epoch in on or after

time , i.e.,

For example, is the first epoch in on or after time
(see Fig. 4).

Definition 4.2: A match between and is a collection of
pairs , where and , such that

and for any . A length- match
is valid if for all . A match

is order-preserving if implies ,
for all .

From this definition, it is easy to see that a stepping-stone
pair with bounded delay must have at least one valid match.
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Fig. 3. More than one valid match: both the solid and the dotted lines are valid
matches.

TABLE II
DETECT-MATCH (DM)

Thus, one way to detect such stepping-stone pairs is by looking
for a valid match between the arrivals and the departures. The
complexity of this approach is, however, exponential.5 Instead
of searching for any valid match, we prove that it suffices to
limit our search to order-preserving, valid matches, as stated in
the following proposition.

Proposition 4.3: If is a valid match, then there
exists a valid match between and that is order-
preserving.

Proof: As illustrated in Fig. 3, if is a
valid match which does not preserve the order of packets, we
can switch the match to be such that it is
still valid but the order is preserved. By this idea, we can reorder

into . The match is
valid and order-preserving.

By Proposition 4.3, it suffices to consider only the matches
that preserve the order of packets, and the problem is reduced to
finding the departure that corresponds to the first arrival. With
this idea in mind, we develop the following detector:

if s.t. the match

is valid

o.w.

which is implemented by the algorithm DM as shown in Table II.
To analyze the complexity of DM, note that the inner loop has

operations, and the number of such loops is at most 1 plus
the number of arrivals in the interval in . Thus, the
complexity of DM is at most

#arrivals in in

Now, we analyze the performance of DM. We will show that
any stepping-stone pairs with bounded delay will be detected

5For example, if there are at most L departures during time �, then the ex-
haustive search for a length-n valid match has complexity O(L ).

Fig. 4. Match of s : there are three possible candidates.

by , i.e., there is no miss. We have shown by Proposition
4.3 that a stepping-stone pair with bounded delay must have
an order-preserving, valid match, and the problem of finding a
valid match is reduced to a simpler problem of finding (i.e.,
the match of ). There are some constraints on the range of

. The first constraint is causality, which requires .
The second is bounded delay. Since the monitor may not have
started recording from the beginning of the streams, there may
be packets sent before the monitor starts and received after-
wards. This phenomenon, however, can only occur during time

because of the bounded delay assumption. Thus, for any
stepping-stone pair, has to be the relay of for some

. As a result, has to satisfy ,
as shown in Fig. 4. Therefore, DM must be able to return “AT-
TACK.”

Next, we show that for independent Poisson normal pairs, the
false alarm probability goes to zero exponentially, as stated in
the following theorem.

Theorem 4.4: If and are independent Poisson processes
of rates and , respectively, then the false alarm probability
of DM is bounded by

where .
Proof: See Appendix.

Remark: Theorem 4.4 gives a few insights into the
problem. Since , we have
if , i.e., DM almost never falsely accuses slow
independent Poisson traffic.

Intuitively, it is easier to match two processes of equal rates.
This intuition is strengthened by Theorem 4.4 because

, where , and thus, the upper bound for
Poisson traffic of equal rates is larger.

Similar to DMV, we can also estimate the sample size re-
quired by DM to achieve a given false alarm probability by
calculating the value that makes the upper bound in Theorem
4.4 equal to , i.e.,

For example, if and , then a match length
682 suffices to guarantee a false alarm probability bounded by
1%. Note that for this match length, DM needs up to

packets on the average to find a valid match.
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TABLE III
DBMC

V. DETECTING STEPPING-STONE PAIRS IN CHAFF

So far we have not considered how to detect stepping-stone
traffic in chaff. In practice, the attacker usually combines traffic
perturbation with the insertion of chaff to evade detection. In this
section, we address how to detect bounded memory or bounded
delay stepping-stone pairs in the presence of chaff. The key is
to allow a limited violation of constraints so that the detection
scheme can still distinguish stepping-stone pairs and normal
pairs while tolerating certain amount of chaff.

