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ABSTRACT

We consider a many-to-one sensor network in which a large
number of sensors are deployed to monitor an environment. We
study sensor activity management therein to maximize the network
lifetime while meeting the network resolution requirement. Specifi-
cally, in each transmission round the sink estimates the number of
active sensors and broadcasts control information to the sensors
for activity management. We first consider the case with accurate
estimation, and devise a sensor activity control scheme under which
the number of active sensors would converge to the minimum one
that can meet the requirement. Next, we study the case when the
estimation is inaccurate, and propose a stochastic approximation
method to minimize the average number of active sensors.

I. INTRODUCTION

In recent years, the rapid advances in microelectro-mechanical
systems and wireless technologies have enabled the integration of
monitoring and wireless communication capabilities into sensor
devices. When a large number of cheap sensors are distributed
over an area to monitor a physical environment or to detect
chemical and biological warfare agents, the sensors can form a
many-to-one sensor network to report the data to a central unit.
Such networks can provide valuable information regarding the
physical phenomena of interest and thereby enable us to detect
and control them. Potential applications of these networks include
environmental monitoring, home security, battlefield surveillance
and reconnaissance, etc.

The focus of this study is on the quality of service(QoS)
control in many-to-one sensor networks. This is a relatively less-
understood area, partially due to the difficulty in defining and
supporting QoS for a variety of sensor network models. In this
paper, the QoS, to be defined more precisely, can be viewed as
the network resolution and is directly related to the number of
sensors actively working in the network. Needless to say, the
highest QoS can be achieved when all the sensors are used to
monitor the environment, at the cost of a shortened network
lifetime, due to the energy constraints of the sensors. Then, it
is desirable to maintain a minimum number of active sensors
while still meeting the QoS requirements. To this end, we devise
a mechanism to dynamically control the number of active sensors.

0This research is supported in part by Office of Naval Research through the grant
N00014-05-1-0636 and National Science Foundation through the CAREER award
ANI-0238550.

The main objective is to minimize the energy consumption in the
network while satisfying the QoS requirement, thus ensuring the
best possible energy efficiency.

Specifically, we consider a model where there are a central sink
and � sensors distributed over the surveillance area. Each sensor
has two states, namely ON and OFF. Once a sensor is switched
to ON, it monitors the environment, generates data packets and
transmits them to the sink. A sensor can switch to OFF to save
energy when there are more than enough sensors working in the
network. The sink collects packets from the active sensors and
reconstructs the phenomenon being monitored. We assume that
there is a separate broadcast channel from the sink to the sensors,
and that each sensor listens to this channel and decides its activity
in the next round using the feedback information.

For convenience, let ��� denote the number of active sensors in
round � , and ���� is an estimator of ��� . The QoS here is defined
as the distortion between the original physical phenomenon and
its reconstructed version at the sink. We consider a homogeneous
network, for which we assume that there is a one-one mapping
between � � and the distortion, denoted as �
	�� �� . Throughout, we
assume that the sink knows the exact form of �
	�� �� and adjusts
the number of active sensors accordingly. The QoS requirement is
given as �
	�� ����� ����� (1)

The basic idea of dynamic sensor activity management can be
outlined as follows. Let ����� denote the operational number of
active sensors in the network. That is, ����� is the targeted number of
active sensors in the network. At the beginning of each round, the
number of active sensors in the network is estimated at the sink. If���� � � ��� , the sink computes a probability ��� as ����� �"!$#�%'&�)(* %+&� ( and
broadcasts it. Each dormant sensor would then switch to ON with
probability ��� in the next round; in contrast, if ��,�.-/� ��� , the sink
computes �10 as �203� &� ( %1� !�#&� ( , and each active sensor would switch
to OFF accordingly. First, we assume ��,� is accurate for simplicity
and study sensor activity management therein. Observing that in
practical scenarios ���� may not be accurate, we also study sensor
activity management when ��,� is inaccurate. Our main contributions
can be outlined as follows:

1) The case with accurate �� � . In this case, when the above
activity management scheme with a given ����� is applied,4 � �65 evolves as a Markov chain. We show that � � converges
to �,��� with probability one in steady state. As a result,
if �,��� is set to be ��78 , where ��78 is the minimum � �
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satisfying �
	�� ���9� ��� , the system would maintain the
minimum number of active sensors while satisfying the QoS
requirement.

