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Distributed Detection of Information Flows
Ting He, Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—Distributed detection of information flows is consid-
ered in which traffic sensors at different locations of a network ob-
serve transmission epochs. The traffic sensors communicate their
measurements to a fusion center via channels with rate constraints,
and the fusion center performs hypothesis testing for information
flow detection. Under a nonparametric flow model where relayed
packets can be perturbed up to bounded delays and multiplexed
with chaff noise, flow detectability is characterized through a no-
tion called consistency-rate function that shows the level of de-
tectable flows under capacity constraints on the fusion channels.
Achievability results are presented by constructing detection sys-
tems consisting of quantization, data transmission, and detection
subsystems. In particular, slot-by-slot quantization schemes at the
local sensors and threshold detection schemes at the fusion center
are proposed to provide consistent detection with quantifiable per-
formance.

Index Terms—Distributed detection, information flow, informa-
tion-theoretic limits, traffic analysis.

I. INTRODUCTION

W E investigate distributed detection of information flows
in a wireless network where, as illustrated in Fig. 1,

traffic sensors are deployed to monitor transmission activities
of wireless nodes. We assume that traffic sensors are simple
devices that are unable to decode the transmissions of moni-
tored nodes; they merely record the transmission epochs and
communicate their measurements to a fusion center over band-
width-constrained channels. The constraints on fusion capacity
dictates the use of local quantization at the individual sensors,
and the fusion center has to detect the presence of information
flows using quantized measurements.

The problem of detecting information flows arises from ap-
plications in information forensics and network security. For
example, in the so-called stepping-stone attack [1], an intruder
compromises a number of nodes in a network and uses these
nodes to relay attacking commands. The detection and tracing
of such unauthorized relays is an important yet challenging task
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Fig. 1. In a wireless network, traffic sensors are deployed to collect transmis-
sion activities of nodes A and B, denoted by S (i = 1; 2), which are then sent
to a detector at the fusion center to detect information flows through A and B.

because attackers can hide their activities by adding random de-
lays, inserting dummy packets, reshuffling transmissions, etc.
Also related is the surveillance of wireless transmissions using
distributed wireless sensors. In this case, the detection problem
is even more difficult because different information flows multi-
plex at the intersecting nodes, causing the measurements to con-
tain packets belonging to multiple flows. For the flow of interest,
all of the measurements that are not part of this flow, including
multiplexed packets, dummy packets, dropped packets, etc., act
as noise and are therefore referred to as chaff noise.

A. Related Work

Information flow detection is a special case of timing anal-
ysis which, in turn, belongs to the family of traffic analysis [2].
The problem has been studied as a countermeasure to step-
ping-stone attacks in the context of the Internet, where the key
task is to reconstruct the intrusion path by analyzing link traffic.
Since first studied by Staniford and Heberlein [1], the problem
has evolved to allow various manipulations by the attacker,
including encryption, padding, perturbations, and insertion of
chaff noise. Specifically, Zhang and Paxson [3] first considered
timing-based techniques to deal with encrypted traffic. Donoho
et al. [4] were the first to consider active perturbations. They
showed that if the perturbations have a bounded delay, then
there will be a distinguishable difference between information
flows and independent traffic. In [5], we proposed a parallel
perturbation model under the assumption of bounded memory
at relay nodes. Recent work shows that reliable detection can
be achieved even in the presence of maliciously injected chaff
noise [6]–[8]. These detectors, however, can only handle a lim-
ited number of chaff packets. The only timing-based detector
so far that provides vanishing error probabilities even if the
amount of chaff noise grows proportionally to the total traffic
size was proposed in [9] and extended in [10]. As a predecessor
of the current paper, the approach in [10] is centralized, where
there are no capacity constraints on the fusion channels.
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The problem of distributed detection of information flows, to
our best knowledge, has not been reported in the literature, and
such investigation is most relevant for wireless sensors that have
to deliver the measured traffic information to the fusion center
in some economic form. While the problem of distributed detec-
tion has been studied extensively, the standard model considered
in classical distributed detection does not apply to information
flow detection. Specifically, existing work on distributed infer-
ence under capacity constraints (e.g., [11]) typically assumes that
samples obtained at different sensors, although maybe correlated
spatially, are i.i.d. in time. In particular, Ahlswede and Csiszár
[12] studied the problem testing against independence, which
bears considerable similarity to the problem of detecting infor-
mation flows formulated in Section II. The lack of temporal inde-
pendence in information flows, however, fundamentally changes
the problem, and existing techniques in [11] do not apply.

B. Summary of Results, Limitations, and Organization

In this paper, we formulate the problem of information flow
detection as one of partially nonparametric binary hypothesis
testing. Under the null hypothesis that models the normal
traffic, we assume that epochs measured by the local sensors
are statistically independent, whereas under the alternative ,
a flow of packets exists relayed by the monitored nodes. The
presence of information flow imposes certain constraints on the
transmission epochs. Specifically, packets that are part of the
flow are relayed causally and within a certain delay constraint.

We first address the fundamental issue of detectability: given
that an information flow is considered detectable if it has a Cher-
noff-consistent detector [13] (i.e., a detector with both false
alarm and miss probabilities going to zero as the observation
length increases), are all the flows detectable? In other words,
are there cases in which with none-zero probability, the obser-
vations correspond to distributions under both hypotheses? In-
deed, it is not hard to see that information flows of very low
rate may not be detectable. For example, given a pair of inde-
pendent processes of transmission epochs, one can always find
some epochs that can be used to schedule relay transmissions,
and such relay transmissions are not detectable. On the other
hand, it is generally impossible to match all of the epochs of two
independent processes in such a way that the matching is causal
and bounded in delay. Therefore, we expect that there is some
rate of information flow below which detection is impossible
and some (possibly different) rate above which it is possible.

