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Abstract—The problem of short-term probabilistic forecast of updated every 5 minutes. The Alberta Electric System Oper-
real-time locational marginal price (LMP) is considered. Anew ator (AESO) [4] provides two short-term price forecastshwit
forecast technique is proposed based on a multiparametric - prediction horizons of 2 hours and 6 hours, respectively.

gramming formulation that partitions the uncertainty para meter . .
space into critical regions from which the conditional probability Most LMP forecast schemes fall into the category of point

mass function of the real-time LMP is estimated using Monte forecast. A point forecast algorithm gives a single quan-
Carlo techniques. The proposed methodology incorporatesneer-  tity as the forecast value. For systems with highly random
tainty models such as load and stochastic generation foreses and  components and high level of uncertainties, point fore@ast
system contingency models. With the use of offline computath 5|y accurate, and impacts of prediction error on degisio
of multiparametric linear programming, online computatio n cost o . . .
is significantly reduced. are dlff_lt;ul_t to quantify. A more attractive aIterr_1at|\_/e iset
Index Terms—Locational marginal price (LMP), electricity ~ Probabilistic forecast that provides full characteriaatof the
price forecast, congestion forecast, probabilistic foremst, mul- LMP distribution.
tiparametric programming. Significant technical challenges exist for probabilistice:
casting of real-time congestion and LMP. First, reasonably
accurate models for real-time dispatch and LMP are needed.
As more renewable resources are integrated into the tragecond, real-time network operating conditions and uairert
mission system, and the power system operates closer totji$ need to be incorporated. Finally, the forecast algorit
capacity, congestion conditions become less predictatle geeds to be simple and scalable to sufficiently large systems
LMPs more volatile. To this end, it is desirable to perform as much computatién of
The increased congestion and LMP uncertainties pose Sige as possible. These challenges are daunting if thedster
nificant challenges to the operator and market participani merely a market participant without access to network
which motivates us to consider the problem of short-tergperating conditions and network parameters. On the other
forecast of real-time locational marginal price (LMP) irethhand, if it is the system operator performing the forecast, a

presence of generation, demand, and operation unceefintin the case of ERCOT or AESO, the barrier to efficient and
A related problem is the forecast of transmission congestio accurate forecast is significantly lowered.

one of the main factors in the computation of LMP. o
The benefit of LMP and congestion forecasts is twofold. Féx. Summary of Contributions

market participants, forecast of real-time prices is Vialeian In this paper, we consider the real-time LMP and congestion
risk management, developing efficient bidding strategyl aforecast problem from an operator perspective. We focus on
demand side participation. The forecast price signal alovgrobabilistic forecast that, at timet, the forecast algorithm
market participants to make adjustments in advance to enspfovides the conditional distribution of the LMP vector and
economic transactions. associated congestion status at time 7. The main idea
For system operators, on the other hand, forecast of trapghind the proposed approach is the use of multiparametric
mission congestion is important in congestion managemeptogram that partitions the uncertainty space into cfitica
system planning, and operation. European transmission spgions, and each region is attached to a unique LMP and a
tem operators, for instance, use Intraday Congestion Bstecongestion pattern. Thus the problem of probabilistic dast
(IDCF) to improve real-time security assessment [1] [2}educes to one of evaluating probabilities that the random
LMP forecast also alleviates congestion and facilitate aletin parameter falls in a specific critical region. When loads or
response. stochastic generations (as negative load) are random aiocd
Currently, some system operators are providing real-ting@neration forecast models are incorporated to generate pr
price forecasts. The Electric Reliability Council of Texasbilistic LMP and congestion forecasts. The proposed sehem
(ERCOT) [3] offers a 1 hour ahead real-time LMP forecasgan also incorporate custom specified reliability models of
This work is supported in part by the National Science Fotioda contingencies.
under Grant CNS-1135844 and a Grant from DoE Consortium fectic One of the key features of the proposed forecast methodol-
Reliability Technology Solutions (CERTS). ogy is to shift majority of computation offline, which signifi
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cantly reduces the computation complexity when it is used[fdlgives details of this algorithm. In Sectidn V, the extensi
provide online rolling horizon prediction. with contingency consideration is discussed. Numericallte

are presented in Sectign]VI and it follows the conclusion in
B. Related Work SectiorMI.