2) The case with inaccurate ��,� . There has been a great deal of
interest in estimating the number of active sensors in sensor
networks [2], [8]. In some scenarios, it may be difficult to
obtain perfect estimation of � � . If for a given �,��� the control
scheme is applied to the system when �� � is inaccurate, � �
would evolve as a Markov chain, and would be a random
variable even in steady states. To minimize the network
energy consumption while satisfying the QoS constraint, we
devise an algorithm based on a stochastic approximation
approach to adaptively adjust ����� . We show that under this
new sensor activity control scheme, the average number of
active sensors is minimized while � � � � is satisfied.

The paper is organized as follows: in Section II, we review
some related work on sensor networks. In Section III, we consider
the case where �� � is accurate, and propose a scheme for sensor
activity management accordingly. We prove that using this scheme4 � �65 would converge to ��78 with probability one. In Section IV,
we study the case where �� � is inaccurate. In this case, we use a
stochastic approximation method to adapt �:��� so that the average
number of active sensors is minimized in steady state while the
QoS requirement is still satisfied.

II. RELATED WORK

Due to their wide range of potential applications, many-to-one
sensor networks have recently received much attention from the
research community. In this section, we give a brief review of
related work in this field.

The capacity and energy efficiency of many-to-one sensor net-
works have been two heavily studied fields due to their importance
to the performance of such networks. In [9], the authors investigate
the capability of a large-scale sensor network to measure and
transport independent snap-shots of a two dimensional field to
the central sink. An information theoretic approach is taken in
[1] to completely characterize the source/channel capacity of
the reachback channel, where a common receiver collects from
multiple sensors local measurements of a random field to reproduce
it. In the field of energy efficiency, the work in [3] analyzes the
energy consumption in a many-to-one sensor network. Both flat and
clustering architectures are considered. The authors of [4] study
how to maximize the lifetime of a sensor network for a given
amount of energy, or equivalently, how to retrieve the same data
using the least amount of energy.

The idea of using a feedback control scheme to control the
performance of a network is not new. In [12], the authors study
a price-based rate control mechanism for random access networks
which is analyzed using the slotted Aloha model with an infinite
set of nodes. The mechanism uses channel feedback information
to control the aggregate packet arrival rate. The parameters of the
rate control scheme can be chosen a priori to stabilize the system
at a desired operating point. Similarly, our scheme uses channel
feedback information to control the number of active sensors,
which decides the amount of incoming data. Also, in our scheme,�,��� is adjustable so that the number of active sensors in steady
state is controlled.

Most relevant to our work is perhaps [7] in which sensor network
resolution is investigated. Assuming the quality of service(QoS) is
defined as the optimum number of sensors sending information to
the sink, [7] presents a sensor activity control scheme via using the
Gur Game. In their approach, however, the sink needs to receive
successful transmissions from all the active sensors in order to
know the exact number of active sensors in each round, and each
sensor is required to maintain an automaton. As a result, the
complexity is relatively high.

III. SENSOR ACTIVITY MANAGEMENT FOR THE CASE WITH
ACCURATE ����

A. Sensor Activity Control
For any given ����� , after � � is estimated at the sink at the

beginning of each round, the probabilities �,� and �10 are computed
as � � � �,���3;<�� ��=;9����.> 	?�� �+� �,��� �� 0 � ����,;@� ������� > 	?�� � -/�,��� �BA (2)

and are broadcast to all the sensors. Then the sensors manage
their activities probabilistically as mentioned before. The above
feedback control scheme is locally optimal in each round in the
sense that in computing ��� and �10 , it maximizes the probability of
transitting to the desired state ���C�D� ��� in the next round.