In the context of the distributed detection of information
flows, our goal is to characterize the so-called consistency-rate
function. Specifically, we are interested in that given a set of
capacity constraints on the fusion channels, to what level the
detection can be asymptotically accurate as the observation
length increases. To this end, we present some achievability
results. Our solution consists of four different scenarios. In par-
ticular, we consider cases when the fusion center is colocated
with one of the local sensors, which is referred to as distributed
detection with full side-information. In this case, measurements
at the fusion center do not need to be quantized. Alternatively,
the fusion center is not colocated with any sensor, and all of the
sensors must quantize their measurements.

For local sensors, we propose several slot-by-slot quantization
schemes. Specifically, we divide the observation window into
slots and let sensors transmit the number of epochs in each slot
to the fusion center. Sufficiently large slot lengths are chosen
to satisfy the rate constraints. Alternatively, we also propose a
slotted one-bit quantization scheme where only the presence or
the absence of transmissions in each slot is reported.

For the fusion center, we propose, for each scenario, a
detector that provides Chernoff-consistent detection for all
of the flows with chaff noise bounded by a certain level. Our
schemes are generalizations of the centralized detection scheme
proposed in [10], where one assumes that the fusion rates are
unconstrained.

A few words on the limitations of our approach are in order.
We note here that the separated design of quantization and de-
tection is, in general, suboptimal. Thus, the results presented in
this paper are mostly achievability results. Our model is par-
tially nonparametric, and our approach does not depend on the
specific traffic distributions. To obtain analytical characteriza-
tion of the consistency-rate function, we have assumed that the
observed processes by individual sensors are Poisson under both
hypotheses. It is well known that Poisson modeling is not accu-
rate for many applications. While acknowledging the limitation
of the Poisson assumption, we note, however, that the central-
ized algorithms developed under this assumption have worked
reasonably well for actual Internet traces [14]. Finally, our re-
sults are presented for the case of two sensors. The approach
has a natural generalization to the multisensor case, preliminary
results of which have been presented in [15].

The rest of this paper is organized as follows. Section II
formulates the problem. Section III gives the performance
criteria and a general converse result. Sections IV–VI are
dedicated to the design of specific detection systems, among
which Section IV defines two slot-based quantizers, Section V
presents the corresponding detectors, and Section VI analyzes
and compares the performance of the proposed systems. Then,
Section VII concludes with remarks.

II. PROBLEM FORMULATION

A. Notation

We use the convention that uppercase letters denote random
variables, lowercase letters denote realizations, boldface letters
denote vectors, and plain letters denote scalars. For example,
we denote a point process by , its realization , the th epoch

, and realization of the th epoch . Given a realization
of a point process , we use to denote the set of elements

in this realization. Given two realizations of point processes
and is the superposition operator

defined as , where
and .

B. Flow Model and Hypotheses

Let and denote the transmission activities of nodes
and , respectively, i.e.,

(1)

where is the th transmission epoch1 of (or ).

1Assume no simultaneous transmission.
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Fig. 2. Information flow (F ;F ) in chaff noiseW (i = 1; 2); g: the causal
bijection between F and F with delays bounded by �.

We first introduce the definition of information flow.
Definition 2.1: A pair of processes is an information

flow if for every realization , a bijection
exists such that for all .

Remarks: The bijection is a mapping between the transmis-
sion epochs of the same packets at the two nodes, allowing per-
mutations during the relay. The condition that is a bijection
imposes a packet-conservation constraint (i.e., every informa-
tion-carrying packet generates one and only one relay packet).
The condition is the causality constraint, which
means that a packet cannot leave a node before it arrives. In addi-
tion, imposes a bounded delay constraint, meaning
that the maximum delay at the relay node is bounded by . The
bounded delay constraint, first proposed by Donoho et al. in [4],
is often implied by reliable communication protocols.

Next, we say that contains an information flow if, as
illustrated in Fig. 2, can be partitioned into a subse-
quence of information-carrying packets and a subsequence

of the so-called chaff (noise) packets, i.e.,

(2)

where is an information flow. Here, the chaff processes
model all of the transmissions that are not part of

the information flow. They do not need to satisfy any constraints
and can be correlated with the flow.

We are interested in testing the following hypotheses at the
fusion center:

are independent

contains an information flow (3)

for known delay constraint by observing compressed mea-
surements sent by local sensors.

We assume that the marginal distributions of are
known, and they are the same under both hypotheses (detailed
analysis is done for Poisson processes). Otherwise, a sensor can
independently make a decision based on its own measurements
(e.g., by the Anderson–Darling test [16]) and send the result (a
1-b message) to the fusion center, and the error probabilities
can be made arbitrarily small if there are enough measurements.
This is partially nonparametric hypothesis testing2 because no
statistical assumptions are imposed on the correlation of and

under .

C. Architecture of Distributed Detection Systems

The capacity constraints in the uplink channels make it nec-
essary to employ quantizers at the sensors, where

is the duration of the observation. As illustrated in Fig. 3, the

2Note that this notion is different from seminonparametric tests [17], in which
an unknown distribution function is approximated by a series of known func-
tions.

Fig. 3. Distributed detection system. This system consists of two quantizers
q and q and a detector � .

