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ABSTRACT

We consider the problem of change estimation in a 2D ran-
dom field. Our goal is to estimate the locations of changes
when they occur. We propose a nonparametric change es-
timator which can be implemented efficiently. Consistency
result is derived for the proposed estimator under certain
conditions. We analyze the performance of the proposed
algorithms under several new estimation criteria.

Index Terms- Nonparametric change estimation, Con-
sistent change estimation, Change estimation algorithms,
Estimation performance criterion.

1. INTRODUCTION

We consider the problem of change estimation in a
large-scale randomly deployed sensor field. For ex-
ample, as illustrated in Fig. 1, sensors are deployed
to detect certain chemical or biological components in
some field. When the sensor measurement exceeds a
certain threshold, the sensor is “alarmed”. The state
of a sensor is random, and it depends on its location
and the time epoch when that measurement is taken.
At the time of fusion, some (not necessarily all) of the
alarmed sensors report to a fusion center.

For change detection and estimation, we consider
two consecutive data collections, assuming that each
report contains the location of the alarmed sensor. Note
that due to duty cycling, mobility, multiple access and
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fading, and the randomness in sensing, the reporting
sensors heard at the fusion center will be random and
will not be the same in different data collection peri-
ods. The problem of change detection is to decide if
the underlying distribution of the alarmed sensor has
changed. Such a change may be an indication of the
occurrence of certain events. The problem of change
estimation, on the other hand, is to estimate the lo-
cation of changes when there is a change of under-
lying distribution. In other words we would like to
find the geographical locations where the distribution
of alarmed sensors has changed. In this paper, specifi-
cally, we are interested in the region in which the change
is the maximum.

First data collection Second data collection

D

Fig. 1. Reported alarmed sensors (red) in two collec-
tions.D: abnormal area

Applications of such change estimation could be
found in infection control, pollution control as well
as military needs such as defense against biochemical
weapons. If there is an outbreak of disease, an acci-
dent causing environmental pollution, or existence of
unusual biochemical components in a battle field, sen-
sors can sense it and report to a fusion center. The
fusion center aggregates the sensor reports to a best
guess of the most abnormal area (e.g.,the area where
the disease or pollutant is spreading fastest, or the en-
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emy is using biochemical weapons most intensively),
and immediate action is taken in this area.

In practice it is difficult to get accurate and up-
dated information about the underlying distribution of
alarmed sensors. Therefore, the change estimation rule
is preferred to be nonparametric, thus this paper adopts
a nonparametric framework.

1.1. Related Work

In the classical change-point estimation framework, the
system changes at an unknown epoch called change-
point, and we want to estimate this change-point. Such
a setup belongs to the general family of point estima-
tion because the estimand is a point in some vector
space. In point estimation, the point-to-point diver-
gence serves as a natural performance criterion; ex-
amples include squared error, absolute error, uniform
cost, etc [1]. For nonparametric methods in change-
point problem, see [2].

The change estimation considered in this paper be-
longs to another family called set estimation problems,
where the estimand is a set in some spaceR

d. The clas-
sical set estimation in the parametric framework is one
of estimating the confidence set for some parameter.
Assume that we have a family of distributions for the
random observationY , indexed by a parameterθ; i.e.,
{Pθ; θ ∈ Θ}. A (1−α) confidence set forθ is a map-
ping S from the observation spaceY to subsets ofΘ
such that

inf
θ∈Θ

Pr{θ ∈ S(Y )|θ} = 1 − α,

i.e., for every θ ∈ Θ, the estimated confidence set
S(Yθ) covers the trueθ with probability at least(1−α).

In the nonparametric framework, set estimation has
been applied in but not limited to statistical learning
[3], change detection [4], as well as cluster analysis
[5]. In statistical learning (also called classification or
pattern recognition), we observe data-label pairs(Xi, Yi)
(i = 1, . . . , n) drawn i.i.d. from unknown joint dis-
tribution π, whereX ∈ R

d andY ∈ {0, 1}. Then
given anotherX, the goal is to predict the correspond-
ing Y ∈ {0, 1}. The classifier̂Y (x) is uniquely deter-
mined by a setG = {x ∈ R

d : Ŷ (x) = 1}. If π is
known, then the optimal classifier minimizing classifi-
cation errorPr(Y 6= I(X ∈ G)) (I(·) is the indicator

function) is

G∗ = {x : Pr(Y = 1|X = x) ≥ 1

2
}.