Clearly, the number of active sensors in the network evolves as� �$E�� �F� �HGJI 8� ; ILK� A
where I 8� and I K� are Binomial random variables, andI 8� MDNPO ��QSR O�TVU 	��W;L��� A �H� �I K� MDNPO ��QSR O�TVU 	$��� A �10 � � (3)

Note that
4 � �X5 evolves as a Markov chain with states Y A6Z[A �\�]� � .

Since �� � is exactly � � in the accurate estimation case, it is clear
that the transition probability from the state � � �D�,��� to any other
state is zero, i.e., ^�	$� �$E��
_�`�,���ba � � �c�,��� � �ed . That is to say,� � �f�,��� is the absorbing state of the Markov chain, and all the
other states are transient states. The stationary distribution is then^�	$� � �F� � � g Y if �
�h�,���d if � _�h�,��� (4)

It is clear that
4 � �X5 converges to ����� with probability one.

Therefore, if we choose �����i�F��78 , where� 78 � min
4 � �+j �
	�� ����� ��� 5VA (5)

the system would have the minimum number of active sensors
while satisfying the distortion constraint when the feedback control
scheme is applied to it.

Next, we characterize the absorption time of the Markov chain,
defined as the expected time it takes the system to arrive at the
absorbing state. To this end, we write the transition matrix of the
Markov chain as: �k�ml<n od Y<p A
where the 	 O$q � -th element �1rtsu�F^�	�� �$E�� � q a � � � O � and the index
of the states are arranged such that � � �F�,��� is the last one. Note
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Fig. 1. Convergence performance for different v2wx
that n is a square 	��y;zY �|{ 	}�9;zY � matrix denoting the transition
probabilities for movement among the non-absorbing states, ando is a column vector denoting the transition probabilities for
movement from the non-absorbing states to the absorbing state,���C�D��78 . Define ~9��	��3; n � % � , where � r�s stands for the number
of times the system is expected to visit state q before absorption
[6]. As a result, the absorption time starting with state O , � r , is the
sum of all the entries in the O -th row of ~ .

B. Numerical Examples

In the following, we illustrate by numerical examples the con-
vergence of

4 ��� 5 under the above feedback control scheme. In the
simulation, we set ������d�d , and let �:78 take on different values. As
shown in Fig. 1, it takes only a few iterations for

4 �,� 5 to converge
to ��78 for all cases.

IV. SENSOR ACTIVITY MANAGEMENT FOR THE CASE WITH
INACCURATE ����

A. Problem Formulation

As shown in the previous section, when the estimation is accu-
rate, the number of active sensors in the system would converge
to ��78 . However, practical algorithms may not achieve perfect
estimation of ��� in some scenarios. In this section, we study how
to carry out dynamic activity management when ���� is inaccurate.

For a given � ��� , if the above scheme is applied using an inac-
curate estimator �� � , 4 � �X5 evolves as a Markov chain. Furthermore,
even if � � equals ����� at certain time instant, it can still transit to
other states due to the inaccuracy in �� � . In a nutshell,

4 � �65 evolves
as an irreducible Markov chain and would no longer converge to�,��� with probability one. The average distortion in steady state,
denoted as o 	$����� � , now is

o 	$�,��� � � *��)��� �f	�� � ^h	$� � �D��aS�,��� �HA
where we have abused the notation by using ^h	$���'aS� ��� � to denote
the stationary distribution of

4 � �X5 when the control scheme is
applied to the system with a given ����� .

As a result, if we still let ����� take on the value of ��78 , the QoS
requirement o 	��,��� �u� ��� may no longer be satisfied. Therefore,
it is critical to determine a new ����� to ensure that o 	$����� �u� ���

while minimizing the average number of active sensors, which is
given by �z� � ��� � *��)��� ��^/	�� � �F��a��,��� � �

In a nutshell, the problem boils down to the following optimiza-
tion problem: ^�Y j min��!�#

�z� � ���
s. t. o 	��,��� ��� ���)�

B. A Stochastic Approximation Approach
Given ����� , the distortion function o 	������ � depends on the station-

ary distribution of
4 � �5 and hence the state-dependent transition

matrix, which are difficult to characterize in general. That is to say,
the exact form of o 	$����� � is not available and P1 cannot be solved
directly.