Fig. 4. Information flow hidden in independent processes: s ; s : realizations
of independent processes; each matched pair denotes the transmission epochs
of a packet in the flow.

processes are compressed into which are
delivered to the fusion center, and then the detector makes a de-
cision in the form of

where3 . The capacity constraints are expressed as4

(4)

for sufficiently large , where is the alphabet size of the
output of . Generally, , but if the detector is
located at one of sensors (e.g., the sensor at node ), then

, which is the so-called case of full side information.

III. DETECTABILITY OF INFORMATION FLOWS

Since chaff noise can be arbitrarily correlated with informa-
tion flows, as mentioned earlier, not all flows are detectable.
Fig. 4 illustrates realizations of independent point processes
under within which some epochs are used to relay packets
of an information flow.

In this section, we formalize this intuition into some quantifi-
able measure of the detectability of information flows.

A. Performance Measure

Intuitively, if the rate of information flow is low, or equivalent,
the rate for chaff noise is high, detection is not possible. Thus,
the flow detectability is tied intimately to the notion of chaff-to-
traffic ratio (CTR) that is defined, which is reminiscent of the
more familiar term signal-to-noise ratio.

Definition 3.1: Given realizations and of an
information flow and its chaff noise, the CTR of , where

is defined as

(5)

3The value 0 denotes H , and 1 denotes H .
4The unit of R (i = 1; 2) is nats per unit time.
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As the name suggests, CTR is the asymp-
totic fraction of chaff noise in traffic that contains information
flow. We will use CTR to measure the amount of chaff noise that
a detector can handle. Specifically, we use Chernoff consistency
[13] to define the consistency level of a detector as follows.

Definition 3.2: A detector is -consistent if it
is Chernoff consistent for all of the information flows with CTR
bounded by a.s.5, that is, the false alarm probability
and the misprobability satisfy

1) for any under ;
2) , where

contains an information flow
with CTR .

The consistency level of is the supremum of such that is
-consistent.

Intuitively, the consistency level of a detector is the maximum
fraction of chaff noise so that both false alarm and miss prob-
abilities vanish with the observation length. Note that since the
distribution of traffic is unknown when there is a flow ,
one cannot explicitly characterize the misprobability. The con-
sistency level, however, provides a unified way to measure how
much chaff noise a detector can tolerate, regardless of the dis-
tributions of the flow and the noise. In the sequel, we will use
the consistency level to evaluate detection performance, where
a higher consistency level means better robustness against chaff
noise.

B. Achievability and Converse on Flow Detectability

Using consistency level as the performance measure, we
can formalize the detectability of information flows in terms
of achievable consistency levels and the converse. Moreover,
since the overall performance of distributed detection relies on
the capacities of data fusion, our characterization needs to be
functions of these capacities. Specifically, we characterize the
optimal achievable performance of information flow detection
by the highest consistency level as a function of the capacity
constraints as follows.

Definition 3.3: Given capacity constraints , we de-
fine the consistency-rate function, denoted by , as

is consistent

(6)

The consistency-rate function maps capacity constraints
to the maximum achievable consistency level among all of
the detection systems satisfying the constraints, providing the
optimal tradeoff between communication cost and detection
performance. Similarly, if the aforemnentioned optimization is
only among a certain family of quantizers or detection systems,
then the result is called the consistency-rate function of this
type of quantizers or detection system, which can then be used
to evaluate the system performance.

5Here “a.s.” means almost surely.

We now consider the converse. We have seen from Fig. 4 that
it is not always possible to detect small flows. In particular, the
minimum CTR (Definition 3.1) required to mimic in distri-
bution establishes a threshold on the noise level beyond which
the flows can be made undetectable, as stated in the following
definition.

Definition 3.4: Given capacity constraints , the un-
detectability-rate function is defined as

(7)

where are auxiliary random variables from a set de-
fined by6

and7

and some under

and

is an information flow

(8)

In (8), is the marginal of in
specified by the distribution of

and the conditional distribution8 .
The undetectability-rate function maps capacity con-

straints to the minimum level of chaff noise required to
make an information flow mimic in distribution under
the optimal quantization. Here, the conditional distributions

specify the quantizers of and , and
(8) calculates the minimum noise level [condition (3)) for an
information flow (condition (2)] to appear identical with some
traffic under in both marginal distributions before quantiza-
tion and the joint distribution after quantization (condition (1)).
The overall level of undetectability is then defined as the max-
imum of such a noise level over all quantizers satisfying given
capacity constraints. Contrary to the consistency-rate function,
the undetectability-rate function provides a converse on flow
detectability, where for noise levels above this function, flows
can always be camouflaged as traffic under by perturbations
and chaff insertion. It is easy to see the following relationship
between these functions.

Theorem 3.5: For any
.

6Note that P is well defined because S (i = 1; 2) have the same distribu-
tions under both hypotheses.

7The notation “=” means equal in distribution.
8We can write the conditional distribution Q(X;YjS ;S ) in product form

because the quantization of the two processes is independent.
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Fig. 5. Achievable and unachievable regions of distributed information flow
detection in the consistency-rate space (R = R = R). By time-sharing
arguments, it can be shown that �(R ;R ) is concave whereas �(R ;R ) is
convex with respect to (R ;R ). The plot is not from computation and is only
for illustration purposes.

Proof: With (8), an information flow exists and
chaff noise constituting fraction of the
total traffic such that the mixture appears
statistically identical with traffic under to the sensors and
the detector. No detector can detect this flow consistently and,
thus, the consistency level under these quantizers is bounded
by . Therefore, maximizing over all
of the quantizers under yields an upper bound on the
overall highest consistency level.