A. Bounded Memory Case

As explained in Section III, the maximum variation of
stepping-stone pairs with bounded memory is always
bounded by . After inserting chaff, the attacker can make the
maximum variation larger than . But with a limited number of
chaff packets, the maximum variation will still be much less than
that of independent processes. Based on this idea, we propose an
algorithm called “DETECT-BOUNDED-MEMORY-CHAFF”
(DBMC) presented in Table III. Algorithm DBMC has com-
plexity .

If is a pair of stepping-stone streams passing through
a host with memory size , the counter in Table III counts
the number of times the memory would have been underflowed

or overflowed if
chaff had not been inserted. Algorithm DBMC makes detection
if the fraction is suspiciously small. Since no attacking
packet can violate the memory constraint (only chaff packets
can), the number of chaff packets is at least . Therefore, to
evade DBMC, the attacker has to insert at least chaff
packets in every packets. We conclude that DBMC is robust
against up to fraction of chaff.

B. Bounded Delay Case

For stepping-stone pairs with bounded delay, we can always
match the incoming packets with the outgoing packets (perhaps
except for the first few outgoing packets) so that all matched pairs
satisfy causality and bounded delay. When chaff is inserted, we
may not be able to match all the packets. If the attacker does not
insert enough chaff, however, the attacking traffic will have much
more matched packets than normal traffic. The algorithm is pre-
sented in Table IV. Algorithm DBDC has complexity .

TABLE IV
DBDC

Algorithm DBDC is inspired by an optimal chaff-inserting al-
gorithm called “BOUNDED-GREEDY-MATCH” (BGM) pro-
posed by Blum et al. [8]. For every arrival at time , BGM
matches it with the first unmatched departure in ; if
there is no departure in this interval or all the departures have
been matched, BGM inserts a chaff packet at arrival ; BGM also
inserts chaff at all the departures which have no arrivals to match
to. Algorithm DBDC uses a counter to record the number of
chaff packets which would have been inserted had BGM been
used, and reports alarm if the fraction is smaller than a
predetermined value. It is shown in [8] that BGM inserts the
minimum chaff to embed a stepping-stone pair with bounded
delay into arbitrary point processes.6 If the attacker wants to
send attacking packets through a host with delays bounded by

, he needs to insert at least chaff packets in every
packets to evade DBDC. Therefore, DBDC is robust against

up to fraction of chaff. Here, is a design parameter
which is an upper bound of the rates of and .

VI. COMPARING THE ALGORITHMS

We have introduced techniques for detecting stepping-stone
pairs with various constrained perturbations or a combination
of perturbation and chaff. In practice, stepping-stone pairs may
vary in what conditions they satisfy depending on the nature of
the attacks. For certain types of stepping-stone pairs, more than
one detection algorithm are applicable. The question is how to
compare the performance of different algorithms in detecting
such stepping-stone pairs.

A. Algorithms for Packet-Conserving Transformations

1) DMV Versus DA: Blum et al. [8] consider the detection
of stepping-stone pairs that satisfy both the bounded delay and
the bounded peak rate conditions. The underlying idea is that
in interactive stepping-stone attacks, usually not only is the
delay bounded, but the peak rate at which the attacker can issue
packets is also bounded because he needs time to process the
feedback and type new commands. Specifically, Blum et al.
consider stepping-stone pairs with bounded delay , and the
maximum number of arrivals within time is . The second

6The original proof in [8] is for independent binomial processes, but it holds
for arbitrary processes.
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condition, referred to as the bounded peak rate condition, is
formalized in the following definition.

Definition 6.1: A stepping-stone pair has bounded
peak rate if , for all

.
Let be the largest number of packets the attacker

can send during the maximum delay . Note that stepping-stone
pairs with bounded delay and bounded peak rate always use
bounded memory, as stated in the following proposition.

Proposition 6.2: Define be the number of packets
on in an interval . For a stepping-stone pair with
bounded delay and bounded peak rate, if is the maximum
delay, and is the maximum number of packets that the at-
tacker can send within time , then

i.e., the stepping-stone pair uses bounded memory .
Proof: See Appendix.

By Proposition 6.2, we conclude that stepping-stone pairs
with bounded delay and bounded peak rate are also stepping-
stone pairs with bounded delay and bounded memory. Note that
the inverse is not true, i.e., bounded delay and bounded memory
do not imply bounded peak rate.