For a given ��� , let �
	?�����ab��� � denote the distortion computed
from ���� , i.e., �
	?�����a1��� � �c�
	?���� � , where ���� M ^�	?�����a1��� � . We
need the following assumption:

Condition 1: We assume that

� &� ( � �
	?�� � aS� �����,� �
	�� ��� .Intuitively speaking, Condition 1 requires that for a given � � ,
the expectation of the distortion computed from the estimator be
greater than or equal to the actual distortion �
	�� �� . Note that
Condition 1 holds in many cases of practical interest. For example,
it holds when �
	$��� � is a convex function and the estimator ��,� is
unbiased. In [5], it is shown that in a Gaussian sensor network, the
distortion as a function of the number of active sensors is in the
form of � � 	$� �� � YT G�� ��� �
It is easy to verify that ���)	$��� � is convex. Therefore, when the
estimator is unbiased, i.e.,

� &�)( � �����a���� � �D��� , we have that
� &� ( � � � 	?�� � a)� �����,� � � 	 � &� ( � �� � a�� �}�$� ��� � 	$� ��� �

For convenience, let �
	?�� � a'�,��� � denote the distortion for a
given ����� , i.e., �
	��� � a"�,��� � �9�
	��� ��� , where �� � Mf� *�)(���� ^�	?�� � a� ��� ^h	�� � a��,��� � . The expectation of �
	��� � a��,��� � with respect to�� � would be

� &� ( � �
	?�� � aS�,��� ���� *�s ��� *� r ��� �
	 O � ^�	��� � � O a�� � � q � ^h	�� � � q aS�,��� � �
Denote it as ��
	$�,��� � . Under Condition 1, it follows that��z	$�,��� �� *�s ��� *� r ��� �
	 O � ^�	?�� � � O a�� � � q � ^h	$� � � q a��,��� �� *�s ���

� &� ( � �
	?�� � a�� � � q ��� ^/	}� � � q aS�,��� �� *�s ��� �
	 q � ^D	$� � � q aS�,��� �� o 	$�,��� � � (6)
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That is to say, ��z	$�,��� �'� o 	��,��� � under Condition 1. Therefore, a
sufficient condition to meet the constraint in P1 is that ��z	$� ��� �'�� � . Therefore, a “suboptimal” solution to P1 can be obtained by
solving the following problem:^ Z�j min� !�#

�
� ��� �
s. t. ��z	$�,��� �'� �����

For convenience, let ��7� denote the solution to P2. Since ��
	$�,��� �
is monotonic decreasing and

��� � ��� in steady state is a monotonic
increasing function of � ��� , ��7� would be the root of the equation��z	$� ��� � �<� � . Observe that �z	?�����a)� ��� � , a random variable with
expectation equal to ��
	$� ��� � , can always be directly computed
from ���� . With �z	?�����a�� ��� � available, a standard stochastic
approximation approach can be used to solve P2. Accordingly, we
develop a stochastic approximation algorithm (see in Algorithm I)
in what follows.

Algorithm I

1) Initial phase: let  z�WY and O �`d ; choose the value of �:�
assuming accurate estimation case;

2) If �,¡J-W� , let �,¡¢E������ and go to Step 5. If ��¡�£¤d ,
let �,¡BE��3�9d and go to Step 5. Let O � O G Y . Estimate the
number of active sensors in the current round as �� r ¡ ;

3) If O � O � , go to Step 4. If O £ O � , the sink computes ��� or �10
according to (2) with �����i�D� ¡ and �� � � �� r¡ and broadcasts
it to the sensors. The sensors switch to ON/OFF accordingly.
Go back to Step 2;

4) Compute the distortion from the estimator �� r !¡ as � ¡ ��
	?�� r !¡ � . Update � ¡ as� ¡¢E�� �D� ¡�G T ¡ 	�� ¡ ;@��� �BA (7)

where
4 T ¡"5 is a pre-specified positive decreasing sequence;

5) Let  ���  G Y and O �Fd . Go back to Step 2.

