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ABSTRACT

We consider scheduling packet transmissions in a network sothat
the efficiency of stepping-stone attacks can be severely restrained
with the help of stepping-stone monitors. We allow the attacker
to encrypt and pad the packets, perturb the timing of packets, and
insert chaff packets, but the timing perturbation is subject to a
maximum delay constraint. We show that if we randomize packet
transmissions, then the attacker has to insert a large amount of
chaff to completely evade detection. In particular, if all trans-
missions are scheduled according to Poisson processes, then we
show that the fraction of attacking packets in the attacker’s traffic
decreases exponentially with the length of the intrusion path.

Index Terms- Stepping-stone attack, Network defense, Schedul-
ing.

1. INTRODUCTION

Stepping-stone attacks are indirect network attacks in which
attacking commands are relayed through compromised hosts
called “stepping stones” [1]. Since each stepping stone host
only sees its immediate predecessor and the victim only sees
the last host, it is very difficult to find the true origin of such
attacks. The key to defending against stepping-stone attacks
is to find the intrusion path.

Although numerous detection schemes have been devel-
oped to detect stepping-stone connections, a sophisticated
attacker can modify his traffic to evade detection. In partic-
ular, he can encrypt and pad the packets so that no informa-
tion is revealed by the bit patterns or the lengths of packets;
he can also perturb the timing of packets by adding ran-
dom delay or packet reshuffling. Furthermore, the attacker
can repacketize the commands, or mix attacking traffic with
other traffic or dummy traffic called “chaff”. The insertion
of chaff makes the detection of stepping-stone traffic espe-
cially challenging. We refer to the traffic of attacking pack-
ets asattacking traffic, and the mixture of attacking traffic
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and chaffstepping-stone traffic.

1.1. Related Work

Staniford and Heberlein [1] are the first to consider the prob-
lem of detecting stepping-stone connections. Early tech-
niques are based on the content of the traffic. See,e.g.,[1,2].
These techniques, however, are not applicable to detecting
encrypted connections. An alternative is to exploit timing
characteristics of the traffic; examples include [3–5]. The
drawback of these schemes is that they are vulnerable to
active timing perturbation by the attacker.

There are a few results on detecting encrypted, timing
perturbed stepping-stone connections; see [6–9]. The key
assumption of these methods is that the attacker is able to
perform a packet-conserving transformation on his traffic,
but the transformation is subject to certain constraints.

Packet conservation is too limited to be satisfied in prac-
tice. A more general category of stepping-stone connec-
tions is the one allowing the attacker to mix attacking traffic
with non-attacking traffic, including dummy traffic called
chaff. We are only aware of a few results dealing with the
attacker’s chaff evasion. Penget al. in [10] propose an ac-
tive detection scheme which combines watermarking with
packet matching to detect stepping-stone traffic in chaff.
They assume packets have bounded delays, and chaff only
appears in the downstream flow. Their scheme injects wa-
termarks in the upstream flow, and finds a subsequence in
the downstream flow, whose watermark is closest to the in-
jected one. Such a scheme, however, requires the active
manipulation of traffic. Donohoet al. [6] point out that
in principle it is possible to correlate stepping-stone traf-
fic even if both (bounded) delay and independent chaff are
introduced during the relay. Blumet al.[8] propose an algo-
rithm called “DETECT-ATTACKS-CHAFF” (DAC) to de-
tect stepping-stone traffic with limited chaff when attacking
traffic has bounded delay and bounded peak rate. Algo-
rithm DAC monitors the difference in the number of pack-
ets in the incoming and the outgoing streams, and makes
detection if the difference exceeds a certain threshold. Al-
gorithm DAC achieves robustness against a limited number
of chaff packets by choosing a threshold larger than neces-
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sary. The drawback is that the increase of threshold causes
increased false alarm probability, and the attacker can still
evade detection by adding a fixed number of chaff packets.
In a recent paper [11], Zhanget al. propose packet match-
ing schemes to detect stepping-stone traffic with bounded
delay perturbation and chaff. They propose to match every
arrival with the first departure subject to causality and the
delay constraint. They prove that this strategy has expo-
nentially decaying false alarm probability for independent
Poisson streams. Their schemes can detect stepping-stone
traffic if chaff is only inserted in the departing stream. If
chaff can be inserted in the incoming stream, however, one
chaff packet suffices to evade their schemes.