There is a substantial body of literature on LMP forecast;
see [5] [6] and the reference therein. The majority of LMP .
forecast te(_:hnlque_s gleal with day-a_head LMP foreca_st,hmd })\ Real-Time Economic Dispatch
overwhelming majority focus on point forecast techniqués [
[8]. We highlight here the connection of the proposed apgioa In this paper, we consider an ex-ante real-time LMP model
to existingprobabilistic forecast methods. that arises from the real-time ex-ante economic dispatch.

The idea of using multiparametric programming for realSpecifically, the system operator solves a DC-OPF problem
time LMP forecast based on the partition of load space is né/find an optimal economic generation adjustment that meets
to our best knowledge. However, the idea of forecasting LMiRe load forecast for the next interval and satisfies geioerat
probability distributions based on critical regions is kexpd transmission, and ramp constraints.
in [9]. The authors of[[9] considered the problem from a We describe here a standard ex-ante economic dispatch
market participant perspective. Thus network parameteds gormulation of the real-time LMP model:
operating conditions are not available to the forecasted, a
critical regions cannot be constructed using a multipateme

REAL-TIME EX-ANTE LMP MODEL

T
mingc'g

. ; . subject to:
program. It is also not easy to incorporate load/generation () : 17(g = dpyay) = 0
forecast models elsewhere in the network into local forscas g G ’ (1)
of LMP and congestion ((N+7N ; —Fy <A(g — dijap) < Fy,
' <g<
In [10], a probabilistic LMP forecast is proposed based TVl 9= 29294
L nop (M4sn-): G —A- <g<gi+Ay,

on attaching a Gaussian distribution to a point estimate Th
advantage of this approach is that it can be easily adopted\yere
various point forecast methods. The disadvantage, on ttex ot ¢
hand, is that the LMP is fundamentally discrete and the usé@

of Gaussian distribution does not generate consistentésts. 9t

vector of real-time offers;
vector of ex-ante dispatch at tintet 1;
vector of generation estimate at timge

Similar to [€], this technique is limited to day-ahead fast — di+1)t
that does not utilize real-time operating conditions. 9+/9-
Another arena related to our work is short term transmissior® -/ A+
congestion forecast. There are a few papers focusing od
probabilistic forecast [9][[11]([12]. The forecast problém A
considered from the market participant side in [9] wherédi@s 114 /1—
system information are unavailable. On the other hand, the+/v-
authors in [[11] [12] proposed a similar approach from then/n-

vector of 1-step load forecast at timg

max/min generator capacities;
upward/downward ramp limits;

estimated shift factor matrix ;

shadow price for the energy balance constraint;
shadow prices for transmission constraints;
shadow prices for capacity constraints;

shadow prices for ramp constraints.

System Operator side. The forecasting technique propo‘sed i In this mOdEL we assume that each bus has a generator and a
[11] [12] relies on online Monte Carlo where the forecadpad, for simplicity. Note that the operating poijitand ramp
algorithm solves an optimal power flow (OPF) problem folimits are part of the linear program. By the ex-ante reaieti
each Monte Carlo sample path, which carries a substanfiflP it means that the estimated system operating pgint
computation cost. Such a high complexity algorithm is n@nd load forecast,,,; are used in the computation of the
scalable to large systems. economic dispatch and associated real-time prices.

