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Abstract—The problem of short-term probabilistic forecast of
real-time locational marginal price (LMP) is considered. A new
forecast technique is proposed based on a multiparametric pro-
gramming formulation that partitions the uncertainty para meter
space into critical regions from which the conditional probability
mass function of the real-time LMP is estimated using Monte
Carlo techniques. The proposed methodology incorporates uncer-
tainty models such as load and stochastic generation forecasts and
system contingency models. With the use of offline computation
of multiparametric linear programming, online computatio n cost
is significantly reduced.

Index Terms—Locational marginal price (LMP), electricity
price forecast, congestion forecast, probabilistic forecast, mul-
tiparametric programming.

I. I NTRODUCTION

As more renewable resources are integrated into the trans-
mission system, and the power system operates closer to its
capacity, congestion conditions become less predictable and
LMPs more volatile.

The increased congestion and LMP uncertainties pose sig-
nificant challenges to the operator and market participants,
which motivates us to consider the problem of short-term
forecast of real-time locational marginal price (LMP) in the
presence of generation, demand, and operation uncertainties.
A related problem is the forecast of transmission congestion—
one of the main factors in the computation of LMP.

The benefit of LMP and congestion forecasts is twofold. For
market participants, forecast of real-time prices is valuable in
risk management, developing efficient bidding strategy, and
demand side participation. The forecast price signal allows
market participants to make adjustments in advance to ensure
economic transactions.

For system operators, on the other hand, forecast of trans-
mission congestion is important in congestion management,
system planning, and operation. European transmission sys-
tem operators, for instance, use Intraday Congestion Forecast
(IDCF) to improve real-time security assessment [1] [2].
LMP forecast also alleviates congestion and facilitate demand
response.

Currently, some system operators are providing real-time
price forecasts. The Electric Reliability Council of Texas
(ERCOT) [3] offers a 1 hour ahead real-time LMP forecast,
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updated every 5 minutes. The Alberta Electric System Oper-
ator (AESO) [4] provides two short-term price forecasts with
prediction horizons of 2 hours and 6 hours, respectively.

Most LMP forecast schemes fall into the category of point
forecast. A point forecast algorithm gives a single quan-
tity as the forecast value. For systems with highly random
components and high level of uncertainties, point forecastis
rarely accurate, and impacts of prediction error on decisions
are difficult to quantify. A more attractive alternative is the
probabilistic forecast that provides full characterization of the
LMP distribution.

Significant technical challenges exist for probabilistic fore-
casting of real-time congestion and LMP. First, reasonably
accurate models for real-time dispatch and LMP are needed.
Second, real-time network operating conditions and uncertain-
ties need to be incorporated. Finally, the forecast algorithm
needs to be simple and scalable to sufficiently large systems.
To this end, it is desirable to perform as much computation off-
line as possible. These challenges are daunting if the forecaster
is merely a market participant without access to network
operating conditions and network parameters. On the other
hand, if it is the system operator performing the forecast, as
in the case of ERCOT or AESO, the barrier to efficient and
accurate forecast is significantly lowered.

A. Summary of Contributions

In this paper, we consider the real-time LMP and congestion
forecast problem from an operator perspective. We focus on
probabilistic forecast that, at timet, the forecast algorithm
provides the conditional distribution of the LMP vector and
associated congestion status at timet + T . The main idea
behind the proposed approach is the use of multiparametric
program that partitions the uncertainty space into critical
regions, and each region is attached to a unique LMP and a
congestion pattern. Thus the problem of probabilistic forecast
reduces to one of evaluating probabilities that the random
parameter falls in a specific critical region. When loads or
stochastic generations (as negative load) are random, loadand
generation forecast models are incorporated to generate prob-
abilistic LMP and congestion forecasts. The proposed scheme
can also incorporate custom specified reliability models of
contingencies.

One of the key features of the proposed forecast methodol-
ogy is to shift majority of computation offline, which signifi-



cantly reduces the computation complexity when it is used to
provide online rolling horizon prediction.

B. Related Work

There is a substantial body of literature on LMP forecast;
see [5] [6] and the reference therein. The majority of LMP
forecast techniques deal with day-ahead LMP forecast, and the
overwhelming majority focus on point forecast techniques [7]
[8]. We highlight here the connection of the proposed approach
to existingprobabilistic forecast methods.