Blum et al. in [8] propose a detection algorithm called
“DETECT-ATTACKS” (DA) to detect stepping-stone pairs
with bounded delay and bounded peak rate. Algorithm DA
divides samples in into groups of size .
For each group, it computes the cumulative difference in that
group. Then, DA returns “NORMAL” if there exists a group
with cumulative difference greater than . The detector using
DA is defined as follows:

where

if
o.w.

where is the cumulative dif-
ference for packets in the th group.

Blum et al. show that DA has no miss for stepping-stone
pairs with bounded delay and bounded peak rate. Moreover, they
prove that packets are needed to guarantee
a false alarm probability no more than .

We, however, are interested in the asymptotic behavior of DA
in terms of error exponent. Note that [8] does not compute the
error exponent for the false alarm probability of DA. To obtain
its error exponent, we introduce the following lemma.

Lemma 6.3: For independent Poisson normal pairs

and when is large enough

where and
.

Fig. 5. Statistics used by DA and DMV.

Proof: See Appendix 1.
If is large, we can apply Lemma 6.3 to each group of

samples to obtain the upper and lower bounds on the
false alarm probability of that group. Note that in [8] it is proven
that the single group false alarm probability is upper bounded by

. Hence, the false alarm probability of one group is upper
bounded by

if
if

Algorithm DA has a false alarm if all the groups
have false alarms,7 so for large , the total false alarm proba-
bility satisfies

(2)

Therefore, for large , the false-alarm error exponent of DA is
at most and at least .

We want to compare DA with DMV in detecting stepping-
stone pairs with bounded delay and bounded peak rate. By
Proposition 6.2, we have shown that such stepping-stone pairs
satisfy the bounded memory condition. Thus, DMV also has no
miss. We now compare their false alarm probabilities.

We first point out that DMV always outperforms DA for
any realization. One reason is that
(see Fig. 5), and another is that DA restarts computation from

at the beginning of each group, whereas DMV
keeps increasing the maximum variation across groups.
Therefore, for every realization, if DMV has a false alarm, DA
must have a false alarm too.

Next, we compare their false alarm probabilities. In partic-
ular, we are interested in whose false alarm probability has a
larger error exponent. From Theorem 3.2 and (2), we see that
the false-alarm error exponent of DMV is , whereas that
of DA is at most . By Taylor expansion
of the error exponents, we have that as

Therefore, for large , the false-alarm error exponent of DMV
is at least 3.38 times larger than that of DA.

2) DM Versus DMV: For stepping-stone pairs with both
bounded memory and bounded delay, both DMV and DM
can be used. We are interested in which algorithm performs

7In DA, the sample size n is always a multiple of 2(M + 1) .
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better; particularly, we want to compare their asymptotic
performance. Note that we need to give DMV and DM the
same sample size to make a fair comparison. If we define
sample size as the total number of monitored packets in
both the incoming and the outgoing streams, then the sample
size required by DM to find a length- match is random;
it is at most #departures in . For large , the
sample size is approximately . Hence, we should compare

with .
Theorems 3.2 and 4.4 suggest that for Poisson processes of

equal rates , DM is preferable if , i.e.,

(3)

Otherwise, DMV is preferable. For example, for and
, the threshold is . This threshold phenom-

enon has an intuitive explanation. Algorithm DMV only uses the
rank statistics, so it does not depend on the rate of the traffic; on
the other hand, DM performs better on slower traffic and worse
on faster traffic. The reason for the latter is that means
the inter-arrival time , which is equivalent to having finite
inter-arrival time but , i.e., for extremely slow traffic, al-
most perfect synchrony is required to raise an alarm, and thus,
it is unlikely for DM to have false alarms. Similarly, if

, the inter-arrival time ; equivalently, it means having
non-zero inter-arrival time but , i.e., the delay con-
straint is essentially removed, which causes DM to always raise
alarms. Therefore, when the traffic is sufficiently slow, DM out-
performs DMV, and otherwise DMV performs better than DM.
The comparison suggests that the bounded memory condition is
more informative than the bounded delay condition in detecting
stepping-stone traffic for . Since the
right-hand side merely grows as , the memory bound can
be advantageous even for modest rate and large memory. For ex-
ample, for packets, 10 s, we only need
packets per second for the bound memory condition to provide
better detection performance.