1.2. Summary of Results and Organization

In this paper, we show that there are fundamental limits to
stepping-stone attacks even if the attacker can encrypt and
pad the packets, perturb the timing, and mix attacking pack-
ets with chaff. Based on these limits, we propose a random-
ized packet scheduling strategy to make the defense against
stepping-stone attacks more efficient.

We consider encrypted stepping-stone attacks with bounded
delay perturbation and chaff. We first analyze the funda-
mental limits on how fast the attacker can send attacking
traffic without being detected by any stepping-stone detec-
tor. We propose optimal strategies to schedule the trans-
mission of attacking packets for given realizations of arrival
processes while inserting the minimum number of chaff pack-
ets. Then the fundamental limits on the rate of the attack-
ing traffic are obtained by characterizing the performance
of the proposed chaff-inserting algorithms. We show that
although the attacker does not lose much rate in one-hop
stepping-stone attacks, the rate of attacking traffic decreases
exponentially as the number of hops increases. This result
suggests that in detecting stepping-stone traffic, we should
jointly consider streams at multiple locations rather than do-
ing local detection separately.

We then compare the achievable rates of the attacking
traffic under randomized packet scheduling versus deter-
ministic scheduling. The comparison suggests that random-
ized packet transmissions can make the network much more
robust to stepping-stone attacks.

The rest of the paper is organized as follows. Section 2
defines the problem. Section 3 gives a limit on the rate of at-
tacking traffic passing through a single stepping-stone host.
In Section 4, the result is generalized to the case of multi-
ple stepping-stone hosts. Section 5 presents how random-
ized packet scheduling can facilitate stepping-stone detec-
tion. Finally, Section 6 concludes the paper with comments
on its limitation.

2. PROBLEM STATEMENT

Let the packet arrivals on streami be represented by a point
process

Si = (s
(i)
1 , s

(i)
2 , s

(i)
3 , . . .), i = 1, 2, . . .

wheres
(i)
k is thekth arrival epoch of streami. Let Ti =

{s
(i)
1 , s

(i)
2 , . . .} be the set of the elements inSi. LetS1 be an

incoming stream of the first host, andSi+1 (i = 1, . . . , n)
be a outgoing stream at theith host. Normally, the out-
going stream at theith host is different from the incoming
stream at thei + 1th host due to perturbations from clock
skews and propagation delay, but we assume that these per-
turbations are known so that the streams can be adjusted to
make them roughly the same. The adjustment also makes
sure that streams collected at different hosts are comparable.
Such adjustment can be done by sending training packets.

Normally,Si’s are independent. If, however,(Si)
n+1
i=1 is

a sequence of stepping-stone streams on the same intrusion
path, then they will satisfy certain relation as defined below.

Definition 1 A sequence of streams(S1, . . . , Sn+1) is a
normal sequenceif they are independent. It is astepping-
stone sequenceif there exist bijectionsgi : Ti → Ti+1

(i = 1, . . . , n) such thatgi(s) − s ≥ 0 for all s ∈ Ti.

The bijectiongi is a mapping between the arrival and the
departure times of packets at theith host, allowing permu-
tation of packets during the relay. The condition thatgi is a
bijection imposes apacket-conservationconstraint,i.e., no
packets are generated or dropped at the stepping stones. The
conditiongi(s) − s ≥ 0 is thecausalityconstraint, which
means that a packet cannot leave a host before it arrives.

For interactive stepping-stone attacks, there is usually
a maximum tolerable delayfor attacking packets, which is
imposed by the physical constraints, the transmission pro-
tocol, or the need of the attacker. Stepping-stone sequences
with maximum tolerable delays satisfy the following stronger
definition.