Now that π is unknown, the problem boils down to
estimatingG∗ from (Xi, Yi), i = 1, . . . , n.

Set estimation is utilized in change detection through
the Devroye-Wise method [4]. Specifically, given i.i.d.
observationsX1, . . . , Xn drawn from an unknown pdf
f on R

d, the problem is to decide whether a new ob-
servationXn+1 comes fromf . The Devroye-Wise
method is to construct a support estimatorŜn estimat-
ing the set{f > 0}, and decide there is a change in the
distribution ofXn+1 if

Xn+1 6∈ Ŝn.

Cluster analysis is the study of clusters, where a
c-cluster (for constantc > 0) is defined as the con-
nected components of the level set{f > c}, wheref

is the pdf. Hence the estimation of level sets can be an
intermediate step [5].

In the change estimation problem, we compare two
distributions and try to construct a measurable subset
of the sample space, which exhibits the largest change1

between the two distributions. It is an application of
the nonparametric set estimation; its specific applica-
tion, however, leads to a distinct structure of the esti-
mator and a new guideline to performance criteria as
will be seen later.

1.2. Summary of Results and Organization

In this paper we define two pseudo metrics on proba-
bility distributions. We formulate the change estima-
tion problem as one of estimating the set that gives
the maximum distance between two probability distri-
butions according to the metric used. We define cost
functions to evaluate the performance of change esti-
mators. A nonparametric change estimator is proposed
and its implementation is discussed. The proposed es-
timator is proved to be consistent under certain con-
ditions, and its finite-sample performance is evaluated
under the proposed cost functions.

1It depends on what metric on probabilities is used, as will be
made clear later.
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This paper is organized as follows. Section 2 spec-
ifies the model. Section 3 defines two notions of dis-
tances between probability distributions and the corre-
sponding estimands in change estimation. It also de-
fines cost functions for each proposed estimand. Sec-
tion 4 defines estimators for the corresponding esti-
mands and gives consistency results on the estimators.
Section 5 analyzes the finite-sample performance of
the proposed estimators by deriving upper bounds on
the average costs for cost functions defined in Section
3. The paper is concluded with summary and com-
ments on the estimator design.

2. PROBLEM STATEMENT

We consider the following setup: probability space(X,

F , Pi)
2 models theith random collection of the loca-

tions of alarmed sensors. DenoteSi as the set of lo-
cations of alarmed sensors in theith collection. We
assume that, in each collection, sample points inSi are
drawn i.i.d. according toPi and the drawings in differ-
ent collections are independent. The specific form of
Pi is unknown. We introduce a collectionA ⊆ F of
measurable sets to model the set of geographical areas
in which events of interest are observed.

Given a collectionA ⊆ F , we answer in the sequel
which set inA has the largest change in probability
betweenP1 andP2, and how to find it.

3. ESTIMATION FORMULATION

We define two metrics3 on [0, 1]:
fd : [0, 1] × [0, 1] → [0, 1],

fd(x, y) = |x − y|,

andfφ : [0, 1] × [0, 1] → [0,
√

2],

fφ(x, y) =







|x−y|
√

x+y

2

if x 6= y

0 if x = y.

Based on them, we define the following pseudo met-
rics on probability distributions.

2The notation(X, F , Pi) is standard:X is the sample space,
F theσ-field, Pi the probability measure.

3fd is clearly a metric. For the proof thatfφ is a metric, see [6].

Definition 1 (A-distance and RelativeA-distance) Given
probability spaces(X,F , Pi) and a collectionA ⊆ F ,
theA-distancebetweenP1 andP2 is defined as

dA(P1, P2) = sup
A∈A

fd(P1(A), P2(A)). (1)

TherelativeA-distanceφA(P1, P2) is defined as

φA(P1, P2) = sup
A∈A

fφ(P1(A), P2(A)). (2)

Empirical distancesdA(S1, S2) and φA(S1, S2)
are defined similarly by replacingPi(A) with the em-
pirical probability measure

Si(A)
∆
=
|Si ∩ A|
|Si|

. (3)

where| · | denotes the cardinality of a set.

