NONPARAMETRIC CHANGE ESTIMATION IN 2D RANDOM FIELDS
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ABSTRACT fading, and the randomness in sensing, the reporting
We consider the problem of change estimation in a 2D ran_sensors heard at the fusion center will be random and

dom field. Our goal is to estimate the locations of changesWiII not be the same in different data collection peri-

when they occur. We propose a nonparametric change es0ds. The problem of change detection is to decide if
timator which can be implemented efficiently. Consistency the underlying distribution of the alarmed sensor has

result is derived for the proposed estimator under certainchanged. Such a change may be an indication of the
conditions. We analyze the performance of the pmposedoccurrence of certain events. The problem of change
algorithms under several new estimation criteria. . . . -

estimation, on the other hand, is to estimate the lo-

Index Terms Nonparametric change estimation, Con- cation of changes when there is a change of under-
sistent change estimation, Change estimation algorithmsJying distribution. In other words we would like to

Estimation performance criterion. find the geographical locations where the distribution
of alarmed sensors has changed. In this paper, specifi-
1. INTRODUCTION cally, we are interested in the region in which the change

is the maximum.

We consider the problem of change estimation in a
large-scale randomly deployed sensor field. For ex-
ample, as illustrated in Fig. 1, sensors are deployed P\
to detect certain chemical or biological components i @
some field. When the sensor measurement exceeds a
certain threshold, the sensor is “alarmed”. The state
of a sensor is random, and it depends on its location Firstdata collection
and the time epoch when that measurement is takengjg 1. Reported alarmed sensors (red) in two collec-
At the time of fusion, some (not necessarily all) of the tjons. D: abnormal area
alarmed sensors report to a fusion center.

For change detection and estimation, we consider Applications of such change estimation could be
two consecutive data collections, assuming that eachfou

. ) nd in infection control, pollution control as well
report contains the location of the alarmed sensor. Note . . . i
: . . as military needs such as defense against biochemical
that due to duty cycling, mobility, multiple access and

weapons. If there is an outbreak of disease, an acci-

tPrepared through collaborative participation in the Commations dent causing environmental pollution, or existence of
and Networks Consortium sponsored by the U. S. Army Reseaabo-L  unusual biochemical components in a battle field, sen-
ratory under the collaborative Technology Alliance Progr&ooperative sors can sense it and report to a fusion center. The

Agreement DAAD19-01-2-0011. Supported in part by the Natidci- .
ence Foundation under Contract CCR-0311055. The U. S. Gt is fusion center aggregates the sensor reports to a best

authorized to reproduce and distribute reprints for Gavemt purposes gues_s of the most abnor_mal arm_q,the area where
notwithstanding any copyright notation thereon. the disease or pollutant is spreading fastest, or the en-
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emy is using biochemical weapons most intensively), function) is
and immediate action is taken in this area.

In practice it is difficult to get accurate and up- G ={z:Pr(Y =1|X =2) >
dated information about the underlying distribution of

alarmed sensors. Therefore, the change estimation ru"f\low that r is unknown, the problem boils down to
is preferred to be nonparametric, thus this paper adOptSéstimatingG* from (X ’Y') i—1 n
(2] 1) - PARE :

a nonparametric framework. Set estimation is utilized in change detection through
the Devroye-Wise method [4]. Specifically, given i.i.d.
1.1. Related Work observationsyy, ..., X, drawn from an unknown pdf

) ) ) ) fon R4, the problem is to decide whether a new ob-
Inthe classical change-point estimation framework, theservatioanH comes fromf. The Devroye-Wise

system changes at an unknown epoch called chang€gaihod is to construct a support estimagrestimat-
point, and we want to estimate this change-point. S“Ching the set{ f > 0}, and decide there is a change in the
a setup belongs to the general family of point estima- distribution of X,,., ; if
tion because the estimand is a point in some vector
space. In point estimation, the point-to-point diver- X1 & S,
gence serves as a natural performance criterion; ex- i "
amples include squared error, absolute error, uniform
cost, etc [1]. For nonparametric methods in change-
point problem, see [2].