Definition 2 A sequence of streams(S1, . . . , Sn+1) is a
stepping-stone sequence with bounded delayif it is a stepping-
stone sequence, and there exists a constant∆ > 0 such that
for all i = 1, . . . , n, gi(s) − s ≤ ∆ for all s ∈ Ti.

The conditiongi(s) − s ≤ ∆ means that no attacking
packets can stay at a stepping-stone host for longer than∆.

If the attacker can insert chaff into his traffic, then the
above constraints only apply to the fraction of his traffic
which consists of real attacking packets, as stated in the fol-
lowing definition.
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Definition 3 A sequence of streams(S1, . . . , Sn+1) is a
stepping-stone sequence (with bounded delay) in chaffif
it is the superposition of a stepping-stone sequence (with
bounded delay) and a sequence of chaff streams(C1, . . . ,
Cn+1).

StreamCi (i = 1, . . . , n + 1) consists of dummy pack-
ets calledchaff which do not need to arrive at the victim.
Chaff packets can be generated or dropped at any stepping
stone hosts without affecting the attack. They are artificially
inserted by the attacker to evade detection.

We consider centralized detection, where there is a cen-
tral detector to test the following binary hypotheses:

H0 : (S1, . . . , Sn+1) is a normal sequence,

H1 : (S1, . . . , Sn+1) is a stepping-stone sequence,

by observing(s(i)
1 , s

(i)
2 , . . .)n+1

i=1 . In this paper, we consider
stepping-stone attacks in which the attacker can perturb the
timing subject to a bounded delay, and mix attacking pack-
ets with chaff packets.

3. FUNDAMENTAL LIMIT ON ONE-HOP
STEPPING-STONE ATTACKS

In this section, we consider the simple case whenn = 1,
i.e., there is only one stepping-stone host on the intrusion
path. With enough chaff packets, the attacker can make his
traffic look identical to any processes he wants. The prob-
lem is that the transmission of chaff packets causes a waste
of rate. To launch attacks efficiently, the attacker will have
the motivation to reduce the amount of chaff as much as
possible.

Blum et al. in [8] propose an optimal chaff-inserting
algorithm called “BOUNDED-GREEDY-MATCH” (BGM)
which can embed a pair of stepping-stone streams with bounded
delay into arbitrary point processes while inserting the mini-
mum amount of chaff packets. Given a pair of incoming and
outgoing streams at a host, BGM matches arrivals with de-
partures subject to the constraints of causality and bounded
delay. In [12], we combine the insertion of chaff and the
transmission of attacking packets into the algorithm in Ta-
ble 1. Then for each valid pair(s(1)

m , s
(2)
n ), the attacker can

schedule an attacking packet to arrive ats
(1)
m and depart at

s
(2)
n .

Algorithm BGM has a low complexity ofO(|S1|+|S2|)
because it only needs to scan(S1, S2) once and the amount
of work in each iteration is constant. It is shown in [8] that
BGM inserts the minimum chaff in embedding attacking

Table 1: BOUNDED-GREEDY-MATCH (BGM).
BOUNDED-GREEDY-MATCH(S1, S2, ∆):

m = n = 1;
while m ≤ |S1| andn ≤ |S2|

if s
(2)
n − s

(1)
m < 0

s
(2)
n = chaff;n = n + 1;

else ifs(2)
n − s

(1)
m > ∆

s
(1)
m = chaff;m = m + 1;

else
(s

(1)
m , s

(2)
n ) = a valid pair;

m = m + 1; n = n + 1;
end

end
end

packets with bounded delay into arbitrary point processes1.
In [12], we characterize the minimum amount of chaff to
mimic independent Poisson processes in the following the-
orem.

Theorem 1 If S1 andS2 are independent Poisson processes
of equal rateλ, then BGM inserts1/(1 + λ∆) fraction of
chaff among all the packets inS1 ∪ S2.

Remark:The theorem implies that the attacker can send
attacking packets at rateλ2∆/(1 + λ∆), whiling inserting
chaff packets to make his traffic mimic independent Pois-
son processes of rateλ. For largeλ, the attacker can send
attacking traffic at rather high rate without possibly being
detected by any activity-based detector.