Now we are ready to formulate the change estima-
tion problem formally. Given a classA and a metric
d(x, y) on [0, 1], we say that the setA∗ ∈ A has the
largestd-distance inA between distributionsP1, P2 if

d(P1(A
∗), P2(A

∗)) = sup
A∈A

d(P1(A), P2(A)). (4)

The change estimation considered in this paper is the
one of estimatingA∗. Specifically, ifd = fd, the esti-
mand isA∗ = A∗

dA
, where

fd(P1(A
∗
dA

), P2(A
∗
dA

)) = dA(P1, P2).

If d = fφ, thenA∗ = A∗
φA

, where

fφ(P1(A
∗
φA

), P2(A
∗
φA

)) = φA(P1, P2).

Given an estimator, we want to evaluate its per-
formance. To this end, we define the following cost
functions.

Definition 2 Let D ∈ A. To estimateA∗
dA

, we define
the following costs:

1. Uniform cost: given∆, 0 < ∆ < 1,

R
(U)
d; ∆(D) = I{fd(P1(D),P2(D))≤dA(P1,P2)−∆}

(5)
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2. Linear cost: givena > 0,

R
(L)
d; a(D) = a [dA(P1, P2) − fd(P1(D), P2(D))]

(6)

To estimateA∗
φA

, we have similarly defined uni-
form cost and linear cost

R
(U)
φ; ∆′(D) = I{fφ(P1(D),P2(D))≤φA(P1,P2)−∆′}

(7)

R
(L)
φ; a′(D) = a′ [φA(P1, P2) − fφ(P1(D), P2(D))]

(8)

where0 < ∆′ <
√

2, a′ > 0.

Note that both cost functions are nonnegative. Uni-
form cost is an “estimation error” with tolerance∆,
and linear cost is a linear penalty to the difference be-
tween the captured change and the maximum change.

The definition of cost functions depends on appli-
cations. In statistical learning, the goal of application
is to minimize classification error, so a widely-used
cost is the difference in the classification error prob-
abilities between the estimate and the estimand [3]. In
level set and support set estimation, the goal is to find
the set itself, so costs with direct geometric interpre-
tation are preferred; examples include measure-based
costs such as the symmetric difference metric [4] and
Euclidean distance-based costs such as minimal dis-
tance, maximal distance, maximin distance and Haus-
dorff distance [7, 8]. In the change estimation consid-
ered in this paper, great interest is usually paid to any
set with a significant change (e.g.,investigators should
be sent to areas with substantial increase in the pol-
lutant level), and thus it is preferred that the sets are
evaluated by their changes between probability distri-
butions. Uniform cost and linear cost both serve this
purpose.

4. CHANGE ESTIMATOR AND
CONSISTENCY

Assuming that a change in the probabilities onA has
occurred, we define the change estimator as follows:

Definition 3 (Estimator) Given a classA and two col-
lections of sample pointsS1 andS2, drawn i.i.d from

probability distributionsP1 and P2 respectively, the
estimators forA∗

dA
and A∗

φA
are respectively defined

as4

Â∗
dA

(S1, S2) = arg max
A∈A

fd(S1(A), S2(A)),(9)

Â∗
φA

(S1, S2) = arg max
A∈A

fφ(S1(A), S2(A)).(10)

We point out that there are no general solutions to
(9, 10). Implementation of the estimators depends on
choices ofA. For several regular classes such as pla-
nar disks, axis-aligned rectangles and stripes, there are
known algorithms to compute (9, 10). See [9].

We present next in this section the consistency re-
sults for the estimators defined above, whose proof is
in [10].

Theorem 1 Given probability spaces(X,F , Pi), i =
1, 2, and a collectionA ⊆ F with finite VC-dimension5.
AssumeSi (i = 1, 2) is a collection ofn sample points
drawn i.i.d. fromPi, andS1, S2 are independent. If
A∗

dA
is unique, then

lim
n→∞

Pr{Â∗
dA

(S1, S2) = A∗
dA

} = 1.