The change estimation considered in this paper be-
longs to another family called set estimation problems

where the estimand is a set in some spg&éeThe clas- o
In the change estimation problem, we compare two

sical set estimation in the parametric frameworkisone . .. ..
L : distributions and try to construct a measurable subset
of estimating the confidence set for some parameter. . o
. o of the sample space, which exhibits the largest chnge
Assume that we have a family of distributions for the

. . . between the two distributions. It is an application of
random observatiolr, indexed by a parametéy i.e., the nonparametric set estimation; its specific applica-
{Py; 0 € ©}. A (1 — «) confidence set fof is a map- '

ing S from the observation spacg to subsets 0B tion, however, leads to a distinct structure of the esti-
Eucgh that b mator and a new guideline to performance criteria as

will be seen later.

.

(NN

Cluster analysis is the study of clusters, where a
c-cluster (for constant > 0) is defined as the con-
nected components of the level g¢t > ¢}, wheref
is the pdf. Hence the estimation of level sets can be an
'intermediate step [5].

eilel(g Pr{ € S(Y)|0} =1—q,
1.2. Summary of Results and Organization
i.e., for everyd € O, the estimated confidence set
S(Yp) covers the trué@ with probability at leasf1—«).

In the nonparametric framework, set estimation has
been applied in but not limited to statistical learning
[3], change detection [4], as well as cluster analysis
[5]. In statistical learning (also called classification or
pattern recognition), we observe data-label paks Y;)

(i = 1,..., n)drawn i.i.d. from unknown joint dis-
tribution 7, whereX € R? andY € {0, 1}. Then
given anothelX, the goal is to predict the correspond-
ingY € {0, 1}. The classified (x) is uniquely deter-
mined by asetd = {z e R? : Y (z) = 1}. lf wis
known, then the optimal classifier minimizing classifi- 1t gepends on what metric on probabilities is used, as will be
cation errorPr(Y # I(X € G)) (I(-) is the indicator ~ made clear later.

In this paper we define two pseudo metrics on proba-
bility distributions. We formulate the change estima-
tion problem as one of estimating the set that gives
the maximum distance between two probability distri-
butions according to the metric used. We define cost
functions to evaluate the performance of change esti-
mators. A nonparametric change estimator is proposed
and its implementation is discussed. The proposed es-
timator is proved to be consistent under certain con-
ditions, and its finite-sample performance is evaluated
under the proposed cost functions.
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This paper is organized as follows. Section 2 spec-Definition 1 (A-distance and Relative4-distance) Given
ifies the model. Section 3 defines two notions of dis- probability space$X, F, P;) and a collectiond C F,
tances between probability distributions and the corre-the A-distancebetweenP; and P is defined as
sponding estimands in change estimation. It also de-
fines cost functions for each proposed estimand. Sec- da(Pr, P2) = sup fa(Pi(A), P2(A)). (1)
tion 4 defines estimators for the corresponding esti- AeA
mands and gives consistency results on the estimatorstherelative A-distancep 4 (Py, P») is defined as
Section 5 analyzes the finite-sample performance of
the proposed estimators by deriving upper bounds on dA(P1, Po) = sup fs(Pi(A), P2(A)). (2)
the average costs for cost functions defined in Section AeA
3. The paper is concluded with summary and com-

Empirical distancesi 4(S1, S2) and S1, S
ments on the estimator design. P AlS1; S2) 9A(S1, 52)

are defined similarly by replacing;(A) with the em-
pirical probability measure
2. PROBLEM STATEMENT

We consider the following setup: probability spdcé, ' 1Si]
F, P;)> models theith random collection of the loca-
tions of alarmed sensors. Dendieas the set of lo-
cations of alarmed sensors in thtl collection. We
assume that, in each collection, sample points;iare
drawn i.i.d. according t@; and the drawings in differ-
ent collections are independent. The specific form of
P; is unknown. We introduce a collectioh C F of
measurable sets to model the set of geographical areas * %
in which events of interest are obser\(‘/:]ed.g P AP (A7), Po(A7)) = 21613 d(P1(4), Po(A))- (4)
Given a collectiond C F, we answer in the sequel
which set inA has the largest change in probability
betweenP; and P, and how to find it.