4. FUNDAMENTAL LIMIT ON MULTI-HOP
STEPPING-STONE ATTACKS

The result in Section 3 seems pessimistic in that it is possi-
ble that the detector has no way to detect encrypted one-hop
stepping-stone attacks even if the attacker only transmits a
small amount of chaff. It shows the weakness of detect-
ing stepping-stone attacks on a local scale. If, however, the
stepping-stone attack involves multiple hops, and there is a
central detector which makes decisions based on the incom-
ing and outgoing traffic at each hop, then the capability of
the attacker to evade detection will be severely limited. We
proceed by introducing a few definitions related to multi-
hop stepping-stone attacks.

1The original proof in [8] is for independent binomial processes, but
it holds for arbitrary processes.
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Definition 4 A relay paththrough a sequence of streams
(S1, . . . , Sn+1) is a sequence of epochs from each of the
streams(ti ∈ Si)

n+1
i=1 . A relay path(t1, . . . , tn+1) is valid

for delay bound∆ if ti+1− ti ∈ [0, ∆] for all i = 1, . . . , n.
A set of relay paths isfeasibleif all the relay paths in it are
disjoint and valid. A feasible set of relay paths isorder-
preservingif any two paths in it(ti)

n+1
i=1 and(t′i)

n+1
i=1 satisfy

eitherti ≤ t′i for all i or ti ≥ t′i for all i.

A valid relay path represents a sequence of timestamps
at which an attacking packet is emitted from each of the
stepping-stone hosts. To schedule the transmission of at-
tacking packets, the attacker must find a feasible set of re-
lay paths, and schedule the transmission of each attacking
packet according to a different relay path. The requirement
that paths in a feasible set are disjoint is because we do not
allow the combining of multiple packets into a single relay
packet. If a set of relay paths is order-preserving, then there
will be no intersection between the paths, which greatly re-
duces the complexity in searching for a desired set of relay
paths.

Proposition 1 Among all the feasible sets of relay paths
with the largest cardinality, there always exists a set which
is order-preserving.

Remark:By Proposition 1, we only need to search among
order-preserving sets to find a largest feasible set of relay
paths.

Proof: The proof is by direct observation. As illus-
trated in Fig. 1, suppose(s(1)

1 , s
(2)
2 , s

(3)
1 ) and(s

(1)
2 , s

(2)
1 , s

(3)
2 )

are valid relay paths. By switching the intersected part,
we obtain two order-preserving paths(s

(1)
1 , s

(2)
1 , s

(3)
1 ) and

(s
(1)
2 , s

(2)
2 , s

(3)
2 ) which are also valid. We can restructure any

largest feasible set of relay paths into an order-preserving
set by repeatedly applying such switching.

S1

S2

S3

s
(1)
1

s
(1)
2

s
(2)
1

s
(2)
2

s
(3)
1 s

(3)
2

Fig. 1: Dashed lines denote alternative valid relay paths
which preserve the order of incoming packets.

Given a sequence of streams(Si)
n+1
i=1 , suppose the at-

tacker wants his traffic to mimic these streams. Then he

wants to find the largest feasible set of relay paths so that he
can transmit the maximum number of attacking packets. To
this end, we derive an algorithm called “GREEDY-RELAY-
EMBEDDING” (GRE) for finding the largest feasible set of
relay paths. Algorithm GRE is presented in Table 2.