The idea of using multiparametric programming for real-
time LMP forecast based on the partition of load space is new
to our best knowledge. However, the idea of forecasting LMP
probability distributions based on critical regions is explored
in [9]. The authors of [9] considered the problem from a
market participant perspective. Thus network parameters and
operating conditions are not available to the forecaster, and
critical regions cannot be constructed using a multiparametric
program. It is also not easy to incorporate load/generation
forecast models elsewhere in the network into local forecasts
of LMP and congestion.

In [10], a probabilistic LMP forecast is proposed based
on attaching a Gaussian distribution to a point estimate. The
advantage of this approach is that it can be easily adopted by
various point forecast methods. The disadvantage, on the other
hand, is that the LMP is fundamentally discrete and the use
of Gaussian distribution does not generate consistent forecasts.
Similar to [9], this technique is limited to day-ahead forecast
that does not utilize real-time operating conditions.

Another arena related to our work is short term transmission
congestion forecast. There are a few papers focusing on
probabilistic forecast [9] [11] [12]. The forecast problemis
considered from the market participant side in [9] where inside
system information are unavailable. On the other hand, the
authors in [11] [12] proposed a similar approach from the
system operator side. The forecasting technique proposed in
[11] [12] relies on online Monte Carlo where the forecast
algorithm solves an optimal power flow (OPF) problem for
each Monte Carlo sample path, which carries a substantial
computation cost. Such a high complexity algorithm is not
scalable to large systems.

In terms of forecasting methodology, this paper is related
to [13] with several key differences in the LMP model and
forecasting techniques. Specifically, in this work, we consider
an ex-ante LMP formulation whereas the formulation in [13]
is based on an ex-post formulation. The techniques used here
is also different. In particular, the approach in [13] is based
on a non-homogeneous Markov chain model on a partition on
the system state space. In this paper, in contrast, we focus on
the partition directly on the load space. Instead of estimating
transition probabilities from data in [13], we take advantage
of probabilistic load forecasts.

This paper is organized as follows. Section II introduces
the formulation of the ex-ante economic dispatch and the real-
time LMP models. Section III provides the key theory basis
of the proposed probabilistic forecast approach and Section

IV gives details of this algorithm. In Section V, the extension
with contingency consideration is discussed. Numerical results
are presented in Section VI and it follows the conclusion in
Section VII.

II. REAL-TIME EX-ANTE LMP MODEL

A. Real-Time Economic Dispatch

In this paper, we consider an ex-ante real-time LMP model
that arises from the real-time ex-ante economic dispatch.
Specifically, the system operator solves a DC-OPF problem
to find an optimal economic generation adjustment that meets
the load forecast for the next interval and satisfies generation,
transmission, and ramp constraints.

We describe here a standard ex-ante economic dispatch
formulation of the real-time LMP model:

mingcTg
subject to:

(λ) : 1
T(g − dt+1|t) = 0,

(µ+, µ−) : −F+ ≤ Â(g − dt+1|t) ≤ F+,
(γ+, γ−) : g− ≤ g ≤ g+,
(η+, η−) : ĝt −∆− ≤ g ≤ ĝt +∆+,

(1)

where
c vector of real-time offers;
g vector of ex-ante dispatch at timet+ 1;
ĝt vector of generation estimate at timet;
dt+1|t vector of 1-step load forecast at timet;
g+/g− max/min generator capacities;
∆−/∆+ upward/downward ramp limits;
Â estimated shift factor matrix ;
λ shadow price for the energy balance constraint;
µ+/µ− shadow prices for transmission constraints;
γ+/γ− shadow prices for capacity constraints;
η+/η− shadow prices for ramp constraints.
In this model, we assume that each bus has a generator and a

load, for simplicity. Note that the operating pointĝt and ramp
limits are part of the linear program. By the ex-ante real-time
LMP it means that the estimated system operating pointĝt
and load forecastdt+1|t are used in the computation of the
economic dispatch and associated real-time prices.

B. Real-time LMP Model

Assume that the shift factor matrix̂A is constant over time.
The Lagrangian of (1) is given by:

L = cTg + λ
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iÂik(g
(i) − d

(i)
t+1|t)

−
∑

k µ
(k)
−

∑
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where i is the bus index andk the transmission constraint
index.