3)
where| - | denotes the cardinality of a set.

Now we are ready to formulate the change estima-
tion problem formally. Given a clasd and a metric
d(xz, y) on [0, 1], we say that the set* € A has the
largestd-distance in4 between distribution®, P; if

The change estimation considered in this paper is the
one of estimatingd*. Specifically, ifd = f4, the esti-
mand isA* = A;A, where

3. ESTIMATION FORMULATION fa(PU(AS), Po(AS) = da(Py, Py).

We define two metricson [0, 1]: If d = f4, thenA* = A} , where
fa:[0,1] x [0,1] — [0, 1],
fo(Pi(Ag ), Pa(AG ) = ¢a(Pr, P2).

fa(z,y) = |z —yl, . . :
Given an estimator, we want to evaluate its per-

andf, : [0,1] x [0,1] — [0, /2], formance. To this end, we define the following cost
functions.
|I—ly| if = 7& y
fo(z,y) = Wgy Definition 2 Let D € A. To estimated, , we define
0 ifz=y. the following costs:

Based on them, we define the following pseudo met-

rics on probability distributions. 1. Uniform cost: givem\, 0 < A < 1,
2The notation X, F, P;) is standardX is the sample space, RY) (D I

F theo-field, P; the probability measure. d; A( ) {fa(P(D),Po(D))<da(P1,P2)—A}
3£, is clearly a metric. For the proof thé, is a metric, see [6]. (5)
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2. Linear cost: givem > 0, probability distributionsP; and P, respectively, the
estimators forAle and A are respectively defined

RYND) = alda(Pi, Py) — fa(Pi(D), Py(D))] ag

©) Ay (51, %) = argmax fa(S1(A), S(4)),(9)
AcA

To estimateAj;A, we have similarly defined uni- AZA(Sl’ Sy) = argmax f,(S1(A), S2(A))Y10)
form cost and linear cost AcA

We point out that there are no general solutions to

Rg;])A,(D) = {1, (P\(D),Po(D))<¢.4(P1,Ps)—A'} (9, 10). Implementation of the estimators depends on

7) choices ofA. For several regular classes such as pla-

(L) oy _ nar disks, axis-aligned rectangles and stripes, there are
Ry (D) = a'lpa(Pr, Py) = fo(P1(D), P2(D))] known algorithms to compute (9, 10). See [9].
(8) We present next in this section the consistency re-
Its for th i fi h fi
where0 < A/ < /3.’ > 0. su ts for the estimators defined above, whose proof is
in [10].
Note that both cost functions are nonnegative. Uni- Theorem 1 Given probability space&X, F, P;), i =
form cost is an “estimation error” with tolerane, 1,2, and a collectiond C F with finite VC-dimensioh

and linear cost is a linear penalty to the difference be-Assumes; (i = 1, 2) is a collection of» sample points

tween the captured change and the maximum changedrawn i.i.d. fromP;, and Sy, S, are independent. If
The definition of cost functions depends on appli- Aj , is unique, then

cations. In statistical learning, the goal of application ) ~ .

is to minimize classification error, so a widely-used Jim Pr{Aj,(51,82) = Ag,} = 1.

cost is the difference in the classification error prob- | A3 is unique, then

abilities between the estimate and the estimand [3]. In oA .

level set and support set estimation, the goal is to find Jim Pr{Aj, (S1,52) = 45,} = 1.