If A∗
φA

is unique, then

lim
n→∞

Pr{Â∗
φA

(S1, S2) = A∗
φA

} = 1.

5. PERFORMANCE ANALYSIS FOR FINITE
SAMPLE SIZE

By Theorem 1 we see that both the average uniform
cost and the average linear cost go to0 as the sample
size n → ∞. In the propositions below we derive
upper bounds on the average costs for finiten.

5.1. Average Uniform Cost

Proposition 1 Given error tolerance∆, 0 < ∆ < 1,
the average uniform cost of estimatorÂ∗

dA
is bounded

by6

E[R
(U)
d; ∆(Â∗

dA
)] ≤ 8ΠA(2n)e−n∆2/50.

4A predefined rule such as the smallest index rule is used to
solve ties.

5The VC-dimension ofA is the cardinality of the largest set
shatterable byA. See [9,11]

6ΠA(n) is theshatter coefficient[12]. If A has a finite VC-
dimensiond, then by Sauer’s Lemma,ΠA(n) < (n + 1)d for all
n.
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To prove Proposition 1, we first introduce a lemma
on |P (A) − S(A)|.

Lemma 1 For a measurable setA, 0 < ǫ < 1,

Pr{|S(A) − P (A)| > ǫ} ≤ 2e−2nǫ2 .

Proof: Let Xi, i = 1, . . . , n be i.i.d sample points
drawn from distributionP . Define

Zn =
n

∑

i=1

I{Xi∈A}.

ThenE[Zn] = nP (A).
By Hoeffding’s Inequality [13],

Pr{S(A) − P (A) > ǫ} = Pr{Zn − E[Zn] > nǫ}
≤ e−2n2ǫ2/

∑n
i=1

12

= e−2nǫ2 ,

Pr{S(A) − P (A) < −ǫ} = Pr{Zn − E[Zn] < −nǫ}
≤ e−2n2ǫ2/

∑n
i=1

12

= e−2nǫ2 .

Hence,Pr{|S(A) − P (A)| > ǫ} ≤ 2e−2nǫ2 .
Proof: [Proposition 1] LetD = Â∗

dA
.

E[R
(U)
d; ∆(D)]

= Pr{|P1(D) − P2(D)| ≤ dA(P1, P2) − ∆}
≤ Pr{(dA(P1, P2) − dA(S1, S2))

+|P1(D) − S1(D)| + |P2(D) − S2(D)| ≥ ∆}

≤ Pr{dA(P1, P2) − dA(S1, S2) ≥
4∆

5
}

+ Pr{|P1(D) − S1(D)| ≥ ∆

10
}

+ Pr{|P2(D) − S2(D)| ≥ ∆

10
}

≤ Pr{sup
A∈A

|fd(P1(A), P2(A))

−fd(S1(A), S2(A))| ≥ 4∆

5
}

+ Pr{|P1(D) − S1(D)| ≥ ∆

10
}

+ Pr{|P2(D) − S2(D)| ≥ ∆

10
}

≤ 8ΠA(2n)e−n∆2/50 + 2e−n∆2/50 + 2e−n∆2/50

(11)

≈ 8ΠA(2n)e−n∆2/50

where (11) follows from Lemma 1 and the following
inequality from [14]

Pr{sup
A∈A

|fd(P1(A), P2(A)) − fd(S1(A), S2(A))| ≥ ǫ}

< 8ΠA(2n)e−nǫ2/32.

For the estimator̂A∗
φA

, we have similar results:

Proposition 2 Given error tolerance∆′ ∈ (0,
√

2),
the average uniform cost of estimatorÂ∗

φA
is bounded

by

E[R
(U)
φ; ∆′(Â

∗
φA

)] ≤ 16ΠA(2n)e−n∆′2/64.

Lemma 2 For a measurable setA andǫ ∈ (0,
√

2)

Pr{fφ(P (A), S(A)) > ǫ} ≤ 8e−nǫ2/4.

Proof: Define

Q =







S ∈ Xn :
P (A) − S(A)
√

P (A)+S(A)
2

> ǫ







.