The partial derivative of the LagrangianL respect to the
load vectord is given by:

∇dL = −λ1− Âµ+ + Âµ−,

where1 is the vector of ones. By the Envelope Theorem, the
real-time LMPπt at time t can be expressed as the sum of
the energy price and congestion prices

πt = −∇dL = λ1+ Âµ+ − Âµ−. (2)

C. Certainty Equivalence Forecast of Real-time LMP

Given the economic dispatch and LMP models, we can
introduce the certainty equivalence forecast of real-timeLMP.
The certainty equivalence forecaster simply treats the day-
ahead scheduledDA

t as being the actual realizationdt in real-
time. The certainty equivalence forecast of LMPπt+T |t at
time t is equal toπt+T usingdDA

t+T as the 1-step load forecast
in (1). Note that the certainty equivalence forecast is a point
prediction.

D. Probabilistic Forecast of Real-time LMP

We now formulate the problem ofprobabilistic LMP fore-
cast that, in contrast to the classical point forecast problem,
aims to provide the probability distribution of LMP at a future
time. In particular, given the estimated system operating point
at time t and load and stochastic generation forecasts, the
forecast probability mass function̂πt+T |t of LMP is computed.

The key to probabilistic LMP forecast is to capture spatial
and temporal correlations and inherent system randomness.
Spatial correlations among LMPs arise naturally from the
optimization that governs the real-time economic dispatch.
Temporal correlations, on the other hand, are results of that
in load/generation forecasts and ramp constraints. The system
randomness includes random occurrence of contingency and
measurement noise.

III. M ULTIPARAMETRIC L INEAR PROGRAMMING

In this section, we provide the key theoretical foundation of
the proposed probabilistic LMP forecast algorithm.

A. Multiparametric Linear Programming Analysis

We adopt the formulation of multiparametric programming
based on the right hand side multiparametric linear program
(MLP-RHS) [14] [15]. To facilitate mathematical analysis,
we rewrite constraints of linear program (1) in the following
compact form:

Ug ≤ b+ V d (3)

where g is the optimization vector (generation dispatch),d
is the vector of load/stochastic generation,U , V and b are
corresponding constant coefficients.

With the assumption of time invariant network topology,
the uncertainty of real-time LMP only comes from random
load/generation vector1 d. Therefore, we treat loadd as
parameter vector.

1All other uncertainties are ignored at this point. Consideration of other
variables is discussed in Section V.

Let D be the feasible load region such that the ex-ante
economic dispatch given by (1) has a finite optimal solution.
Here, we want to characterize the relationship between the
feasible load spaceD and the real-time LMPπt.

We recall following definitions in [14] for multiparametric
linear programming analysis. LetJ , {1, · · · ,m} be the set
of constraint indices in (3). For anyI ⊆ J , let UI and VI

be submatrices ofU andV , respectively, consisting of rows
indexed byI.

Definition 1. An optimal partition [14] of J associated with
parameterd is the partition(I(d), IC(d)), where

I(d) , {i ∈ J |Uig
∗(d) = b+ Vid},

IC(d) , {i ∈ J |Uig
∗(d) < b+ Vid},

whereg∗(d) is the optimal solution of (1) givend.

Given any loadd, the optimal solutiong∗(d) divides con-
straints into the binding set indexed byI(d) and the unbinding
set indexed byIC(d). Such an optimal partition determines
the congestion pattern (binding transmission constraints) and
shadow prices can then be calculated. It follows that if the
optimal partition is given, then the price is determined.

Furthermore, there exists a set of parameters that gives the
same optimal partition, such a set is called critical region.
More precisely, the definition of the critical region is given
below.

Definition 2. For a given load vectord∗ ∈ D, let (I, IC) ,
(I(d∗), IC(d∗)), the critical region [14] related to the set of
binding constraintsI is defined as:

RI , {d ∈ D|I(d) = I}, (4)

the set of all parametersd such that constraints indexed byI
are binding at the optimum of linear program (1).

The correspondence of each critical regionDi and each
LMP vectorπi is summarized in the following lemma.

Lemma 1. A feasible load spaceD can be partitioned intoK
critical regions in a unique way,i.e.

D = D1 ⊎D2 · · · ⊎DK , (5)

where each critical region has the same LMP and the same
congestion pattern, and critical regionsDi are polyhedrons
with boundaries assigned in consistent with shadow prices of
the interior.

Proof: see [14].
Note that, given operation parameters,(U, b, V ), critical re-

gionsDi can be computed offline using techniques developed
in [14].