In terms of forecasting methodology, this paper is related
to [13] with several key differences in the LMP model an®- Real-time LMP Model
forecasting techniques. Specifically, in this work, we ¢des  Assume that the shift factor matrit is constant over time.
an ex-ante LMP formulation whereas the formulation in_[13]The Lagrangian of({1) is given by:
is based on an ex-post formulation. The techniques used here
is also different. In particular, the approach In][13] is dxhs Iy

g+ )‘Zi(g(i) - df&?lhﬁ)

on a non-homogeneous Markov chain model on a partition on s M (k) Z A (g — )
the system state space. In this paper, in contrast, we fatus o P o t;§1|t
the partition directly on the load space. Instead of estimyat RPN PP Ai ( Y- t+1|t)
transition probabilities from data in [13], we take advayea +3,7P (g — g ) 5P (gD — g0
of probabilistic load forecasts. +3, 77(1 (g — g A(Z )
This paper is organized as follows. Sectfoh Il introduces -3, 77(} (g A(l A(f ),

the formulation of the ex-ante economic dispatch and thke rea
time LMP models. Sectiof Il provides the key theory basighere i is the bus index and the transmission constraint
of the proposed probabilistic forecast approach and Sectimdex.



The partial derivative of the Lagrangiah respect to the Let D be the feasible load region such that the ex-ante
load vectord is given by: economic dispatch given b{/l(1) has a finite optimal solution.
. . Here, we want to characterize the relationship between the

Val = -1 —Auy + Ap, feasible load spac® and the real-time LMPr;.

where1 is the vector of ones. By the Envelope Theorem, the We recall following definitions in[[14] for multiparametric

real-time LMP 7, at timet can be expressed as the sum dinear prog_ramm?ng a_nalysis. Let2 {1,---,m} be the set
the energy price and congestion prices of constraint indices in[{3). For any C J, let U; and V;
. R be submatrices o/ and V, respectively, consisting of rows
m=—Val =Al+Au; —Ap. (@) indexed by.
C. Certainty Equivalence Forecast of Real-time LMP Definition 1. An optimal partition [14] of .J associated with

Given the economic dispatch and LMP models, we cagrarameted is the partition(I(d), I (d)), where
introduce the certainty equivalence forecast of real-tiriveP. A g o
The certainty equivalence forecaster simply treats the- day 1(d) = {i € J|Uig™(d) = b + Vid},
ahead schedulé®”* as being the actual realizatiah in real- I9(d) 2 {i € J|Uig*(d) < b+ V;d},
time. The certainty equivalence forecast of LM®, 7|, at o ) ) )
time ¢ is equal tor, . usingdP?,. as the 1-step load forecastVhereg”(d) is the optimal solution of (1) given.

in CI]) _Note that the certainty equivalence forecast is afpoi Gjyen any loadd, the optimal solutiony*(d) divides con-
prediction. straints into the binding set indexed bg) and the unbinding
D. Probabilistic Forecast of Real-time LMP set indexed.bylc(d). Suc_h an optimal .pa_rtition deter_mines
the congestion pattern (binding transmission constraantsl
shadow prices can then be calculated. It follows that if the
optimal partition is given, then the price is determined.
Furthermore, there exists a set of parameters that gives the
ame optimal partition, such a set is called critical region
ore precisely, the definition of the critical region is give
EIﬁelow.

We now formulate the problem qifrobabilistic LMP fore-
cast that, in contrast to the classical point forecast gmbl
aims to provide the probability distribution of LMP at a fugu
time. In particular, given the estimated system operatinigtp
at time t and load and stochastic generation forecasts, t
forecast probability mass functigin, 1, of LMP is computed.

The key to probabilistic LMP forecast is to capture spati
and temporal correlations and inherent system randomnd3efinition 2. For a given load vectod* € D, let (I,1¢) £
Spatial correlations among LMPs arise naturally from the(d*),1¢(d*)), the critical region [14] related to the set of
optimization that governs the real-time economic dispatchinding constraintd is defined as:

Temporal correlations, on the other hand, are results df tha A
in load/generation forecasts and ramp constraints. Thiersys Ry ={d € D|I(d) = I}, )
randomness includes random occurrence of contingency and set of all parameteis such that constraints indexed By

measurement noise. are binding at the optimum of linear prograii (1).
I11. M ULTIPARAMETRIC LINEAR PROGRAMMING The correspondence of each critical regi® and each
In this section, we provide the key theoretical foundatién ¢-MP vectorm; is summarized in the following lemma.
the proposed probabilistic LMP forecast algorithm. Lemma 1. A feasible load spac® can be partitioned intd
A. Multiparametric Linear Programming Analysis critical regions in a unique way.e.
We adopt the formulation of multiparametric programming D=DiygDy - Dk, (5)

based on the right hand side multiparametric linear program . :
(MLP-RHS) [12] [15]. To facilitate mathematical analysis)"’here each critical region has the same LMP and the same

we rewrite constraints of linear prografd (1) in the follogin cqngestlon p_attern, _and c_r|t|cal rgglofm are ponhedrqns
compact form: with boundaries assigned in consistent with shadow pri€es o

Ug<b+Vd (3) the interior.
Proof: see[[14].

where g is the optimization vector (generation dispatcti), Note that, given operation paramete(s, b, V), critical re-
il » Y )

is the vector of load/stochastic generatidn, V andb are . . i .

corresponding constant coefficients. glonsDi can be computed offline using techniques developed
With the assumption of time invariant network topolog)),n [14].

the uncertainty of real-time LMP only comes from random |V, REaL-TIME LMP PROBABILISTIC FORECAST

load/generation vectbrd. Therefore, we treat load! as

parameter vector The basic idea of the proposed probabilistic forecast algo-

rithm is illustrated in Figuréll where the feasible load spac
1Al other uncertainties are ignored at this point. Consitien of other IS partmoned into critical regions and a realization of had
variables is discussed in Section V. vector process forms a path on the space.



The resulting conditional probability off,, falling in
critical regionD; is:

w7 (x — )},
(11)

Fromli) = [~ e
t+T|t\t) = T SXPUT —
D,/ (2m)" (3]

wherep = dy + dPP, — dP?.
Specifically, in the one-dimensional case, the predictive

probability of . 7, equal tor; is:

ft+T\t(i) = &(Df) — o(D}), (12)

Figure 1: Geometric intuition of load random walk model. _ o .
g where®(-) is the cumulative distribution function of truncated

Gaussian distributionV'(0,Y) in the feasible load spac®,
D andD; are upper and lower bounds of critical region,
respectively. Note that the vectg§{+T‘t should be normalized
as a distribution.

According to Lemmd]1, the feasible load spaecan be
R uniquely partitioned intds critical regions, as illustrated con-
Jeere(§) = Prldeyr € Djldy]. (6) ceptually in Figur€ll. Each critical regid; corresponds to an
MP vectorm;. With an appropriate probabilistic load model,
uch as the random walk model described above, we can

Given the load realizatiod; at timet, the optimal proba-
bilistic forecast of real-time LMP at timeé + T is given by
conditional probabilities that load, 1 falls in critical region
D, i.e

The computation of above conditional probabilities defgen

on probabilisic models of load. Such models can be o ompute conditional probabilities if](6) via multiparamiet

taingd _from either models of the load process or spgci ﬂ)?ogramming analysis and Monte Carlo techniques.
prediction methods used to generate load forecasts. Tipica The proposed algorithm can be summarized in following
such computation involves the use of Monte Carlo techniqueg

Approximations are necessary for high dimension problems. eps: ) o _ _

As an illustration, we present a directional Gaussian rando 1) Useé multiparametric linear programming analysis to
walk model for the load here. It should be noted that any determine the feasible load spade and its critical
statistical load model or prediction method can be applied.  '®9!0NS.

The purpose of using this model is to gain insights into the 2) Obtain LMP values and all correspondences between

behavior of forecasting performance by taking advantage of €&ch pair of a LMP vector and a critical region.
some of analytically tractable properties. 3) Estimate the constant diagonal covariance mafrinf

Assume that load; evolves as a random walk process with 4 Icc:>ad forecast f(;om h'IStO”C;l;?t.a' . FT11) with
incremental mean trajectomti; — i1 — e = Eldis1] — ) Compute conditional probabilities given i {11) wit