Through the notions in Definition 3.3 and 3.4, we have intro-
duced a partition of the consistency-rate space: as illustrated in
Fig. 5, the region below is achievable in that any flow
with noise level (CTR) below can be detected con-
sistently under capacity constraints ; the region above

is unachievable in that with the noise level above
, a flow can appear statistically identical with normal

traffic under any quantization that satisfies the corresponding
capacity constraints and is thus completely undetectable. It has
been proven in [10] that for centralized detection (i.e.,

) and Poisson processes, the two functions are equal

where is the rate of . Under finite capacities, the
results are unknown.

A few remarks are in order at the conclusion of this section:
• The undetectability-rate function is conceptually similar

to the distortion-rate function of point processes in the
following sense: under rate constraints, the distortion-rate
function gives the minimum distortion between the orig-
inal and the reconstructed processes, whereas the unde-
tectability-rate function calculates the maximum “devia-
tion” between the two hypotheses in terms of the amount
of chaff noise required to make them equal.

• While achievability results can be obtained by de-
signing specific detection systems, the converse is
more challenging because the optimal quantizers
are unknown. For Poisson traffic, however, we have

since is monotone
increasing.

In the sequel, we will focus on achievability results by con-
structing explicit detection systems.

IV. QUANTIZERS

The design of quantizers is complicated by
the dependency on . To simplify the design, we partition the
observation into slots of equal length and use
independent and identical quantization in each slot. We consider
the following quantizers.

Definition 4.1: Given a point process , a slotted counter
with slot length is defined as , where

is the number of points in the th slot (i.e., the interval
) of .

The slotted counter was first used to compress Poisson pro-
cesses by Rubin in [18], where combined with proper recon-
struction methods, it was shown to approximate the optimal
performance predicted by the rate distortion function under the
single-letter absolute-error fidelity criterion. This result, how-
ever, does not imply that the slotted counter is (near) optimal in
our problem because our fidelity criterion is different. We refer
to the quantization by a slotted counter as slotted quantization.
It is easy to see that the aforementioned definition is equivalent
to the point-wise quantizer , where .

For applications requiring an extremely low rate, it may be
desirable to further compress the results of slotted quantization.
To this end, we propose the following quantizer.

Definition 4.2: Given a point process , a one-bit quantizer is
a binary quantization of the output of a slotted counter, defined
as where , and is the
indicator function.

Quantization by a one-bit quantizer is called one-bit quanti-
zation.

Hereafter, we will refer to the quantization results of and
by and , respectively, the

meaning of which will depend on the quantizers used. For the
full side-information case (i.e., ), we use to
denote the number of epochs in in the interval .

If are Poisson processes, then ’s and ’s are
i.i.d., and they can be delivered almost perfectly (for sufficiently
large ) under the capacity constraints in (4) if and only if

(9)

V. DETECTORS

In this section, we will present detectors for each quantization
scheme proposed in Section IV. The detectors first compute the
minimum fraction of chaff noise needed to generate the received
measurements (assuming ) and then declare if this frac-
tion is suspiciously small. In the rest of this section, we will
discuss the following four cases:

Case 1) is under slotted quantization and fully avail-
able;9

Case 2) both and are under slotted quantization;
Case 3) is under one-bit quantization and fully avail-

able;
Case 4) both and are under one-bit quantization. Since

the optimal detection performance in high capacity

9The detector when S is compressed and S fully available is analogous.
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regime is already known [10], our analysis will focus
on the low capacity (i.e., large slot length) regime.

A. Case I: Slotted Quantization With Full Side Information

Consider the case when is under slotted quantization, and
is fully available. Then, the detector’s observations are real-

izations and .
To compute the minimum chaff noise in these realizations,

we want to find realizations of an information flow and
chaff noise such that: 1)

; 2) the CTR is minimized. If both and are given,
then the minimum chaff can be computed by an algorithm called
“Bounded-Greedy-Match” (BGM) proposed by Blum et al. in
[7]. For delay bound , BGM works as follows:

1) sequentially match every epoch in with the first un-
matched epoch in in ;

2) the matched epochs form and the unmatched
epochs .

A self-explanatory pseudocode implementation of BGM is
given in Algorithm 1.

Algorithm 1 Bounded Greedy Match (BGM)

Require: Realizations of point processes ; maximum
delay .

Ensure: Return the minimum number of chaff packets in
given realizations.

1) initialize indices , and counter ;

2) while are valid indices in do;

3) if then If the pair is
noncausal, ;

4) ;

5) else if then If the delay exceeds
;

6) ;

7) else Otherwise, the pair is matched, ;

8) and the indices are advanced. ;

9) return is the total number of chaff packets found
by BGM. .

Now that we only know and , the idea is to recon-
struct from and apply BGM on the reconstructed pro-
cesses. Based on this idea, we develop a chaff-inserting algo-
rithm called “Slotted-Full Greedy Match” (SF–GM) as follows.
Given , SF–GM does the following:

1) construct a point process as busts of simultaneous
epochs at , as illustrated in Fig. 6;

2) run BGM on with delay bound .

The optimality of SF–GM is provided by the following propo-
sition.

Proposition 5.1: Under the quantization in Case I, SF–GM
inserts the minimum number of chaff packets in transmitting an

Fig. 6. SF–GM: greedy match between a batched process ŝ and s . Epochs
not matched within delay T +� are considered to be chaff noise.

information flow according to the (quantized) schedule
for any .

Proof: See the Appendix.
Since SF–GM is optimal, we can compute the minimum

number of chaff packets to mimic the measurements
using SF–GM. This idea leads to the following detector.