IV. REAL-TIME LMP PROBABILISTIC FORECAST

The basic idea of the proposed probabilistic forecast algo-
rithm is illustrated in Figure 1 where the feasible load space
is partitioned into critical regions and a realization of the load
vector process forms a path on the space.
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Figure 1: Geometric intuition of load random walk model.

Given the load realizationdt at time t, the optimal proba-
bilistic forecast of real-time LMP at timet + T is given by
conditional probabilities that loaddt+T falls in critical region
Di, i.e.

f̂t+T |t(j) = Pr[dt+T ∈ Dj |dt]. (6)

The computation of above conditional probabilities depends
on probabilistic models of load. Such models can be ob-
tained from either models of the load process or specific
prediction methods used to generate load forecasts. Typically,
such computation involves the use of Monte Carlo techniques.
Approximations are necessary for high dimension problems.

As an illustration, we present a directional Gaussian random
walk model for the load here. It should be noted that any
statistical load model or prediction method can be applied.
The purpose of using this model is to gain insights into the
behavior of forecasting performance by taking advantage of
some of analytically tractable properties.

Assume that loaddt evolves as a random walk process with
incremental mean trajectory∆µt = µt+1 − µt = E[dt+1] −
E[dt], i.e.,

dt+1 = dt +∆µt +∆Wt, (7)

where∆Wt ∼ N (0,Σt) is an independent Gaussian sequence.
We then have

dt+T = dt +

T−1
∑

i=0

∆µt+i +Wt+T , (8)

whereWt+T =
∑T−1

i=0 ∆Wt+i ∼ N (0,
∑T−1

i=0 Σt+i).
Assume that the mean trajectory is the day ahead load

forecastdDA , then the random walk model becomes:

dt+1 = dt + dDA
t+1 − dDA

t +∆Wt. (9)

In addition, we assume that at each timet, the load forecast
noise of each bus is independent and its variance is constant,
i.e. Σt = Σ andΣ is a diagonal matrix. Therefore, the actual
load of timet+ T can be written as:

dt+T = dt + dDA
t+T − dDA

t +Wt+T , (10)

whereWt+T ∼ N (0, TΣ).

The resulting conditional probability ofdt+T falling in
critical regionDi is:

f̂t+T |t(i) =

∫

Di

1
√

(2π)n|Σ|
exp{(x− µ)TΣ−1(x− µ)}dx,

(11)
whereµ = dt + dDA

t+T − dDA
t .

Specifically, in the one-dimensional case, the predictive
probability of πt+T |t equal toπi is:

f̂t+T |t(i) = Φ(D+
i )− Φ(D+

i ), (12)

whereΦ(·) is the cumulative distribution function of truncated
Gaussian distributionN (0,Σ) in the feasible load spaceD,
D

+
i andD−

i are upper and lower bounds of critical regionDi,
respectively. Note that the vector̂ft+T |t should be normalized
as a distribution.

According to Lemma 1, the feasible load spaceD can be
uniquely partitioned intoK critical regions, as illustrated con-
ceptually in Figure 1. Each critical regionDi corresponds to an
LMP vectorπi. With an appropriate probabilistic load model,
such as the random walk model described above, we can
compute conditional probabilities in (6) via multiparametric
programming analysis and Monte Carlo techniques.

The proposed algorithm can be summarized in following
steps:

1) Use multiparametric linear programming analysis to
determine the feasible load spaceD and its critical
regions.

2) Obtain LMP values and all correspondences between
each pair of a LMP vector and a critical region.

3) Estimate the constant diagonal covariance matrixΣ of
load forecast from historical data.

4) Compute conditional probabilities given in (11) with
prediction horizonT .

First of all, we need to determine the feasible load spaceD

and its unique partition described in Lemma 1 respect to (1).
This step can be achieved by the multiparametric programming
analysis that computes all critical regions and associateddual
variables. Note that the computation of critical regions can be
done offline if ramping constraints are not active.

Next, for each critical regionDi, we pick an arbitrary load
vectord ∈ Di, and solve the linear program (1) to determine
LMP values. Since each critical region corresponds to a unique
LMP vector, we only need to solve this optimization problem
once for each critical region.

Then, we use historical data of actual load and its day ahead
forecast to estimate the constant covariance matrixΣ.

Finally, with all information obtained from previous steps
and the newly available informationdt at current timet,
we can predict the future LMPπt+T via computing the
conditional probability given by (11).