Table 2: GREEDY-RELAY-EMBEDDING (GRE).
GREEDY-RELAY-EMBEDDING(S1, . . . , Sn+1, ∆):

for j = 1 : |Sn+1|

Cn+1, j = {s
(n+1)
j };

for i = n : −1 : 1
for all s ∈ Si ∩ [s

(n+1)
j − (n − i + 1)∆, s

(n+1)
j ]

if (s is unselected) and ([s, s + ∆] ∩ Ci+1, j 6= ∅)
adds to Ci, j ;
s.next= min([s, s + ∆] ∩ Ci+1, j);

end
end

end
if |C1, j | 6= 0

selects(1)
m1

= min(C1, j);
for i = 2 : n + 1

selects(i)
mi

= s
(i−1)
mi−1

.next;
end
(

s
(i)
mi

)n+1

i=1
is a valid relay path;

end
end

The complexity of GRE isO(n3|Sn+1|), or more pre-
cisely, about13(λ∆)2n3|Sn+1| on the average2, whereλ is
the maximum rate ofS1, . . . , Sn. The setCi, j in GRE is
the set of all possible predecessors inSi of thejth point in
Sn+1, i.e.,

Ci, j = {t ∈ Si : t is unselected, and∃ a valid relay path

of unselected points fromt to s
(n+1)
j }.

Algorithm GRE is based on the idea that among all the
valid relay paths for a particular incoming packet, we should
choose the earliest one to maximally avoid conflicting with
the following incoming packets. For each departing packet
from the last hosts(n+1)

j ∈ Sn+1, GRE recursively find the

2The dominating step is the recursive computation ofCi, j ’s. There
are at most(n− i+1)λ∆ points inSi on the average which are possible
to join Ci, j , and for each of these points, GRE needs no more than
(n − i)λ∆ steps to check the condition[s, s + ∆] ∩ Ci+1, j 6= ∅; GRE
needs up to(n − i)(n − i + 1)(λ∆)2 steps to computeCi, j . The total

complexity is then calculated as|Sn+1|
n
∑

i=1

(n − i)(n − i + 1)(λ∆)2 ≈

1

3
(λ∆)2n3|Sn+1|.
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sets{Ci, j}
1
i=n of all its possible predecessors in each of the

streamsSn, . . . , S1. The construction ofCi, j makes sure

that every point in it has a valid relay path tos
(n+1)
j , and this

path will not conflict with paths that are already selected to
relay packets befores(n+1)

j . If C1, j is not empty, then there
must be a valid path from some incoming point inS1 to
s
(n+1)
j , and GRE selects the earliest of them.

After GRE finds a set of relay paths, the attacker can
schedule the transmission of attacking packets accordingly.
The unselected points will be the transmission times of chaff
packets. It is easy to see that the set of relay paths found by
GRE is feasible. The optimality of GRE is guaranteed by
the following proposition.

Proposition 2 Given a realization of point processes(Si)
n+1
i=1 ,

GRE finds the largest feasible set of relay paths fromS1 to
Sn+1.

Proof: See Appendix.

Since GRE is optimal in the sense that it requires the
transmission of the minimum number of chaff packets, the
performance of GRE gives fundamental limits to the at-
tacker’s capability of sending attacking packets. By ana-
lyzing GRE, we bound the attacker’s ability to send attack-
ing traffic while keeping his traffic completely undetectable
to activity-based detectors by adding chaff, as stated in the
following theorem.

Theorem 2 Suppose the attacker wants all the streams on
the intrusion path to mimic independent Poisson processes
with equal rateλ. Then for an intrusion path of lengthn, the
rate of attacking traffic is upper bounded byλ(1− e−λ∆)n.

Proof: See Appendix.

Remark: Theorem 2 says that if the attacker wants to
completely hide the intrusion path, the rate of attacking traf-
fic decays exponentially with the increase in the length of
the intrusion path. This result guarantees that the attacker’s
capability of launching attacks is severely constrained by
the number of hops he takes in the chain of stepping stones.
To send attacking commands at a sufficiently high rate, The
attacker has to either leave some connections on the in-
trusion path correlated, or reduce the number of stepping
stones on the intrusion paths, both of which makes the at-
tacker vulnerable to detection and tracing.

5. RANDOMIZING PACKET SCHEDULING TO
DEFEND AGAINST STEPPING-STONE ATTACKS

In Section 4, we have established a fundamental limit on
the rate of attacking traffic through multiple stepping stones.