B. Algorithms Dealing With Chaff

In Section I-A, we have mentioned several existing detec-
tion schemes dealing with chaff evasion (see [8]–[10]). We now
compare these schemes to our proposed algorithms DBMC and
DBDC.

1) DBMC Versus DAC: Detecting stepping-stone traffic with
both bounded memory perturbation and chaff has not been ad-
dressed in the literature to the best of our knowledge. In [8],
Blum et al. propose an algorithm called “DETECT-ATTACKS-
CHAFF” (DAC) for detecting a more restricted class of step-
ping-stone traffic with bounded delay, bounded peak rate, and
chaff. Algorithm DAC works exactly the same as DA except
that the group size is increased from to ,
and the threshold is increased from to . It is shown in
[8] that DAC is robust against up to chaff packets in every

packets, and for independent Poisson traffic, the false
alarm probability of DAC is bounded by .

By Proposition 6.2, DBMC is also applicable to the step-
ping-stone traffic Blum et al. consider for DAC. We compare

their performance in terms of robustness and false alarm prob-
ability. As stated in [8], the attacker can evade DAC by in-
serting chaff packets in a group of packets.
As the traffic size increases, the fraction of chaff needed to
evade DAC becomes negligible. Algorithm DBMC, as argued
in Section V-A, is robust against a number of chaff packets con-
stituting fraction the total stepping-stone traffic. The
drawback is that we do not have an explicit upper bound on the
false alarm probability of DBMC, whereas DAC has exponen-
tially decaying false alarm probability.

2) DBDC Versus S-III [10]: For detecting stepping-stone
traffic with both bounded delay and chaff, Peng et al. [9] and
Zhang et al. [10] both provide partial solutions for the special
case when chaff only appears in the outgoing traffic. Peng et al.
[9] use a watermarking scheme which requires the detector to
actively manipulate the traffic, and thus, falls outside the scope
of this paper. Zhang et al. [10] propose a scheme called “S-III”
which matches every arrival at with the first unmatched de-
parture in , and makes detection if all the arrivals are
successfully matched.8 Scheme S-III is proven to have exponen-
tially decaying false alarm probability for independent Poisson
processes. If the attacker can insert chaff in the incoming traffic,
however, one chaff packet is enough to defeat S-III. Algorithm
DBDC, on the other hand, is applicable to cases when both the
incoming and outgoing streams are subject to chaff insertion.
Furthermore, DBDC is robust against chaff traffic of non-zero
rate. Its weakness, similar to DBMC, is the lack of guarantee in
false alarm probability.

VII. NUMERICAL RESULTS

We simulate our algorithms on both synthetic data and traces
to verify their performance. For synthetic data, we use indepen-
dent Poisson processes of equal rates as our normal pairs; the
goal of using synthetic data is to validate our analysis. For real
data, we use the traces LBL-PKT-4, which contains an hour’s
worth of all wide-area traffic between the Lawrence Berkeley
Laboratory and the rest of the world. The traces were made by
Paxson and were first used in his paper [13].

A. Simulations on Synthetic Data

In this section, we simulate DA, DMV, and DM on synthetic
independent Poisson processes to verify their false alarm proba-
bilities. We let packets, 10 s, and vary the sample
size between 2500 and 5000 packets (including both incoming
and outgoing packets).9 The performance of DA and DMV does
not depend on the traffic rate because they only rely on the rel-
ative order of packets. For DM, rate does play a significant role
and will be specified when it is necessary.

We have shown the advantage of DMV over DA and
have quantified their difference in terms of error exponent
as in Section VI-A-1. We now show how their
performance compares for finite . In Fig. 6, we plot the

8In [10], there is also a variation of S-III called “S-IV,” which makes deci-
sion by comparing the minimum deviation among all the valid matches with a
threshold. The false alarm probability of S-IV is no larger than that of S-III, but
S-IV is also easy to be defeated by chaff in the incoming traffic.