V. D ISCUSSION: CONTINGENCY CONSIDERATION

In this section, we extend the proposed forecast technique
to incorporate contingency uncertainty models.



In the ex-ante economic dispatch model, contingencies can
be viewed as a new set of coefficient values in (1). If there
are transmission outages, values of the shift factor matrixÂ
and line limit F+ will change accordingly. Similarly, when
unit outages happen, associated shift factorsÂ, generation
capacitiesg−, g+ and ramp limits∆−,∆+ can be different
from normal conditions.

For simplicity, we consider the N-1 contingency with the
failure of a single element, which can be either a transmission
line or a generator. Assume that a contingencyi can happen
with some probabilitypi at any time in the prediction hori-
zon. We also assume that once the contingency happens, it
cannot be recovered within the prediction horizon, or a given
period, for example, 24 hours. Then the probability that the
contingency happens within the prediction horizon[t, t + T ]
is 1− (1 − pi)

T .
To describe the extended algorithm, we restrict the single

contingency to be a particular one with probabilityp. Multiple
contingencies can be incorporated with different probability
weights. LetM = {Â, F+, g+, g−,∆+,∆−} denote the set
of constraint coefficients without contingency, and̃M the set
with a particular contingency.

We solve multiparametric linear programs with respect to
M andM̃ separately to obtain associated feasible load spaces
D andD̃. At each timet, if the contingency has not happened
yet, the probabilistic LMP forecast is computed by

f̂t+T |t = (1 − p)T f̂t+T |t,D + [1− (1− p)T ]f̂t+T |t,D̃,

where f̂t+T |t,D and f̂
t+T |t,D̃ are conditional distributions of

critical regionsD and D̃, respectively. Once the contingency
is detected,̂ft+T |t = f̂t+T |t,D̃ by assumptions. To sum up, the
probabilistic LMP forecast with contingency consideration is
given by:

f̂t+T |t =











f̂t+T |t,D̃, if contingency happened at timet,

(1− p)T f̂t+T |t,D

+[1− (1 − p)T ]f̂
t+T |t,D̃, otherwise.

(13)

VI. EVALUATION

In this section, we present some simulation results to
compare performances of the proposed probabilistic forecast
algorithm with the certainty equivalent forecaster. We first test
our algorithm on a 3 bus system to gain insights into the
behavior of the proposed algorithm under various scenarios,
and then on the IEEE 14 bus system to prove its scalability.

Before presenting numerical results, we introduce a perfor-
mance evaluation metric of probabilistic forecasts.

A. Probabilistic Forecast Assessment

LMP is intrinsically a discrete random vector. The proba-
bilistic forecast of such a random quantity belongs to the so-
called categorical forecast, and its performance is measured
by the consistency as well as the statistical concentrationof
the forecast. A standard metric is the Brier Score [16] that
measures the average distance (2-norm) between the forecast

2

1 3

(a) Single load.

2

1 3

(b) Two loads.

Figure 2: A 3 bus system.

distribution f̂t+T |t and the point mass distribution at the
realized random variableπt+T . Specifically

BS(f̂t+T |t) = E‖f̂t+T |t − δ(πt+T )‖
2, (14)

wheref̂t+T |t is the probability vector whoseith entry is given
by f̂t+T |t(i) = Pr(π = πi), andδ(x) is the unit vector that
is one at entryx and zero elsewhere. This score ranges from
0 to 2, where the larger the score, the worse the probabilistic
prediction.

B. Case Study: A 3 Bus System

The network topology of the 3 bus system is given in Figure
2. All three transmission lines are identical with thermal limits
100 MW. Generator at bus 1 has maximum capacity 140 MW
with cost $10. Generator at bus 3 has maximum capacity
200 MW with cost $15. There are no minimum generation
requirements.

1) Scenario 1. A single load case: We first consider a one
dimensional load scenario, as shown in Figure 2a. Because
the computation of conditional probabilities can be obtained
analytically, this serves as a way of validating the behavior of
the proposed algorithm.