Given , define a detector as

if

where is a predetermined threshold,
, and is the number of chaff packets found by SF–GM

in , excluding chaff packets in10 (i.e., if
is the chaff noise found by SF–GM for input ,

then ).
Under , the actual number of chaff packets has to be at least

. Thus, has vanishing misprobability for all of the informa-
tion flows with CTR bounded by a.s. To guarantee vanishing
false alarm probability, on the other hand, cannot be too large.
The overall performance of is characterized by the following
theorem.

Theorem 5.2: If and are Poisson processes of rates
bounded by and is large, then the consistency-rate function
(see Definition 3.3) of (combined with quantizers in Case I)
is lower bounded by , where11

(10)

(11)

Furthermore, for any , the false alarm probability
decays exponentially with .

Proof: See the Appendix.
The theorem contains the following results. For slot length

1) the consistency level of is for any ;
2) the rate suffices to deliver reliably for large .

Therefore, by using a proper and the optimal encoding of
, we can make achieve Chernoff-consistent detection for

the noise level bounded by under a transmission
rate . The performance guarantee in the other cases can be
interpreted similarly.

10This is because packets in this interval may be relays of packets transmitted
before the detector starts taking observations.

11Here, H(Poi(�T )) is the entropy of Poisson distribution with mean �T .
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Fig. 7. SS–GM: match between batched processes ŝ and ŝ . Epochs not
matched within delay d(�=T )eT are considered chaff noise.

B. Case II: Symmetric Slotted Quantization

Suppose that and are both compressed by slotted coun-
ters of slot length12 . We follow the procedure in Case I to de-
velop a detector in this scenario.

To compute the minimum chaff noise, we develop a chaff-in-
serting algorithm called “Slotted-Slotted Greedy Match”
(SS–GM) which is also based on BGM. Given ,
SS–GM works as follows:

1) construct point processes as bursts of (or
) simultaneous points at for ;

2) run BGM on with delay bound , as il-
lustrated in Fig. 7.

Algorithm SS–GM is optimal in minimizing the number of
chaff packets, as stated in the following proposition.

Proposition 5.3: Under the quantization in Case II, SS–GM
inserts the minimum number of chaff packets in transmitting an
information flow according to any given schedule .

Proof: See the Appendix.
Algorithm SS–GM provides a method to compute the min-

imum amount of chaff noise in the measurements, based on
which we design a detector as follows.

Given , define a detector as

if

where is a predetermined threshold,
, and is the number of chaff packets

found by SS–GM in , except for chaff packets in13

.
The optimality of SS–GM implies that the actual number of

chaff packets under is no smaller than . Therefore, has
vanishing misprobability for all of the information flows with
CTR bounded by a.s. The consistency of is guaranteed
by the following theorem.

Theorem 5.4: If and are Poisson processes of max-
imum rate , and is large, then the consistency-rate function
of is lower bounded by , where

(12)

12The slot length T is chosen to be large enough to satisfy both capacity con-
straints.

13As in the computation of C , this adjustment is needed because packets at
the beginning of ŝ may be the relays of packets transmitted before the detector
starts.

Fig. 8. OF–GM: Greedy matching starting from s . Each epoch in s is
matched to the first unmatched nonempty slot (i.e., x = 1) that is no more
than � earlier.

and . Moreover, its false alarm probability de-
cays exponentially with for any .

Proof: See the Appendix.
Note that as increases, decays exponentially at the

rate . Compared with the decay of ,
the results suggest that the consistency level decays much faster
due to the quantization of .

C. Case III: One-Bit Quantization With Full Side Information

Consider the scenario when is compressed by one-bit
quantization, and is fully available.

This case is similar to Case I in Section V-A except that the
observations are indicators instead of the exact counts. Clearly,
more information is lost after one-bit quantization because when

, there can be one or more epochs in slot , which
prevents a direct reconstruction of . To overcome this dif-
ficulty, we use a greedy matching starting from epochs in .
Specifically, we develop a chaff-inserting algorithm called one-
bit-full greedy match (OF-GM) which works as follows. Given

, OF-GM:
1) match every epoch in with the earliest unmatched

nonempty slot within delay , as illustrated in Fig. 8;
2) unmatched epochs become chaff; each unmatched

nonempty slot contains a chaff packet.

Algorithm OF–GM is the optimal chaff-inserting algorithm
in Case III, as stated in the following proposition.

Proposition 5.5: Under the quantization in Case III, OF–GM
inserts the minimum number of chaff packets in transmitting an
information flow according to any given schedule .

Proof: See the Appendix.
Based on OF–GM, we develop the following detector. Given

, the detector is defined as

where is a fixed threshold, is the number of
chaff packets found by OF-GM in , excluding chaff
packets in , and for

. Here, is the maximum-likelihood estimate
of the mean number of epochs per slot in based on the as-
sumption that is Poisson.

Proposition 5.5 guarantees that the actual number of chaff
packets under is no smaller than . Moreover, under the
Poisson assumption, converges to the average traffic size per
slot in a.s. Thus, the statistic is upper
bounded by the actual CTR a.s. as , implying that
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has vanishing misprobability for CTR bounded by a.s. The
overall performance of is guaranteed by the following the-
orem.

Theorem 5.6: If and are independent Poisson processes
of maximum rate , and is large, then has a consistency-
rate function that is no smaller than , where14

(13)

(14)

and the false alarm probability decays exponentially with if
.

Proof: See the Appendix.
Note that as increases, decays exponentially with

exponent , which is much faster than the decay of
, indicating that for the same slot length, one-bit quanti-

zation significantly reduces consistency compared with slotted
quantization. However, it does not imply that slotted quanti-
zation is better because the one-bit quantizer can use a much
smaller slot length under the same capacity constraint.