9Note that since DA requires the sample size to be a multiple of 2(M+1) =
3362 packets, we extend the sample size for DA to 6724.
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Fig. 6. P (� ); P (� ); and their bounds; M = 40 packets, 100 000
Monte Carlo runs.

Fig. 7. P (� ) under various rates; � = 10 s, 100 000 Monte Carlo runs.

simulated false alarm probabilities of DMV and DA, together
with the upper bound on from Theorem 3.2 and
the asymptotic upper and lower bounds on from
(2). Simulation shows that the asymptotic bounds in (2) are
valid even for relatively small . Furthermore, it
confirms our claim that the false alarm probability of DMV
decays much faster than that of DA.

We simulate DM for different traffic rates .
The simulation results are plotted in Fig. 7. The upper bounds in
Theorem 4.4 for rates between 3 and 4.5 are close to 1; the ac-
tual false alarm probabilities obtained from simulation are much
lower. The plot shows that the upper bound in Theorem 4.4 is not
tight, but it correctly predicts the fact that increases
with the increase of traffic rate, as argued in Section VI-A-2.

Furthermore, we make an overall comparison by plotting the
simulated false alarm probabilities of DA, DMV, and DM to-
gether in Fig. 8. From the plot it is clear that the comparison

Fig. 8. P (� ); P (� ) and P (� ); M = 40 packets, � = 10 s,
100 000 Monte Carlo runs.

between DM and DMV depends on the traffic rate. In our sim-
ulation, , the threshold rate estimated by (3)
is about 1.0375. The simulation verifies the existence of such a
threshold rate because the false alarm probability of DM decays
faster than that of DMV for and slower for .
Note, however, that in the estimation of the threshold rate we are
conservative about DM. This is because for DMV, Theorem 3.2
gives the exact error exponent, whereas for DM, Theorem 4.4
only characterizes a lower bound on its error exponent (which
is shown to be not tight). Therefore, we expect that the actual
threshold rate is larger than the one estimated by (3), e.g., in the
simulation the threshold rate is about 4.

B. Simulations on Traces

We extract 134 flows from the TCP packets in LBL-PKT-4.
Each flow has at least 1000 packets, and four of them have at
least 10 000 packets. For the testing of false alarm probabilities,
we take all combinations of the 134 flows, filter out the pairs
satisfying the definition of stepping-stone pairs with bounded
memory or bounded delay,10 and treat the rest as normal pairs.
For the testing of miss probabilities, we introduce independent
timing perturbation and chaff into the four flows with 10 000
packets to generate independent copies of their stepping-stone
relays. To generate bounded delay perturbation, we add to every
packet a delay chosen independently and uniformly from .
To generate bounded memory perturbation, we divide packets
into segments of size , and randomly generate relay
packets in the th segment for .11 Furthermore,
we insert chaff packets in both and according to uni-
form distributions on the range of the flows. In this section, we
let packets, 5 s, and packets. In
DBDC, we also set packets per second.

10The filtering is done by running DMV or DM on the entire flow pairs, and
excluding the pairs reported as “ATTACK.”

11The departures in the (i + 1)th segment can be viewed as relays of the
packets arriving in the ith segment. It is easy to see that such perturbation sat-
isfies the bounded memory constraint.
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Fig. 9. P (� ); P (� ); P (� ); and P (� ) on
LBL-PKT-4 (n is the joint sample size).

Fig. 10. P (� ) and P (� ) (n is the joint sample size).

We first simulate the false alarm probabilities of DBMC,
DAC, DBDC, and S-III; see Fig. 9. The false alarm probabil-
ities of DBMC, DAC, and DBDC are comparable, and they
do not change much after sample size 1000; the false alarm
probability of S-III, however, keeps decreasing after 1000
packets to a much smaller value. From the plot, we see that the
false alarm probabilities of DBMC, DAC, and DBDC for the
traces do not decay exponentially. It is possible that the false
alarm probability of S-III still decays exponentially, but we do
not have enough data in these traces to verify that.