E[d,], i.e prediction horizorr".
First of all, we need to determine the feasible load spce
diy1 = dy + Apg + AWy, 7 ) - - , -

i ‘ a ‘ 0 and its unique partition described in Lemfda 1 respeciito (1).
whereAWW, ~ N(0,%,) is an independent Gaussian sequencéhis step can be achieved by the multiparametric programmin
We then have analysis that computes all critical regions and associdted

variables. Note that the computation of critical regions ba

— done offline if ramping constraints are not active.
devr = di + Z; Arri + Wi, (®) Next, for each critical regiofD;, we pick an arbitrary load
= vectord € D;, and solve the linear prograrl (1) to determine
where W, 7 = S VAW ~ N0, 7 S04, LMP values. Since each critical region corresponds to auiq
Assume that the mean trajectory is the day ahead lokl!P vector, we only need to solve this optimization problem
forecastd®, then the random walk model becomes: once for each critical region.
Then, we use historical data of actual load and its day ahead
dis1 = di + dppy, — dp™ + AW, (9) forecast to estimate the constant covariance matrix

N . Finally, with all information obtained from previous steps
In addition, we assume that at each timéne load forecast 4ng the newly available informatiod, at current timet,

noise of each bus is independent and its variance is constg@ can predict the future LMPr..7 via computing the
i.e. ¥; = ¥ andX is a diagonal matrix. Therefore, the actua},ngitional probability given by{11).
load of timet + T can be written as:

DA DA V. DISCUSSION CONTINGENCY CONSIDERATION
divr =di +diypr —dy” + Wigr, (10) , . )
In this section, we extend the proposed forecast technique

whereW; 1 ~ N(0,TY). to incorporate contingency uncertainty models.



In the ex-ante economic dispatch model, contingencies can 1 3 1 3
be viewed as a new set of coefficient values[ih (1). If there (0 — @ai H@

are transmission outages, values of the shift factor madrix I I
and line limit F. will change accordingly. Similarly, when ,

unit outages happen, associated shift factdrsgeneration
capacitiesg_, g+ and ramp limitsA_, A, can be different
from normal conditions.

For simplicity, we consider the N-1 contingency with the (a) Single load. (b) Two loads.
failure of a single element, which can be either a transimissi
line or a generator. Assume that a contingeh@an happen
with some probabilityp; at any time in the prediction hori-
zon. We also assume that once the contingency happens,.it . . - . o
cannot be recovered within the prediction horizon, or auyived'SEr.'bu'[Ion FeeTit a!"d the point mass distribution at the
period, for example, 24 hours. Then the probability that tHgahzed random variable, 7. Specifically
_co;lting(;lency ;1Tappens within the prediction horiZen + T BS(ft+T|t) _ ]E||ft+T|t — §(mar)|% (14)
Is1—(—=pi)". .

To describe the extended algorithm, we restrict the singléere .7, is the probability vector whosih entry is given
contingency to be a particular one with probabifityMultiple by fiy7:(i) = Pr(m = m;), andd(x) is the unit vector that
contingencies can be incorporated with different proligbil is one at entry: and zero elsewhere. This score ranges from
weights. LetM = {A, Fy,g+,9-,A,A_} denote the set O to 2, where the larger the score, the worse the probabilisti
of constraint coefficients without contingency, and the set prediction.
with a particular .contlngen.cy.. . B. Case Sudy: A 3 Bus System

We solve multiparametric linear programs with respect to
M and M separately to obtain associated feasible load spaced he network topology of the 3 bus system is given in Figure
D andCND' At each “met’ if the Contingency has not happenem. All three transmission lines are identical with thermiaits

Figure 2: A 3 bus system.

yet, the probabi"stic LMP forecast iS Computed by 100 MW. Generator at bUS 1 haS maximum Capacity 140 MW
R o - with cost $10. Generator at bus 3 has maximum capacity
ferrp =0 =) frerpen + (1= 0 =0)" [firie.50 200 MW with cost $15. There are no minimum generation