The set up of this example is as follows. We generate a
zigzag curve as the mean load trajectory varying from 120
MW to 180 MW which is used as the day ahead load forecast
dDA
t with 5-min interval, as shown in the upper part of Figure

3 with the right y-axis. To obtain actual load profiles, we
simulate the random walk model described by (9) with an
independent Gaussian sequence∆Wt ∼ N (0, σ2), by default,
σ = 0.5%E[dDA

t ].
We use a Matlab based multiparametric programming tool-

box [17] to determine the feasible load space and its partition.
The resulting critical regions2 are: (0, 140], (140, 160] and
(160, 200]. Note that boundary points, 140 MW and 160 MW,
are assigned to critical regions with same LMP values. Load
impacts on the prediction performance is first evaluated. From
Figure 3, we can see that the proposed probabilistic forecast
algorithm consistently outperforms the certainty equivalence
predictor and longer prediction horizons result in worse fore-
casts. Furthermore, two interesting phenomena are observed:
the presence of peaks and the increasing variance over time.

2We exclude the pointd = 0 for LMP value consistency in each critical
region. Ford = 0, values of LMP are zeros. But for critical region(0, 60],
LMPs are positive numbers.
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Figure 3: Impacts of load and prediction horizon in Scenario
1.

For the first phenomenon, we can easily check that all peaks
coincidence with boundary points (indicated byx-axis ticks in
Figure 3). When the mean trajectory load lies on the boundary,
the probability of the actual load falling in either neighboring
critical region is 0.5 where the value of the Brier Score
using the certainty equivalence method becomes 1. In contrast,
the probabilistic prediction is a conditional probabilitythat
incorporates all observed data. Hence, it optimally captures
the direction of future loads.

The second phenomenon is more obvious on probabilistic
forecasts, for instance, the 3 hours ahead probabilistic forecast
curve. At timet = 10, the Gaussian distribution is much more
concentrated on the mean than that at timet = 248. This
is because that load follows a random walk model, so that
the deviation from the mean trajectory grows, resulting in the
bigger variance at a later time.

We then investigate the impact of the day-ahead load fore-
cast quality. Three levels of load forecast error are considered:
σ = 0.1%E[dDA

t ], σ = 0.5%E[dDA
t ] andσ = 1%E[dDA

t ]. The
resulting performances of the certainty equivalence predictor,
the probabilistic forecasts with prediction horizon of 1 hour
and 3 hours are shown in subfigures of Figure 4, respectively.
From the comparison between subfigures, we can see that all
algorithms perform worse with bigger load forecast errors.In
each subfigure, the certainty equivalent prediction appears to
be more sensitive to the load error than probabilistic forecasts.

2) Scenario 2. A two dimensional load case: We then
consider a two dimensional load vector scenario where the
system network setting is shown in Figure 2b. To generate
a reasonable mean trajectory of load profile, we draw an arc
crossing all three critical regions indicated as the arc in Figure
5. For this particular load forecast profile, each bus follows
a sinusoidal wave as shown in Figure 6. Note that boundary
points of neighboring critical regions are highlighted onx-axis
ticks.

Actual load profiles are generated from the random walk
model in (9) with two independent Gaussian sequences. The
standard deviation of each bus load is assumed to be .5% of its
mean. A Monte Carlo method is used to estimate conditional
probabilities of critical regions in (11).
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(a) Certainty equivalent prediction.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

Time Index(5−min interval)

B
rie

r 
S

co
re

 

 
σ=0.001d

σ=0.005d

σ=0.01d

(b) 1 hour ahead probabilistic forecast.
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(c) 3 hours ahead probabilistic forecast.

Figure 4: Impact of load forecast quality in Scenario 1.

Figure 5: The feasible load space, critical regions and a mean
load trajectory in Scenario 2.

We conduct the same experiment as Scenario 1 in this case.
As shown in Figure 6, in addition to lower Brier Scores,
probabilistic forecasts are also less sensitive at boundary
points. Similar phenomenon of increasing distribution variance
is observed.

3) Scenario 3. A single contingency case: Finally, the ex-
tended algorithm with contingency consideration is evaluated.
In this setting, we consider a unit outage with a partial loss
of generation capacity. Assume that the maximum capacity
of the generator located at bus 1 can be reduced to 70 MW
from 140 MW with probabilityp at any time. Other settings
are the same as the first scenario. The feasible load space
with this particular contingency becomes(0, 185] and associ-
ated critical regions become(0, 70] and (70, 185]. Therefore,
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2.
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Figure 7: Impact of contingency occurrence probabilityp in
Scenario 3.