The result requires that the attacker wants his traffic to mimic
Poisson processes. Although we can not control the at-
tacker’s decision, as the network designer, we can force the
attacker to choose Poisson processes by scheduling other
traffic as Poisson. Suppose normal traffic all consists of
Poisson processes. Then we can install local detectors at
the hosts to test whether the interarrival distribution is ex-
ponential; all traffic with non-exponential interarrival distri-
butions will be considered abnormal. Next, a global detec-
tor can test the dependency among connections to detect
stepping-stone traffic. The global detection can be done
either in a centralized fashion at a fusion center, or in a
distributed fashion by conferencing among local detectors.
Using this framework, we show that, at least in principle,
scheduling packet transmissions as Poisson processes al-
lows us to restrain the efficiency of stepping-stone attacks.

We note that the key to impeding stepping-stone attacks
is to randomize packet transmissions. Due to the random-
ization, traffic flows can be traced without using their con-
tent because every flow will have unique timing characteris-
tics which allow us to distinct it from all the other flows. On
the other hand, scheduling schemes not involving random-
ization are vulnerable to stepping-stone attacks due to the
lack of uniqueness. We illustrate this idea by the following
comparison.

We compare a randomized scheduling scheme with a
deterministic scheme. In the randomized scheduling, we
assume that packets are transmitted according to Poisson
processes. In the deterministic scheduling, we assume that
packets are transmitted according to deterministic point pro-
cesses with constant interarrival timeD, for some constant
D > 0. Assume that for a pair of independent determinis-
tic processes, the difference between an arrival and the first
departure after the arrival is uniformly distributed in[0, D).

Suppose the attacker has a maximum tolerable delay∆,
and he wants to transmit attacking packets throughn step-
ping stones without being detected. In a network using the
randomized scheduling, the attacker can make his traffic un-
detectable by transmitting attacking packets together with
chaff according to independent Poisson processes. For fair
comparison, we let these Poisson processes have equal rate
λ = 1/D. By Theorem 2, we can bound the rate of attack-
ing trafficλR as

λR ≤ λ(1 − e−λ∆)n, for all λ∆.

In a network using the deterministic scheduling, chaff does
not help the attacker in evading detection because given the
realization of a pair of deterministic processes, he either can
transmit attacking packets at all the arrival epochs, or can-
not transmit any attacking packets, depending on whether
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the difference between an arrival and the first following de-
parture is bounded by∆ or not. Then it is easy to see that, if
∆ ≥ D, the attacker can delay attacking packets by a time
randomly chosen from[0, D) at every stepping stone, and
there is no way to detect the attacking traffic. If∆ < D,
then the detector can simply declare a sequence of flows as
attacking traffic if all the delays are bounded by∆, and the
attacker cannot evade the detection. Such a detector will
have a lot of false alarms for one-hop transmissions, but as
the number of hops increases, the false alarm probability
will decay exponentially as(λ∆)n.

For delay∆ ≥ D, we see that in both scheduling strate-
gies it is possible for the attacker to completely evade de-
tection; the rate of attacking traffic will, however, decay
exponentially with the increase of the number of stepping
stones in the randomized scheduling, but stay constant in
the deterministic scheduling. If∆ < D, there is a detec-
tor in the deterministic scheduling that cannot be evaded.
The feasibility of such a deterministic scheduling strategy
is, however, problematic. We can expect that in a network
with deterministic scheduling, a lot of transmissions will
be dummy packets because nodes may not have packets at
the scheduled transmission times; furthermore, bursty traf-
fic will not be supported well since the rate is fixed at1/D.
From this point of view, the randomized scheduling gives
the network more flexibility.

6. CONCLUSION

In this paper, we show that in principle randomization in
packet transmissions facilitates the defense against stepping-
stone attacks. The drawback is that such randomization
may be undesirable in certain applications such as interac-
tive sessions or audio transmissions where the data are time
sensitive.3

7. APPENDIX

7.1. Proof of Proposition 2

By Proposition 1, it suffices to show that GRE finds the
largest set of relay paths among all the feasible sets of relay
paths that preserve the order of incoming packets.