The basic idea of Algorithm I is as follows: start with �:� set
to ��78 . For each   , apply the control scheme defined in (2) with� ��� �F�,¡ to the system for O � ;¥Y consecutive rounds. At the end
of the last round, use the estimator �� r !¡ to compute the distortion��¡ . Compare ��¡ with � � and use the difference to update ��¡ .
The objective of the algorithm is to obtain a sequence

4 � ¡"5 that
will converge to ��7� and therefore solve P2.

Note that for each   , if the control scheme with �����
�e� ¡ is
applied to the system for O � G U ; Z consecutive rounds and the
average value of the estimators obtained in the last U rounds is used
to compute � ¡ instead of �� r !¡ , i.e., � ¡ �¦�
	 � § � § % �s ��� �� ¡r ! E s � , the
convergence rate of the sequence

4 � ¡V5 might change. Also, the
choice of O � can affect the convergence rate. In the next section,
numerical results will show that generally

4 ��¡ 5 converges faster
when O � � Z and U �¦Y .

Next, we prove that the sequence
4 ��¡ 5 as obtained in Algorithm

I converges to ��7� in probability. First, we show some properties
of the sequence

4 � ¡"5 that will be used to prove the convergence
of the sequence

4 � ¡"5 . Given �,���i�F� ¡ , assuming that the system
has arrived at steady state in the O � rounds before � ¡ is computed,
we have that � ¡ ���
	?�� � aS�,���i�F� ¡)� and

� &�)¨ !© � � ¡S� � ��z	$� ¡)� .
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Fig. 3. Convergence performance for different ®°¯
For convenience, define�?¡ � ; ��
	$� ¡�� ;@����,¡u;L� 7�± ¡ � � ¡ ;���
	�� ¡)�BA

we have the following lemma:
Lemma 4.1: There exist constants ² � A ² �SA ² 0 -�d such that

1) ²�� �h�?¡P� ² � , ³z k´�µ
2)

�z� ± ¡ � �Fd , a ± ¡[a � ²¢0 , ³L ¶´�µ .
Now we prove that the sequence

4 ��¡ 5 obtained from (7)
converges to ��7� in probability using Lemma 4.1. This is shown
by the following theorem:

Theorem 4.1: There exists a sequence
4 T ¡"5 for Algorithm I such

that when the sequence
4 T ¡V5 is used,

4 � ¡·5 would converge to ��7�
in probability, i.e., there exists a constant ²�¸ such that¹\º\»¡¢¼P½ ��� � ¡S� � � 7�¹\º\»¡¢¼P½   { var 	�� ¡ ;L� 7� �¾� ² ¸¹\º\»¡¢¼P½ ^�	XaS� ¡ ;@� 7� a¿-�À � � d A ³ÁÀ�-�db�

The proof of Theorem 4.1 has been relegated to Appendix I.

C. Numerical Results

In this section, we illustrate by numerical examples the conver-
gence of Algorithm I, and study the effects of different O � and U
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on the rate of convergence. Throughout the simulations, we set�m�fY�d�d , �
	$� ��� � ��)( and �� � �D� ��G¥Ã , where Ã M �J	}d A Y � .

To verify the convergence of the sequence
4 � ¡"5 , we fix O ���Z and U �ÄY , and choose different pairs of �¶� and � � . For

each pair of ��� and � � , we let T ¡ take on different values in4 � �¡ A � �X�¡ A � �6�X�¡ A ¸ �6�X�¡ A"Å �X�6�¡ 5 , and investigate the convergence behav-
ior of

4 � ¡V5 . As shown in Fig. 2,
4 � ¡V5 converges when T ¡ takes

on the values in
4 � �X�6�¡ A ¸ �6�X�¡ A Å �6�X�¡ 5 , but may not converge whenT ¡ equals � �¡ or � �6�¡ . This corroborates the fact that it is necessary

to have T ¡P- ���Æ ¡ , as pointed out in the proof of Theorem 4.1.
Next, we investigate the impact of O � and U on the convergence

rate of
4 �,¡ 5 . Intuitively, increasing O � and U would make the time

the system stays at ��¡ longer, but it is also likely to decrease
the number of rounds necessary for convergence. To get a more
concrete sense, we investigate the convergence rate under several
numeric values of O � and U . We set U �fY and let O � take on different
values in