R =







SS′ ∈ X2n :
S′(A) − S(A)
√

S′(A)+S(A)
2

> ǫ







.

It is easy to see that ifS ∈ Q andS′(A) ≥ P (A),
thenSS′ ∈ R. It is known from [14] that forn > 4

ǫ2
,

Pr{S′(A) ≥ P (A)} ≥ 1
4 .

Thus forn > 4
ǫ2

, Pr(Q) ≤ 4 Pr(R).

In [15] it was proved thatPr(R) ≤ e−nǫ2/4. Thus
Pr(Q) ≤ 4e−nǫ2/4.

By symmetry, we have

Pr{fφ(P (A), S(A)) > ǫ} ≤ 8e−nǫ2/4.

The proof completes by noting that the bound trivially
holds ifn ≤ 4

ǫ2
.

The proof of Proposition 2 is similar to that of
Proposition 1. The key is to use Lemma 2 and the fol-
lowing inequality from [14]

Pr{|φA(P1, P2) − φA(S1, S2)| ≥ ǫ}
< 16ΠA(2n)e−nǫ2/16.

We have derived upper bounds on the average uni-
form costs forÂ∗

dA
and Â∗

φA
. Note that both upper

bounds decay exponentially with respect to sample size
n if A has finite VC-dimension.
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5.2. Average Linear Cost

Sincea, a′ > 0 are just scaling factors, we leta =
a′ = 1 without loss of generality.

Proposition 3 The average linear cost of̂A∗
dA

is bounded
by

E[R
(L)
d; 1(Â

∗
dA

)] ≤
√

2π

n
.

Lemma 3 For any measurable setD,

E[fd(P (D), S(D))] ≤
√

π

2n
.

Proof: fd(P (D), S(D)) is a nonnegative random
variable on[0, 1]. Therefore,

E[fd(P (D), S(D))] =

∫ 1

0
Pr{|S(D) − P (D)| > x}dx

≤
∫ 1

0
2e−2nx2

dx (12)

≤ 2

∫ ∞

0
e−2nx2

dx

=
2√
2n

∫ ∞

0
e−x2

dx

=

√

π

2n
.

where (12) is from Lemma 1.

Proof: [Proposition 3] LetD = Â∗
dA

.

E[R
(L)
d; 1(D)]

= dA(P1, P2) − E[fd(P1(D), P2(D))]

≤ dA(P1, P2) − E[dA(S1, S2)] + E[fd(P1(D), S1(D))]

+E[fd(P2(D), S2(D))]

Note that by convexity ofsup and| · |,

E[dA(S1, S2)] = E[ sup
A∈A

|S1(A) − S2(A)|]

≥ sup
A∈A

E[|S1(A) − S2(A)|]

≥ sup
A∈A

|E[S1(A) − S2(A)]|

= sup
A∈A

|P1(A) − P2(A)|

= dA(P1, P2)

SodA(P1, P2) − E[dA(S1, S2)] ≤ 0.

By Lemma 3,E[fd(Pi(D), Si(D))] ≤
√

π
2n , i =

1, 2.

HenceE[R
(L)
d; 1(D)] ≤

√

2π
n .

Now let us consider the linear cost of̂A∗
φA

.

Lemma 4 For any measurable setD,

E[fφ(P (D), S(D))] ≤ 8

√

π

n
.

The proof is similar to that of Lemma 3 (using Lemma
2 instead), and is omitted here.

Proposition 4 The average linear cost of̂A∗
φA

is bounded
by

E[R
(L)
φ; 1(Â

∗
φA

)] ≤ 32

√

π

n
.

Proof: Let D = Â∗
φA

.

E[R
(L)
φ; 1(D)] ≤ φA(P1, P2) − E[φA(S1, S2)]

+E[fφ(P1(D), S1(D))] + E[fφ(P2(D), S2(D))] (13)

We then need to boundE[φA(S1, S2)] from below.