We then simulate the miss probabilities of DBMC and DAC
on the long flows (of size 10 000) and their synthetic relays (see
Fig. 10). For each of the four long flows, we generate 1000 in-
dependent relay flows by random segment generation and uni-
form chaff insertion. Thus, we totally have 4000 stepping-stone
pairs with bounded memory in chaff. The simulation shows that
DBMC has much lower miss probability than DAC. In fact,
DBMC detects all the stepping-stone pairs in our simulation,

Fig. 11. P (� ) and P (� ) (n is the joint sample size).

whereas DAC has up to 27.58% miss by sample size 22 000. The
plot also shows that the miss probability of DAC increases with
the increase of the average number of chaff packets. This result
conforms to our analysis because the number of chaff packets
that are needed to evade DBMC is proportional to the traffic
size, whereas DAC can be evaded by a fixed number of chaff
packets. Note that our robustness claim about DBMC is con-
servative; DBMC is robust against up to
fraction of chaff no matter how the chaff packets are inserted. In
the simulation, DBMC survives 0.1 fraction of chaff, which im-
plies that the uniform chaff insertion is not optimal for bounded
memory stepping-stone pairs.

We next simulate the miss probabilities of DBDC and S-III;
see Fig. 11. For each of the four long flows, we generate 1000
independent relay flows by introducing independent delays and
chaff packets. The plot confirms that DBDC has a much smaller
miss probability than S-III; actually, in the simulation, DBDC
has no miss for almost all the sample sizes.12 This is expected
because DBDC is robust against up to a certain fraction of chaff
packets no matter where they are inserted, whereas S-III is vul-
nerable to the chaff insertion into . We see that in the simula-
tion DBDC successfully handles 0.1 fraction of chaff, which is
larger than the fraction which DBDC is
guaranteed to be able to handle. Similar to the case of DBMC,
this shows that the uniform chaff insertion is not optimal for
bounded delay stepping-stone pairs, either. From Figs. 10 and
11, we see that DAC is more robust to chaff than S-III.

VIII. CONCLUSION

In this paper, we develop techniques to detect encrypted step-
ping-stone connections. These techniques can rule out indepen-
dent connection pairs and leave a much smaller number of sus-
picious connections for further examination. After discovering
all the stepping-stone connections, one can use existing serial-
ization methods to determine the intrusion path [14].

12It is except for the sample size 3000, where we have six misses out of 4000
Monte Carlo runs.
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APPENDIX

Proof of Theorem 3.2 and Lemma 6.3: The proof is based
on the theory of random walk. Let be a simple random
walk, i.e.,

where are i.i.d. random variables taking value in
. Let . Define

the hitting time of or as

or (4)

The following lemma is from [15].
Lemma 8.1:

(5)

where . If
, then for large

(6)

Moreover, there exist constants and
not depending on , s.t.,

(7)

where .
Since

[(5), (6)] give upper and lower bounds on .
For the proof of Theorem 3.2, note that for independent

Poisson processes, it is known that is a simple random
walk. Define extreme values

. A false alarm occurs in DMV if and only if
. Note that the false alarm probability is the

largest if is symmetric (i.e., ). Then, we
have

(8)

(9)

where . Here, (8) is by union bound, and (9)
is by noticing

and then applying (5) with . Furthermore, by (7),
it is easy to see that

For the proof of Lemma 6.3, note that

Applying [(5), (6)] with and
gives the desired result.

Proof of Theorem 4.4: Given a match , de-

fine . Algorithm DM has a false alarm if and only if
there exists , s.t., the order-preserving match
satisfies , for all .

For , define the interarrival times be ,

and . Let . Then

Therefore, given is a general random walk with
steps ’s. We know that and are independent exponential
random variables with mean and , respectively, and
thus, ’s are i.i.d. with distribution function

if

if

The probability density function (pdf) of is

if

if

The false alarm probability satisfies

s.t.

Fix a . For , define

Define (Dirac delta function). In [15, p. 53],
it is shown that

Then, we have

Let . Simple calculation yields
that . Then
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Since this is true for all , we have
.
Proof of Proposition 6.2: If , then

For , let be the number of packets
that arrive in and departure after and
be the number of packets that arrive in and departure
before . Then

We have

Since and ,
we have

Since and
, we have
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