4 Z[AÇ2AXÈ[A Y�d A6Z d A �"d 5 . To compare the convergence rates on
the same time scale, 	 O � G U �   is used for the horizontal axis instead
of   . It can be seen from Fig. 3 that the fastest convergence rate is
achieved when O � equals Z . This indicates that the increment in the
time length of every round outweighs the decrement in the number
of rounds necessary for convergence when O � is increased. Finally,
in Fig. 4, we set O � � Z and investigate the impact of U on the
convergence rate. The value of U is chosen from

4 Y A6Z|AXÇbA6È[A YÉd AÊZ d 5 .
It can be seen that the fastest convergence rate occurs when U �9Y .

V. CONCLUSION

In this paper, we studied dynamic sensor activity management
in many-to-one sensor networks, aiming to maximize the network
lifetime while meeting the QoS requirement. We assume that in
each transmission round the sink estimates the number of active
sensors and broadcasts control information to the sensors for
activity management. We consider the following two cases: 1) the
estimator, ���� , is accurate, and 2) ���� is inaccurate. When ���� is
accurate, we devised a sensor activity control scheme under which
the number of active sensors would converge to the minimum one
that can meet the QoS requirement. When �� � is inaccurate, we
proposed a stochastic approximation method to dynamically update
the control scheme so that the average number of active sensors is
minimized while the QoS requirement is satisfied. This scheme is
applicable to many practical scenarios with inaccurate estimations.

A concern that may arise is that some active nodes may remain
active until they die after reaching steady state. To address this

issue, it is plausible to turn off active sensors when their energy
reserve fall below a certain threshold, and these sensors may
remain off for a certain period of time. As a result, the total
number of sensors in the network varies. Furthermore, in many
practical scenarios, sensor deaths and replenishment can result in
an unknown total number of sensors. Therefore, it is of great
interest to generalize the study to scenarios where the total number
of sensors in the network is unknown to the sink, and we are
currently investigating this problem.

APPENDIX I
PROOF OF THEOREM 4.1

Let T ¡ � ��Ë¡ , where ²¢Ì�- ���Æ . Then from Lemma 4.1, we have
that T ¡)�¢¡ -ÍY�Î)  A ³Á ¶´Ïµ (8)T ¡)�¢¡ £�Y A ³i �-D "� A (9)

where  V� is the smallest integer greater than ²?Ì�² � .
Plugging � ¡ and ± ¡ into (7) yields that� ¡BE�� ;L� 7� �¦	$� ¡ ;@� 7� � 	�Y�; T ¡��¢¡��,G ± ¡ T ¡ �
Letting R ¡ ��Ð  H	�� ¡ ;L��7� � , we have thatR ¡ � Ð  ·R � ¡ % �Ñs � � 	XY�; T s � s �,GÐ   ¡ % �� r � �

ÒÓ ± r T r ¡ % �Ñs � r E�� 	�Y�; T s � s ��ÔÕ � (10)

To determine the mean value and the variance of R ¡ , let Ö ¡ and× ¡ denote the first term and the second term on the right hand side
of the equation, respectively. Since each term in × ¡ contains ± r ,
which is independent of T s and � s for any q , × ¡ is independent ofÖ�¡ . It follows that �¦� R ¡É� � ��� Ö ¡É�|G �z� × ¡É�

var 	$R ¡)� � var 	�Ö ¡��,G var 	 × ¡�� �
Next we characterize the mean value and the variance of Ö ¡ .a Ö�¡[a� Ð  �a R � a ¡ % �Ñs � � a¿Y�; T s � s"a� Ð  �a R � a ¡ !Ñs � � atY�; T s � sVa ¡ % �Ñs � ¡ ! E�� atY�; T s � s"a� Ð  �a R
�"a ¡ !Ñs � � l�Y G ²É�B² Ìq p ¡ % �Ñs � ¡ ! E�� l�Y�; Yq p� Ð  �a R � a  V� �;/Y ¡ !Ñs � � l�Y G ² � ²BÌq p �

Therefore
¹\º]» ¡¢¼P½ a Ö ¡ a���d and

¹]º\» ¡¢¼P½ �9� Ö ¡É� ��d .
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Observe that

var 	$Ö ¡��� �z� Ö 0 ¡ � ; � 0 � Ö ¡��� �ÙØÚÛ ÒÓ Ð  VR � ¡ % �Ñs � � 	�Y�; T s � s � ÔÕ
0ÊÜ¿ÝÞ

� � ØÛ|ß Ð  VR �?à 0 ¡ !Ñs � � 	Y�; T s � s � 0 ¡ % �Ñs � ¡ ! E�� 	Y�; T s � s � 0 ÜÞ� ß Ð  VR � à 0 ¡ !Ñs � � l�Y G ² � ²BÌq p 0 ¡ % �Ñs � ¡ ! E�� l�Y�; Yq p 0� ß Ð  VR � à 0 ¡ !Ñs � � l Y G ²��¢² Ìq p 0 l   � �;�Y p 0�  	� �;�Y � 0 R 0 � ¡ !Ñs � � l Y G ²��B² Ìq p 0   0� �
Accordingly, we conclude that¹\º]»¡¢¼P½ var 	$Ö ¡)� ��d[�

In what follows, we characterize the mean value and the variance
of × ¡ . ��� × ¡S� � Ð   � ØÛ ¡ % �� r � �

ÒÓ T r ± r ¡ % �Ñs � r E�� 	Y�; T s � s � ÔÕ ÜÞ �
Since ± r is independent of � s , it follows that for any O A q ,�z� × ¡ � � Ð   ¡ % �� r � �

� ØÛ ÒÓ T r ¡ % �Ñs � r E�� 	Y�; T s � s ��ÔÕ ÜÞ
�f� ± r � �

Since

��� ± r � �Dd for any O ´�µ , we have that
�¦� × ¡É� �Dd[�

To characterize the variance of × ¡ , observe that

var 	 × ¡)�� �
� × 0¡ � ; � 0 � × ¡S��   � ØÚÛ ÒÓ ¡ % �� r � � T r ± r ¡ % �Ñs � r E�� 	�Y�; T s � s ��ÔÕ
0 Ü ÝÞ �

Since ± r and ± s are independent for O _� q and

�z� ± r � �<d for anyO ´Ïµ , we have that

var 	 × ¡)��   � ØÛ ¡ % �� r � � T 0r ± 0r ¡ % �Ñs � r E�� 	XY�; T s � s � 0 ÜÞ�   � ØÛ ¡ !¢% �� r � � T 0r ± 0r ¡ % �Ñs � r E�� 	�Y�; T s � s � 0 ÜÞG   � ØÛ ¡ % ��r � ¡ ! T 0r ± 0r ¡ % �Ñs � r E�� 	Y�; T s � s � 0 ÜÞ �

Combining Lemma 4.1 with (8) and (9) yields that  � ØÛ ¡ !¢% �� r � � T 0r ± 0r ¡ % �Ñs � r E�� 	�Y�; T s � s � 0 ÜÞ�   ¡ ! % �� r � �
ß ²BÌS² 0O à 0 ¡ !Ñs � r E�� l�Y G ²BÌÉ² �q p 0á ¡ % �Ñs � ¡ ! E�� l�Y�; Y  p 0�  [  0�	} �;/Y � 0 ¡ !?% �� r � �

ß ² Ì ²¢0O à 0 ¡ !Ñs � r E�� l Y G ² Ì ²��q p 0 A
and   � ØÛ ¡ % ��r � ¡ ! T 0r ± 0r ¡ % �Ñs � r E�� 	XY�; T s � s � 0 ÜÞ�   ¡ % ��r � ¡ !