there are five critical regions that a future load can fall in:
(0, 140], (140, 160], (160, 200], (0, 70]∗, and(70, 185]∗, where
critical regions with the presence of contingency are labeled by
“∗”. We compare the extended algorithm described in Section
V with the extended certainty equivalence prediction, which
also takes the contingency probability into consideration. Since
the outage frequency is very low in practice, we choose
p = 0.005 and p = 0.0005. Results are shown in Figure
7. Performances are similar to that of the normal scenario,
as shown in Figure 3. However, the relatively high outage
ratio performs better than the lower ratio. This counterintuitive
phenomenon is caused by the particular load range ([120, 180])
we chose. Once the contingency happens, all real-time actual
loads will fall in the fifth critical region,i.e., (70, 180], hence,
the uncertainty is considerably reduced.

C. Case Study: IEEE 14 Bus System

We use the IEEE 14 Bus system with line limit parameters
given in [18]. In this case, we only consider generators located
at bus 1 and 2 as online units since all other generators are

Figure 8: The feasible load space, critical regions and a mean
load trajectory in Scenario 3.
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Figure 9: Impacts of load and prediction horizon in Scenario
3.

not designed for providing active power. The load parameter
vector consists of loads at bus 2, 3 and 4. The feasible space,
its critical regions and the mean trajectory are shown in Figure.
8. Performances of the certainty equivalent prediction and
probabilistic forecasts are shown in Figure 9.

VII. C ONCLUSION

This paper presents a new methodology for the short-term
forecast of real-time LMP. The key idea is the exploitation of
stochastic models to load uncertainty by the use of multipara-
metric linear programming analysis and incorporating online
measurements.

The proposed technique does have several issues that need
to be addressed in the future. We have not discussed how
to compute conditional probabilities of future load in critical
regions. In principle, Monte Carlo techniques can be applied,
but the accuracy of such techniques is limited by the number
of samples generated; a more sophisticated sampling technique
is particularly useful in obtaining accurate estimates. Another
issue arises from ramp constraints. Although this paper pro-
vides a heuristic algorithm to incorporate ramp constraints,



the feasibility can be an issue in practice due to load forecast
error. A more accurate forecast algorithm of feasible space
and critical regions should be explored.

As a general forecast technique, the proposed algorithm can
be tailored to take advantage of various forecasts which can
be very useful in practice, especially for the integration of
renewable resources.
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Switzerland, July 17-19 2013, pp. 502–510, http://control.ee.ethz.ch/
∼mpt.

[18] P. Venkatesh, R. Gnanadass, and N. P. Padhy, “Comparison and appli-
cation of evolutionary. programming techniques to combined economic.
emission dispatch with line flow constraints,”IEEE Transactions on
Power Systems, vol. 18, no. 2, 2003.

http://www.amprion.net/pressemitteilung-126
http://www.amprion.net/pressemitteilung-126
http://www.psi.de/en/psi-pressevents/releases-archive/article/article/psi-receives-contract-for-implementing-intraday-congestion- forecast-for-polish-transmission-system-o/
http://www.psi.de/en/psi-pressevents/releases-archive/article/article/psi-receives-contract-for-implementing-intraday-congestion- forecast-for-polish-transmission-system-o/
http://www.psi.de/en/psi-pressevents/releases-archive/article/article/psi-receives-contract-for-implementing-intraday-congestion- forecast-for-polish-transmission-system-o/
http://www.ercot.com/news/press_releases/show/26244
http://www.ercot.com/news/press_releases/show/26244
http://www.aeso.ca/downloads/Price_Forecast_Calculation_March_8_2011.pdf
http://www.aeso.ca/downloads/Price_Forecast_Calculation_March_8_2011.pdf
http://uc-ciee.org/downloads/PTCF_Final_Report.pdf
http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

	Introduction
	Summary of Contributions
	Related Work

	Real-Time Ex-Ante LMP Model
	Real-Time Economic Dispatch
	Real-time LMP Model
	Certainty Equivalence Forecast of Real-time LMP
	Probabilistic Forecast of Real-time LMP

	Multiparametric Linear Programming
	Multiparametric Linear Programming Analysis

	Real-Time LMP Probabilistic Forecast
	Discussion: Contingency Consideration
	Evaluation
	Probabilistic Forecast Assessment
	Case Study: A 3 Bus System
	Scenario 1. A single load case
	Scenario 2. A two dimensional load case
	Scenario 3. A single contingency case

	Case Study: IEEE 14 Bus System

	Conclusion
	References