D. Case IV: Symmetric One-Bit Quantization

Suppose that one-bit quantizers with the same slot length
are used for and . To compute the minimum chaff noise,
we observe that if slot in is nonempty, then the corre-
sponding slots within the delay bound (i.e., slots

) in cannot be all empty; otherwise, slot in must
contain chaff noise. Similar arguments hold for . Based on
this observation, we develop an algorithm called “One-Bit-One-
Bit–Greedy Match” (OO–GM) which works as follows. Given

, OO–GM inserts a chaff packet in slot if

for .
Algorithm OO–GM computes the minimum amount of chaff

noise as stated in the following proposition.
Proposition 5.7: Under the quantization in Case IV, OO–GM

inserts the minimum number of chaff packets in transmitting an
information flow according to any given schedule .

Proof: See the Appendix.
Based on OO–GM, we develop a detector as follows.

Given , the detector is defined as

if

where is a predetermined threshold, is the
number of chaff packets inserted by OO–GM in ,
excluding chaff packets in , and

are defined as in as functions of and ,
respectively.

Detector has vanishing misprobability as long as the CTR
is bounded by a.s. because of arguments similar to those in

14Here, h(p) is the binary entropy function defined as h(p) = �p log p �
(1 � p) log (1� p).

Section V-C. Its achievable consistency-rate function is given in
the following theorem.

Theorem 5.8: If and are independent Poisson processes
of maximum rate and is large, then the consistency-rate
function of is at least , where

(15)

and . Furthermore, its false alarm probability
decays exponentially if .

Proof: See the Appendix.
For the same decays 12 times faster than .

Again, it does not mean that slotted quantization is better be-
cause the slot lengths under different quantization schemes are
different.

VI. ANALYSIS AND COMPARISON

We have designed detection systems by dividing the detection
procedure into three steps:

1) quantization;
2) data transmission;
3) detection.

Although such separation has greatly reduced the complexity,
it is still difficult to find the optimal design, especially for the
quantizers. Instead, we will try to compare the detection perfor-
mance under each quantization scenario in Section V to derive
some heuristics.

A. Performance Analysis

Under the assumption that are Poisson processes
of maximum rate , we have derived performance lower bounds
for the proposed detectors in Section V. The following result
enables us to characterize the exact performance.

Lemma 6.1: The minimum CTR of -GM
under converges a.s. to a constant,

denoted by .
Proof: See the Appendix.

By Lemma 6.1, it can be shown that the consistency-rate func-
tion of detector is equal to [for

defined in (11) and (14)]. The computation of is
rather involved [see (19)–(22) for their expressions]; instead,
we resort to closed-form lower bounds, which leads to
in (10), (12), (13), and (15).

Let the highest consistency level in Case

be (i.e., over
all detectors under the quantization in Case ). We can bound

as follows.
Theorem 6.2: Under the quantization schemes in Case

, the optimal consistency level is bounded by

where and are independent Poisson random variables with
mean .

Proof: See the Appendix.
The theorem contains achievability and converse results

regarding the performance under the proposed quantizaters.
Specifically, the proposed detectors may not be optimal because

Authorized licensed use limited to: Cornell University. Downloaded on August 16, 2009 at 22:54 from IEEE Xplore.  Restrictions apply. 



398 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

Fig. 9. Consistency-rate functions of � . . . � for various traffic rates: � = 1, 10 slots. The overall consistency-rate function is bounded between the largest
� (�) and 1/(1+��) (not shown). � = 0.1.

the theorem only considers detection at the fusion center; the
marginal distributions at sensors (before quantization) under the
two hypotheses are still different and can be used for detection.
Moreover, the minimum level of chaff noise needed to mimic

[in the sense of (8)] under the proposed quantization is
upper bounded by (in the proof, an explicit
method is given to mimic the distributions under ).

Our results on performance analysis so far can be summarized
as follows: for

where is given by (8) for the quantizers in Case .

B. Numerical Comparison

In this section, we present a numerical comparison of the pro-
posed detection systems from theoretical and operational per-
spectives.

1) Consistency-Rate Functions: Given capacity , we
compare the consistency-rate functions15

together with the upper bound16 in Theorem 6.2. For
the simplicity of implementation, we choose the range of to
guarantee that (see Figs. 9–11).

The plots yield several observations. First, for small
(Fig. 9), the detectors under slotted and one-bit quantization

15Since � ( � ) is not in closed form, we calculate it by simulating the algo-
rithms SF, SS, OF, and OO–GM on quantized independent Poisson processes of
rate �.

16Only the upper bound for T = R (R) is plotted because the bound for
T = R (R) is much looser.

(i.e., versus and versus ) have similar perfor-
mance; as increases (Figs. 10 and 11), the detectors under
slotted quantization ( and ) outperform their counterparts.
This observation clearly suggests that the quantization to use
should depend on the traffic rate. For very light traffic, one-bit
quantization achieves similar performance as slotted quantiza-
tion at a lower complexity, whereas for heavier traffic, slotted
quantization is much better.

Second, for fixed , the consistency levels of all the detectors
decreases with the increase of . This observation implies that
it is more difficult to detect information flows in heavy traffic.
Intuitively, this is because the relative maximum delay (i.e., the
maximum delay normalized by the average interarrival time

) is an increasing function of the traffic rate and, thus, the
delay constraint is relatively loose for heavy traffic.