Let P be the set of relay paths found by GRE, andP∗

a largest feasible set of relay paths that is order-preserving.
Supposes1 ∈ Sn+1 is the endpoint of a relay pathp∗1 ∈ P∗,
as illustrated in Fig. 2, but there is no relay path inP leading

3The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Army Research Laboratory orthe
U. S. Government.

to s1. Then inP there must be relay path(s) having some
overlap withp∗1, and leading to point(s) inSn+1 befores1;
otherwise, GRE would have chosenp∗1 or some path no later
thanp∗1 to lead tos1. Let the latest of these points bes2, and
its path inP bep1. If s2 does not correspond to any relay
path inP∗, we stop tracing; otherwise, letp∗2 ∈ P∗ lead
to s2. We know that there have to be relay path(s) inP
partly overlapping withp∗2; if not, GRE would have chosen
a path no later thanp∗2 to lead tos2, but this path would not
have overlap withp∗1, which is a contradiction. We continue
tracing by alternately choosing the latest pathpi in P which
has partial overlap withp∗i , and then finding a pathp∗i+1 ∈
P∗ with the same endpoint aspi for i = 2, 3, . . .. The
tracing continues until we find a point which has a relay
path inP but notP∗, or we reach a relay pathpm in P
leading to a pointsm+1 which is before the endpointsm of
the first relay pathp∗m in P∗.

S1

Sn+1
s1s2s3smsm+1

p1

p∗1p∗2
p2

p∗m

pm

Fig. 2: Every relay path inP∗ corresponds to a path inP;
solid line: paths inP∗; dashed line: paths inP.

Therefore, we see that every relay path inP∗ corre-
sponds to a relay path inP. This proves thatP is also a
largest feasible set of relay paths.

7.2. Proof of Theorem 2

We bound the rate of attacking traffic by obtaining an up-
per bound on the asymptotic fraction of attacking packets
in S1. We first show that this fraction is upper bounded by
the probability that the first incoming packet can be an at-
tacking packet, and then bounded this probability.

Be Proposition 2, it suffices to bound the fraction of at-
tacking packets scheduled by GRE. For an incoming packet
s
(1)
k (k ≥ 2), given a feasible and order-preserving set of

relay paths for incoming packets befores
(1)
k found by GRE,

the conditional probability fors(1)
k to have a valid relay path

is equal to

Pr{∃(ti ∈ Si)
n+1
i=2 , ti ∈ [max(ti−1, t′i), ti−1 + ∆]},

wheret1 = s
(1)
k , andt′i is the latest point inSi which has

been selected by GRE. The conditionti ≥ t′i represents
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the order-preserving requirement. We can easily bound this
probability from above by

Pr{∃(ti ∈ Si)
n+1
i=2 , ti ∈ [ti−1, ti−1 + ∆]},

which is equal to the probability thats(1)
1 has a valid relay

path.
Next we prove by induction that the probability fors

(1)
1

to have a valid relay path of lengthn is equal to(1−e−λ∆)n.

Let t1 = s
(1)
1 . Forn = 1, we have

Pr{∃t2 ∈ S2, t2 ∈ [t1, t1 + ∆]} = 1 − e−λ∆.

Assume that the result holds for relay path of lengthn − 1
(n ≥ 2). Then we have

Pr{∃(ti ∈ Si)
n+1
i=2 , ti ∈ [ti−1, ti−1 + ∆]}

=

∫ ∆

0
λe−λx Pr{∃(ti ∈ Si)

n+1
i=2 , ti ∈ [ti−1, ti−1 + ∆]

∣

∣t2 − t1 = x}dx

=

∫ ∆

0
λe−λx(1 − e−λ∆)n−1dx (1)

= (1 − e−λ∆)n,

where we use the induction assumption in (1).
Combining the facts thatS1 has rateλ, and at most(1−

e−λ∆)n fraction of the packets are attacking packets, we
conclude that the rate of attacking traffic is upper bounded
by λ(1 − e−λ∆)n.
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