- 2 . o requirements.
where firj.p and f, r, 5 are conditional distributions of 1) Scenario 1. A single load case: We first consider a one

critical regionsD and D, respectively. Once the contingencyjimensional load scenario, as shown in Figlite 2a. Because
is detectedf 7, = f, 1), 5 Py assumptions. To sum up, theihe computation of conditional probabilities can be olain
probabilistic LMP forecast with contingency consideratis analytically, this serves as a way of validating the behasfo

given by: the proposed algorithm.

f - if contingency happened at timte The set up of this example is as follows. We generate a
" I B A zigzag curve as the mean load trajectory varying from 120
Jearp =9 (=) frrre,o

MW to 180 MW which is used as the day ahead load forecast

_(1-p)Tf - -
= =p) Werrye otherW|sle3. dPA with 5-min interval, as shown in the upper part of Figure
(13) with the right y-axis. To obtain actual load profiles, we
VI. EVALUATION simulate the random walk model described by (9) with an

i i 2
In this section, we present some simulation results {Bdependent Gaussian sequeddd’, ~ N(0,07), by default,

— DA
compare performances of the proposed probabilistic fetecd — 0.5%E[d;"]. _ : .
algorithm with the certainty equivalent forecaster. Wetfiest Ve use a Matlab based multiparametric programming tool-
our algorithm on a 3 bus system to gain insights into tHOX [17] to determine the feasible load space and its pamtiti

behavior of the proposed algorithm under various scen,ariJQe resulting critical regioﬁsare_: (0,140], (140,160] and
and then on the IEEE 14 bus system to prove its scalabilit;&.mo’ 200]. Note that boundary points, 140 MW and 160 MW,

Before presenting numerical results, we introduce a perf&re assigned to crltl_ca_l regions with same LMP values. Load
mance evaluation metric of probabilistic forecasts. impacts on the prediction performance is first evaluatednFr

Figure[3, we can see that the proposed probabilistic fotecas
A. Probabilistic Forecast Assessment algorithm consistently outperforms the certainty equivake
LMP is intrinsically a discrete random vector. The probaRredictor and longer prediction horizons result in worseefo
bilistic forecast of such a random quantity belongs to the seasts. Furthermore, two interesting phenomena are otgserve
called categorical forecast, and its performance is measuthe presence of peaks and the increasing variance over time.
by the ConSiStenCy as well as the statistical concentration °We exclude the pointl = 0 for LMP value consistency in each critical
the forecast. A standard metric is the Brier Scarel [16] thﬂ;gion. Ford — 0, values of LMP are zeros. But for critical regid, 60],
measures the average distance (2-norm) between the forecsiss are positive numbers.
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For the first phenomenon, we can easily check that all pee
coincidence with boundary points (indicated d¥axis ticks in
Figure[3). When the mean trajectory load lies on the bounda

o
IS

o
w

Brier Score
o
R

the probability of the actual load falling in either neighing oafle RO R SIS R TR Tt L IR 4 W W
critical region is 0.5 where the value of the Brier Scor co“ obsagsscooess  bososs®  Poaos ol ;:O % -‘°2g0\°
using the certainty equivalence method becomes 1. In csintri. Time Index(S-min interval)

the probabilistic prediction is a conditional probabilitiyat (c) 3 hours ahead probabilistic forecast.

incorporates all observed data. Hence, it optimally cagstur
the direction of future loads.

The second phenomenon is more obvious on probabilistic
forecasts, for instance, the 3 hours ahead probabilistectst 350
curve. At timet = 10, the Gaussian distribution is much more
concentrated on the mean than that at titne- 248. This
is because that load follows a random walk model, so that
the deviation from the mean trajectory grows, resultinghia t
bigger variance at a later time.

We then investigate the impact of the day-ahead load fore-
cast quality. Three levels of load forecast error are careid:

o = 0.1%E[dPA], 0 = 0.5%E[dPA] and o = 1%E[dPA]. The
resulting performances of the certainty equivalence ptedi i N

the probabilistic forecasts with prediction horizon of 1uho o o s 100 1e0 20 20 3%

and 3 hours are shown in subfigures of Fidure 4, respectively. Load@Bus?