Finally, is close to the upper bound, especially
at small . Therefore, is near optimal for detection under
slotted quantization and full side information.

2) Simulations: Besides the theoretical comparison, we
also simulate the proposed detectors under the following traffic
model. Under , and are independent Poisson pro-
cesses of rate . Under , where

is generated by adding i.i.d. uniform delays in to a
Poisson process of rate , and ’s
are independent Poisson processes (also independent of ) of
rate . The parameter is the CTR.

Assuming full side information,17 we compare the receiver
operating characteristics (ROCs) of the detectors under slotted

17It can be shown that the quantization results of S under H are not i.i.d.,
which complicates the calculation of the communication rate. Thus, we only
simulate the detectors with full side information.
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Fig. 10. Consistency-rate functions of � . . . � for various traffic rates: � =1, 10 slots. The overall consistency-rate function is bounded between the largest
� (�) and 1/(1+��) (not shown). � = 0:5.

Fig. 11. Consistency-rate functions of � . . . � for various traffic rates: � =1, 10 slots. The overall consistency-rate function is bounded between the largest
� (�) and 1/(1+��) (not shown). � = 1.

and one-bit quantization together with those of the centralized
detector in [9]; see Fig. 12. Specifically, under capacity

, we simulate the proposed detectors with various thresholds
under both hypotheses and plot the simulated false alarm and
detection probabilities. We use a sample size of 100 packets
per process and repeat the experiments for times. The plot
clearly shows the advantage of slotted quantization over one-bit
quantization. Further simulations show that both ROCs will ap-
proach the upper left corner as the capacity increases.

VII. CONCLUSION

This paper addresses the distributed detection of informa-
tion flows under capacity constraints. Our contributions are
twofold: we introduce the notions of consistency-rate and unde-
tectability-rate functions to characterize the fundamental limits
of distributed information flow detection; moreover, we obtain
achievability results by developing detection systems which
are simple, yet effective. Our results show that slotted quanti-
zation and threshold detectors based on noise-level estimation
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Fig. 12. ROCs of � and � with and without capacity constraints (P (� ) denotes the detection probability): � = 1;� = 1; f = 0:2; R = 0:5 (if finite
capacity), 100 packets per process, 10 000 Monte Carlo runs.

provide competitive performance. This work, combined with
the previous work on centralized detection in [10], establishes
a mathematical framework for statistical information-flow
detection.

APPENDIX

A. Proof of Proposition 5.1

First, we show that the matched pairs found by SF–GM in-
deed form a realization of an information flow. Let be the
numbers of matched epochs in , and be the
sequence of matched epochs in . We construct a sequence

as follows. For an epoch in matched to the
same slot, we construct an epoch at in ; for an epoch
matched to the previous slot, we construct an epoch in at the
end of that slot. Such construction guarantees that slotted quan-
tization of yields , and forms a realization of the
information flow.

Then, we show that SF–GM is optimal. Since BGM is op-
timal, it remains to show that our choice of and the delay
bound minimizes chaff noise. Given ,
the maximum interval for the packets to be relayed through

is , and SF–GM allows all such matching.
Therefore, SF–GM inserts the minimum chaff noise for any

.

B. Proof of Theorem 5.2

It is known that for Poisson processes of maximum rate ,
the rate suffices to deliver (for large ). We only
need to show that the consistency level of can approximate

. By our argument on the misprobability before Theorem
5.2, the desired result holds if we can prove that the false alarm

probability decays exponentially for any . It suffices
to consider the worst case where have equal rate .

First, for , note that a necessary con-
dition for false alarm is that or

. By union bound, we have

By Cramer’s Theorem [19], the second term
decays exponentially with for all

. The exponential decay of the first term remains to be shown.
Let be the number of chaff packets inserted in the th

slot. Then, is correlated with and . If, however,
we run on every other slot, then the numbers of chaff packets

will be i.i.d. Obviously, . Thus, we
have

(16)

Again by Cramer’s Theorem, the right-hand side of (16) decays
exponentially as long as . Since

, where by
Gaussian approximation of Poisson random variables, we can
approximate by a Gaussian random variable
with zero mean and variance and
with mean and variance . Thus

Therefore, (16) decays exponentially if , which
is satisfied if . This completes the proof.

Authorized licensed use limited to: Cornell University. Downloaded on August 16, 2009 at 22:54 from IEEE Xplore.  Restrictions apply. 



HE AND TONG: DISTRIBUTED DETECTION OF INFORMATION FLOWS 401

C. Proof of Proposition 5.3

By the construction method in the Proof of Proposition 5.1,
we see that the epochs matched by SS–GM can indeed be used
to transmit information flow. Moreover, by the constraints of
causality and bounded delay, packets in slot can only be
matched to packets in slots , and SS–GM
allows all such matching. Combining this argument with the
fact that BGM is optimal yields the optimality of SS–GM.

D. Proof of Theorem 5.4

Following the Proof of Theorem 5.2, it suffices to show that
decays exponentially for any

for processes of equal rate . As before, we bound this probability
by , where is the number of chaff
packets in slot if we only run on even slots. Now that

and for
large , we have

(17)

where , and (17) is obtained by the approximation
of in [20] .
Since ’s are i.i.d., by Cramer’s Theorem, the proba-
bility decays exponentially if

.

E. Proof of Proposition 5.5

By the construction in the Proof of Proposition 5.1, we can
construct an information flow based on the matching found by
OF–GM. Since OF–GM is a bounded greedy match starting
from , by symmetry, its optimality can be proved following
the same arguments that prove the optimality of BGM (see [7]).