E[φA(S1, S2)] ≥ sup
A∈A

E[fφ(S1(A), S2(A))]

≥ sup
A∈A

fφ(P1(A), P2(A)) − 16

√

π

n

(14)

where (14) is because for a fixedA ∈ A,

E[fφ(S1(A), S2(A))]

≥ E[fφ(P1(A), P2(A)) − fφ(S1(A), P1(A))

−fφ(S2(A), P2(A))] (15)

≥ fφ(P1(A), P2(A)) − 16

√

π

n
(16)

where (15) is by the triangle inequality [6], and (16) is
from Lemma 4, and since this holds for anyA ∈ A,
takingsup on both sides yields (14).

Then by plugging Lemma 4 and (14) into (13) we
have

E[R
(L)
φ; 1(D)] ≤ 32

√

π

n
.
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We have shown upper bounds on the average linear
costs, which decay at the rate ofO( 1√

n
). We point out

that the actual decay rates of the average costs may be
higher.

6. CONCLUSION

We7 consider in this paper the problem of nonpara-
metric change estimation in 2D random field, which is
formulated as a nonparametric set estimation problem.
Our goal here is to locate a data set that exhibits the
most change in probabilities. Another type of change
estimation is that of change value estimation, where
based on some metrics on probability distributions, the
goal is to estimate the distance between two distribu-
tions.

As for the estimator design strategy, we note that
the proper choice of classA is crucial. Although given
A our estimators are independent of the distributions,
the knowledge about the distributions before and after
the change may help in definingA to capture such a
change properly and thus facilitate the change estima-
tion.

7. REFERENCES

[1] H. V. Poor, An Introduction to Signal Detection
and Estimation. New York: Springer-Verlag,
1994.

[2] B. E. Brodsky and B. S. Darkovsky,Non-
Parametric Methods in Change-Point Problems.
The Netherlands: Kluwer Academic Publishers,
1993.

[3] A. B. Tsybakov, “Optimal aggregation of classi-
fiers in statistical learning,”Annals of Statistics,
vol. 32, no. 1, 2004.

[4] A. Baillo, A. Cuevas, and A. Justel, “Set estima-
tion and nonparametric detection,”The Canadian
Journal of Statistics, vol. 28, pp. 765–782, 2000.

[5] W. Polonik, “Measuring mass concentrations and
estimating density contour clusters. An excess

7The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army
Research Laboratory or the U. S. Government.

mass approach,”Annals of Statistics, vol. 23,
pp. 855–882, 1995.

[6] S. Ben-David, J. Gehrke, and D. Kifer, “De-
tecting Change in Data Streams,” inProc. 2004
VLDB Conference, (Toronto, Canada), 2004.

[7] A. Trybulec, “On the minimal distance between
sets in Euclidean space,”Journal of Formalized
Mathematics, vol. 14, 2002.

[8] A. Grabowski, “On the Hausdorff distance be-
tween compact subsets,”Journal of Formalized
Mathematics, vol. 15, 2003.

[9] T. He, S. Ben-David, and L. Tong, “Nonparamet-
ric Change Detection and Estimation in Large
Scale Sensor Networks.” submitted to IEEE
Trans. on Signal Processing, December 2004.

[10] T. He and L. Tong, “Consistent Change Estima-
tion in 2D Random Fields,” Tech. Rep. ACSP-
TR-08-05-01, Cornell University, August 2005.
http://acsp.ece.cornell.edu/pubR.html.

[11] V. Vapnik and A. Y. Chervonenkis, “On the uni-
form convergence of relative frequencie of events
to their probabilities,”Theory of Probability and
its Applications, vol. 16, pp. 264–280, 1971.

[12] L. Gyorfi, Principles of Nonparametric Learn-
ing. New York, NY: Springer Wien New York,
2002.

[13] W. Hoeffding, “Probability inequalities for sums
of bounded random variables,”Journal of the
American Statistical Association, vol. 58, pp. 13–
30, March 1963.

[14] T. He and L. Tong, “On A-distance and
Relative A-distance,” Tech. Rep. ACSP-
TR-08-04-02, Cornell University, August 2004.
http://acsp.ece.cornell.edu/pubR.html.

[15] M. Anthony and J. Shawe-Taylor, “A result of
Vapnik with applications,”Discrete and Applied
Mathematics, vol. 47, no. 2, pp. 207–217, 1993.

7 of 7