ß ²BÌ�² 0O à 0 ¡ % �Ñs � r E�� l�Y�; Y  p 0�  �	} �;�  � � ² 00 ² 0Ì	} �;/Y � 0 �
It follows that¹\º\»¡¢¼P½ var 	 × ¡ �� ¹\º\»¡¢¼P½  [  0�	} �;�Y � 0 ¡ !?% �� r � �

ß ² Ì ²?0O à 0 ¡ !Ñs � r E�� l Y G ² Ì ²��q p 0G ¹\º]»¡¢¼P½  �	� �;� V� � ² 00 ² 0Ì	} �;�Y � 0� ² 00 ² 0Ì �
Therefore for R�¡ , we have that¹\º]»¡¢¼P½ �9� R ¡S� �Fd (11)¹\º]»¡¢¼P½ var 	$R ¡)��� ² 00 ² 0Ì � (12)

Substituting R�¡i� Ð  �	��,¡�;@��7� � into (11) and (12), we obtain¹]º\»¡¢¼�½ �
� � ¡�� � � 7�¹]º\»¡?¼P½   { var 	�� ¡ ;L� 7� �â� ² ¸)A
where ² ¸ �F² 00 ² 0Ì .

From Chebyshev’s Inequality, we conclude that for any Àã-hd ,¹]º\»¡?¼P½ ^�	Xa��,¡3;L� 7� a¿-�À �'� ¹\º]»¡¢¼P½ ² ¸ [À 0 �Fd��
Therefore

4 � ¡V5 converges to ��7� in probability.

REFERENCES

[1] J. Barros and S. D. Servetto. On the capacity of the reachback channel in
wireless sensor networks. In Proc. IEEE Workshop on Multimedia Signal
Processing (special session on ”Signal Processing for Wireless Networks”),
pages 408 – 411, St. Thomas, Virgin Islands, USA, December 2002.

[2] C. Budianu, S. Ben-David, and L. Tong. Estimation of number of operating
sensors in large-scale sensor networks with mobile access. IEEE Transactions
on Signal Processing, to appear, 2005.

6 of 7



[3] E. Duarte-Melo and M. Liu. Energy efficiency in many-to-one communi-
cations in wireless networks. In Proc. IEEE 45th Midwest Symposium on
Circuits and Systems, Oklahoma State University, Tulsa, Oklahoma, August
2002.

[4] E. Duarte-Melo, M. Liu, and A. Misra. An efficient and robust computational
framework for studying lifetime and information capacity in sensor networks.
ACM Mobile Networks and Applications (MONET) special issue on Energy
Constraints and Lifetime Performance in Wireless Sensor Networks, 2004.

[5] M. Gastpar and M. Vetterli. Power, spatio-temporal bandwidth, and distortion
in large sensor networks. IEEE Journal on Selected Areas in Communications,
to appear, 2005.

[6] Isaacson and Madsen. Markov Chains theory and applications. John Wiley
& Sons, Inc., first edition, 1976.

[7] Ranjit Iyer and Leonard Kleinrock. QoS control for sensor networks. In
Proc. IEEE International Conference on Communications, pages 517–521,
May 2003.

[8] A. Leshem and L. Tong. Estimating sensor population via probabilistic
sequential polling. IEEE Signal Processing Letters, 12(5):395–398, May 2005.

[9] Daniel Marco, E. Duarte-Melo, M. Liu, and David L. Neuhoff. On the
many-to-one transport capacity of a dense wireless sensor network and the
compressibility of its data. In Proc. International Workshop on Information
Processing in Sensor Networks (IPSN), Palo Alto Research Center (PARC),
Palo Alto, California, US, April 2003.

[10] Y. Rachlin, R. Negi, and P. Khosla. Sensing capacity for discrete sensor
network applications. In Proc. the Fourth International Symposium on
Information Processing in Sensor Networks (IPSN), UCLA, Los Angeles,
California, USA, April 2005.

[11] Z. Yang and L. Tong. Capacity of cooperative sensor networks with sensor
errors. In Proc. IEEE International Conference on Communications (ICC),
Seoul, Korea, May 2005.

[12] C. Yuen and P. Marbach. Price-based rate control in random access networks.
IEEE/ACM Transactions on Networking, to appear.

[13] Q. Zhao and L. Tong. Energy-efficient information retrieval for correlated
source reconstruction in sensor networks. submitted to IEEE Transactions on
Wireless Communications, 2004.

7 of 7