F. Proof of Theorem 5.6

The proof follows similar steps as in the Proof of Theorem
5.2. It is easy to see that for Poisson processes of rate bounded
by , the rate suffices to deliver the one-bit quanti-
zation results. For consistency results, it suffices to show that

converges to exponentially, and de-
cays exponentially for any . For the former,
since ’s are i.i.d., converges to its mean ex-
ponentially (by Cramer’s Theorem), implying the exponential
convergence of . For the latter, by Cramer’s Theorem, it is
reduced to showing that , where is
the number of chaff packets per slot if is only run on even
slots. If (with probability ), then all of the epochs
in in will be chaff; if and

, then there will be at least one
chaff packet in in slot . Thus

G. Proof of Proposition 5.7

To construct an information flow, we use the following vari-
ation of BGM: match every with all for

(both and can be matched repeatedly).
Each pair of matched slots corresponds to a pair of matched
epochs. It is easy to see that such matching generates (a real-
ization of) an information flow.

On the other hand, if OO–GM inserts a chaff packet, then we
must have a nonempty slot such that all of the corresponding
slots in the other process within the delay and the causality
bounds are empty. Thus, any other chaff-inserting algorithm
would have to insert a chaff packet in that slot as well, which
implies that OO–GM is optimal.

H. Proof of Theorem 5.8

For , we take an approach slightly different from the
others. Let denote the number of slots between the

th and the th chaff packets (including the latter). Then,
we can write the average number of chaff packets as

(18)

To bound the probability of this event, we note that
for i.i.d. random variables representing the number of slots
between chaff packets if chaff can only appear in even slots.
We claim that , where has the geometric distribution

for .
Here, is the number of slot pairs until the event occurs,
which is given by

or

equivalent to the event . Event is i.i.d.
for with probability . Based on the aforementioned
results, we have

where . Now that
, by Cramer’s Theorem,

decays exponentially for any . This result,
coupled with the exponential convergence of (as
in the Proof of Theorem 5.6), completes the proof.

I. Proof of Lemma 6.1

It is easy to see that the CTR is minimized when and
have equal rate .

1) Case I: Let the th interarrival time in be
. Let be the starting time for finding

matches in the th slot of ( by definition). For
each , SF–GM matches the reconstructed epochs
with epochs in . Let be the index of the last epoch
in that is matched or assigned as chaff after the epochs are
matched, and . Then, satisfies the following
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recursion:

where is a
truncated inerarrival time. Since ’s are i.i.d. exponential
random variables, by the memoryless property of exponential
distribution, we have which is a random walk with
reflecting barriers at 0 and . The steps have the same distri-
bution as , where is a Poisson variable with
mean are i.i.d. exponential random variables
with mean , and ’s are independent of . It is easy to
check that is an ergodic process and, thus, its limiting
distribution exists.

Let denote the number of chaff packets in slot .
Then

It is clear that ’s only depend on each other through . Now
that is ergodic, converges a.s. Since the
average traffic size per slot converges a.s., their ratio, which is
the CTR, also converges a.s. The limit is given by

(19)
where is distributed by the limiting distribution of .

2) Case II: Considering for simplicity; the proof
can be generalized to . Let be the number
of packets in slot in which are matched to slots before
( by definition). It can be shown that satisfies the
following recursion:

Note that is not Markovian because given
still depends on through . We can solve this problem
by including in the state. Specifically, it can be shown that

is a Markov chain and is ergodic. The number of
chaff packets can be written as

Since is ergodic, and ’s and ’s are i.i.d.,
we see that converges a.s., which implies that the
CTR converges a.s. The limiting CTR can be computed by

(20)

where is distributed by the limiting distribution of
and are independent Poisson variables

with mean , and is independent of .
3) Case III: Let is the starting time for finding

matches in the th slot in if (define );
similarly, let be the starting time if (define

). Then, and satisfy the following recursions:

if

if
if

where . It is easy to see that
is a Markov process. Moreover, it can be shown

that the process is ergodic. Then, we
can write the number of chaff packets in slot as

if

By the ergodicity of and the
homogeneity of the Poisson processes, one can show that

converges a.s., and so does the CTR. The
limit is given by (21), shown at the bottom of the page,
where is distributed by the limiting distribution of

.
4) Case IV: Consider the case . It is easy to check

that the process (where ) is
an ergodic Markov chain. Since the number of chaff packets in
slot is computed by

we see that converges a.s. Therefore, the CTR
converges a.s. The limit is given by

(22)

where has the limiting distribution of
. The proof can be generalized

to .

(21)
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J. Proof of Theorem 6.5

The lower bound is by definition. For the upper bound, it suf-
fices to consider Case I because the observations in the other
cases are further compression. We give the following method
to mimic distributions under . Given realizations ,
where is the result of slotted quantization, we construct a se-
quence as follows. For , if ,
then randomly select epochs from the th slot of ; oth-
erwise, select all of the epochs in the th slot of and pick

more epochs i.i.d. uniformly from
. The overall method is the following:

1) generate i.i.d. Poisson random variables with
mean and an independent Poisson process of rate ;

2) construct a process as described before;
3) use BGM with delay bound to decompose into

an information flow and chaff noise.
Traffic generated by this method is equal to traffic under

in marginal distributions and the joint distribution after quanti-
zation. Moreover, there are at least
pairs of matched epochs in slot (i.e., the average number of
chaff packets per slot is upper bounded by ), where
and are independent Poisson variables with mean . There-
fore, the CTR suffices to mimic under
the quantization in Case I and, thus, is an upper bound on the
corresponding highest consistency level.
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