From the comparison between subfigures, we can see thatRidure 5: The feasible load space, critical regions and anmea
algorithms perform worse with bigger load forecast errtms. |oad trajectory in Scenario 2.

each subfigure, the certainty equivalent prediction apptmar

be more sensitive to the load error than probabilistic fastx

2) Scenario 2. A two dimensional load case: We then We conduct the same experiment as Scenario 1 in this case.
consider a two dimensional load vector scenario where thAs shown in Figure 16, in addition to lower Brier Scores,
system network setting is shown in Figurel 2b. To genergtobabilistic forecasts are also less sensitive at boyndar
a reasonable mean trajectory of load profile, we draw an graints. Similar phenomenon of increasing distributioriaace
crossing all three critical regions indicated as the arcigufé is observed.

[5. For this particular load forecast profile, each bus folow 3) Scenario 3. A single contingency case: Finally, the ex-
a sinusoidal wave as shown in Figlide 6. Note that boundagnded algorithm with contingency consideration is evieda
points of neighboring critical regions are highlighted:eaxis In this setting, we consider a unit outage with a partial loss
ticks. of generation capacity. Assume that the maximum capacity

Actual load profiles are generated from the random wati the generator located at bus 1 can be reduced to 70 MW
model in [9) with two independent Gaussian sequences. Tinem 140 MW with probabilityp at any time. Other settings
standard deviation of each bus load is assumed to be .5% ofdte the same as the first scenario. The feasible load space
mean. A Monte Carlo method is used to estimate conditionaith this particular contingency becomés 185] and associ-
probabilities of critical regions il (11). ated critical regions becom@, 70] and (70, 185]. Therefore,

Figure 4: Impact of load forecast quality in Scenario 1.
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) ] _ Figure 9: Impacts of load and prediction horizon in Scenario
Figure 7: Impact of contingency occurrence probabilitin 3

Scenario 3.

. - ) _not designed for providing active power. The load parameter
(0, 140], (140, 160], (160, 200], (0, 70]*, and (70, 185]*, where s critical regions and the mean trajectory are shown g

critical regions with the presence of contingency are ledb&ly [g, performances of the certainty equivalent prediction and
“*". We compare the extended algorithm described in Sectigpopapilistic forecasts are shown in Figlile 9.

VIwith the extended certainty equivalence prediction, Whic

also takes the contingency probability into considerat®ince VII. CONCLUSION

the outage frequency is very low in practice, we chooseThis paper presents a new methodology for the short-term

p = 0.005 and p = 0.0005. Results are shown in Figureforecast of real-time LMP. The key idea is the exploitatidn o

[7. Performances are similar to that of the normal scenarigiochastic models to load uncertainty by the use of mubipar

as shown in Figurél3. However, the relatively high outageetric linear programming analysis and incorporating romli

ratio performs better than the lower ratio. This countefitite measurements.

phenomenon is caused by the particular load rafig® (180]) The proposed technique does have several issues that need

we chose. Once the contingency happens, all real-time lacti4a be addressed in the future. We have not discussed how

loads will fall in the fifth critical regionj.e., (70, 180], hence, to compute conditional probabilities of future load in wal

the uncertainty is considerably reduced. regions. In principle, Monte Carlo techniques can be agplie

but the accuracy of such techniques is limited by the number

C. Case Sudy: |IEEE 14 Bus System of samples generated; a more sophisticated sampling tpe#ni
We use the IEEE 14 Bus system with line limit parameteis particularly useful in obtaining accurate estimatesoiher

given in [18]. In this case, we only consider generatorstieta issue arises from ramp constraints. Although this paper pro

at bus 1 and 2 as online units since all other generators aiges a heuristic algorithm to incorporate ramp constsint



the feasibility can be an issue in practice due to load fateca
error. A more accurate forecast algorithm of feasible space
and critical regions should be explored.

As a general forecast technique, the proposed algorithm can
be tailored to take advantage of various forecasts which can
be very useful in practice, especially for the integratidn o
renewable resources.
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