the set itself, so costs with direct geometric interpre-

tation are preferred; examples include measure-based5 pERFORMANCE ANALYSIS FOR FINITE

costs such as the symmetric difference metric [4] and SAMPLE SIZE

Euclidean distance-based costs such as minimal dis-

tance, maximal distance, maximin distance and Haus-By Theorem 1 we see that both the average uniform

dorff distance [7, 8]. In the change estimation consid- cost and the average linear cost gidtas the sample

ered in this paper, great interest is usually paid to anysizen — oo. In the propositions below we derive

set with a significant change.g. investigators should  upper bounds on the average costs for finite

be sent to areas with substantial increase in the pol-

lutant level), and thus it is preferred that the sets ares 1. Average Uniform Cost

evaluated by their changes between probability distri-

butions. Uniform cost and linear cost both serve this Proposition 1 Given error tolerancel, 0 < A < 1,

purpose. the average uniform cost of esUmatég is bounded
by?
U 1 x —n 2
4. CHANGE ESTIMATOR AND E[RY (A5 )] < SILy(2n)e A%/,

CONSISTENCY

4A predefined rule such as the smallest index rule is used to

; ; i solve ties.
Assuming that a change In the probabilities.drhas *The VC-dimension ofA is the cardinality of the largest set

occurred, we define the change estimator as follows:  gpatterable byt. See [9, 11]

. . . ®I14(n) is theshatter coefficienf12]. If A has a finite VC-
Definition 3 (Estimator) Givena classd andtwo col-  gimensiond, then by Sauer's Lemmals(n) < (n + 1)? for all

lections of sample pointS; and .S,, drawn i.i.d from  ».
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To prove Proposition 1, we first introduce a lemma where (11) follows from Lemma 1 and the following
on|P(A) — S(A)|. inequality from [14]

Pr{:léa [fa(PL(A), P2(A)) — fa(51(A), 52(A))] = €}

< SHA(Zn)e*”EQ/?Q.

Lemma 1 For a measurable set, 0 < € < 1,

Pr{|S(A) — P(A)| > €} < 272"
[ |
Proof: Let X;,i = 1,...,n bei.i.d sample points For the estimatoﬂj;A, we have similar results:

drawn from distribution”. Define Proposition 2 Given error toleranceA’ € (0, \/5),

n the average uniform cost of estimatég)A is bounded
Zn =Y Iix,en} by

=1 A |
E[RYL (A5,)] < 16TL4(2n)e A"/,

ThenE[Z,] = nP(A).

By Hoeffding’s Inequality [13], Lemma 2 For a measurable set ande € (0, v/2)

T € e—ne2/4‘
Pr{S(A) — P(A) > €} = Pr{Z, — E[Z,] > ne} Pr{fs(P(A),S(A)) > ¢} <8

< o2/ 1 12 _ 6—2n62’ Proof: Define
Pr{S(A) — P(A) < —¢} = Pr{Z,, — E[Z,] < —ne} Gexn P(A) — S(A)
Con2e2/3n one = € €.
< 2SI _ ot @ PO
Hence Pr{|S(A) — P(A)| > ¢} < 2e~2¢, m S'(A) — S(A)
. iti — A* R={88¢ex. —— - .
Proof: [Proposition 1] LetD = A} . = S )15 > €
2
E[R&%(D)] It is easy to see that if € Q andS’(A) > P(A),
= Pr{|Py(D) — Py(D)| < du(P;, P,) — A} thenSS’ € R. Itis known from [14] that forn > ;%,
1
< Pr{(da(Pr, P2) — da(S1, 52) A - AR,
us forn > =, Pr < 4Pr(R).
P (D) - 51(D Py(D) — S (D)| > A €
FA(D) = Si1(D)] + [Po(D) 42( =4} In [15] it was proved thaPr(R) < e~"<*/4. Thus
< Prida(Pr, Py) — da(51,52) = —} Pr(Q) < de /4,
A By symmetry, we have
Pr{|Pi (D) - 51(D)| > —
FPIAD) = 5D = 55 Pr{fs(P(A),S(A)) > ¢} < 8e"/4
A
+Pr{|{R(D) = S2(D)| = 5} The proof completes by noting that the bound trivially
< Pr{sup | fa(Pi(A), Po(A)) holds ifn < . "
AeA The proof of Proposition 2 is similar to that of
4A Proposition 1. The key is to use Lemma 2 and the fol-
- A A)| > —
Ja($1(4), 52(4))] 2 5 ! lowing inequality from [14]
A
+Pr{|P(D) - S1(D)| = 10 Pr{[¢pa(P1, P2) — $a(S51,S2)| > €}
A 1611 4(2 —n62/16.
+Pr{|Po(D) - S(D)| > T < 10tazm)e
< SHA(Qn)e*”AQ/E’O 4 9g-nAZ/50 | 9, ~nA?/50 We have derived upper bounds on the average uni-

form costs forA; and A% . Note that both upper
, (11) bounds decay exponentially with respect to sample size
8IT4(2n)e A7 /%0 n if A has finite VC-dimension.

%
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5.2. Average Linear Cost Sod(P1, P2) — E[da(51,52)] < 0.

Sincea, a’ > 0 are just scaling factors, we lat = By Lemma 3,E[fq(F;(D), Si(D))] < /3, i =
a' = 1 without loss of generality. L,2.
) HenceIE[Rfi.L{(D)] <\/Z.
Proposition 3 The average linear cost of};  is bounded ’ [
by Now let us consider the linear costég)A.
- 2m
E[RS;L}(AdA)] <\ Lemma 4 For any measurable seb,
Lemma 3 For any measurable sd?, E[fs(P(D),S(D))] < 8\/3
n
E[f4(P(D),S(D))] < 21 The proof is similar to that of Lemma 3 (using Lemma
n

2 instead), and is omitted here.

_Proof: f4(P(D), S(D)) s anonnegative random - o jtion 4 The average linear cost of; isbounded
variable on0, 1]. Therefore, A

by
1 (L) r
B (P(D).S(D)] = [ Pr{|S(D) = P(D)| > a}da Bl (3] < 32\/; |
- / L2 g (12) Proof:LetD = Aj .
0
<2 [T B[R} (D)] < 64(P1, Py) — Elga(S1, 5))
o +E[fo(P1(D), S1(D))] + E[f4(P2(D), S2(D))] (13)
= \/—27&/0 e da We then need to bouril[¢ 4 (.51, S2)] from below.
= X Elpa(S1,52)] = sup E[fs(S1(A), S2(A))]
2n AeA
where (12) is from Lemma 1. > fxlép Js(P1(A), Py(A)) — 16\/2
[

Proof: [Proposition 3] LetD = A, . (14)

where (14) is because for a fixee A,

E[R)(D)]
— (R P EU(A(D), PAD)) Elfo(S1(A4), S2(4))]
< da(Pr, By) ~ E[da($1,82)] + Elfa(Pu(D), 51(D))] = ElfelPa(A), Pa(A) = Jo($1(A). Pa(4))
+E[fa(Ps(D), 53(D)) o5 4), BA)] (15)
Note that by convexity ofup and| - |, 2 Jo(P1(A), Po(4)) - 16\/; (16)
E[d4(S1,52)] = E[sup [S1(A) — Sy(A)] where (15) is by the triangle inequality [6], and (16) is
AcA from Lemma 4, and since this holds for adyc A,
> juaE[l&(A) — Sa(A)]] takingsup on both sides yields (14).
S . .
> sup [E[S)(A) — Sy(A)]| hav'(la'hen by plugging Lemma 4 and (14) into (13) we
AcA p
= s [A(A) - u(4) BIREL (D)) < 32T,
= dA(Pl, PQ) [ |
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We have shown upper bounds on the average linear
costs, which decay at the rate@(ﬁ). We point out

that the actual decay rates of the average costs may be

higher.

We’

6. CONCLUSION

consider in this paper the problem of nonpara-

metric change estimation in 2D random field, which is
formulated as a nonparametric set estimation problem.
Our goal here is to locate a data set that exhibits the [8]
most change in probabilities. Another type of change
estimation is that of change value estimation, where
based on some metrics on probability distributions, the
goal is to estimate the distance between two distribu-
tions.

As for the estimator design strategy, we note that
the proper choice of clasé is crucial. Although given
A our estimators are independent of the distributions, [10]
the knowledge about the distributions before and after
the change may help in defining to capture such a
change properly and thus facilitate the change estima-

tion.
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