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Abstract—The problem of scheduling and control of appliances

Liyan Jia, Zhe Yu, Mary C. Murphy-Hoye, Annabelle Pratt,d8llG. Piccioli, and Lang Tong
for Home Energy Management (HEM) is considered. A multi-
time scale and multi-stage stochastic optimization frameark

Provider (REP)
is proposed for the control of the Heating, Ventilation, and

Air Conditioning (HVAC) unit, the charging of Plug-in Hybri d [Energy ] [Energy J
Electric Vehicle (PHEV), and the scheduling of deferrable dad

such as washer/dryer operations. Formulated as a constragd / < pow:(:v‘virer:'“al\ocaton
stochastic optimization that incorporates thermal dynamcs, tem-
perature measurements, and the real time pricing signal, a HEM HEM

model predictive control algorithm is proposed that minimizes
customer’'s discomfort level subject to cost and peak power
constraints.

Index Terms—Home energy management, model predictive
control, smart grid, demand response, HVAC control, PHEV
charging.
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Fig. 1: A hierarchical demand side management
system.

A. Summary of Results

. INTRODUCTION The main contribution of this paper is a computationally

E consider the problem of optimal control and schedulractable multi-scale multi-stage optimization frameldnat
ing of appliances by a Home Energy Managemeiritegrates various functionalities of HEM. The multi-seahd
(HEM) device. The basic premise of this work is that thelulti-stage nature of the problem arises naturally in home
HEM device at the customer site serves as a gateway in #mergy management. For example, the thermal dynamics of
interaction with either the utility or an energy aggregatar a residential home may be modeled the minute level, the
the context of a hierarchical demand side management (DSMad profile for the maximum power consumption is specified
system, for example, an energy aggregator interfaces wittatathe hourly level, and the targeted energy expenditure is
Retail Electric Provider (REP) and a pool of customers. Igiven at weekly or monthly level. The scheduling of various
a hypothetical DSM operation, as illustrated in Fig. 1, theevices also involves multiple stages as information megli
aggregator secures a contract with the REP and promisesf@nscheduling arrives at different time, which affects timee
aggregated load profile among its customers. The aggregattien scheduling decisions are made. Unfortunately, finding
incentivizes its customers by a certain pricing schemelfdlfu the optimal scheduling policy of a multi-scale multi-stage
the promised load profile. The result is that each custom&ochastic program is intractable in general.
provides the aggregator with its own load profile that spesifi \We propose a hierarchical approach that separates the prob-
the maximum power consumption. In the event of requirddm into slow and fast scale optimizations; the former pilesi
load shifting, the aggregator may send requests of chamgeshie hourly power (energy) budget for different devices velasr
individual load profiles, and the HEM device of the customehe latter determines control signals at the time scale that
can respond accordingly. matches to that of the thermal dynamics (minute level). The
An essential function of an HEM device is to managproposed approach also separates continuous variable from
energy consumption based on the load profile promised itieger variable optimizations.
the aggregator, the pricing signal from the aggregator, theTo provide power allocation at the slow time scale, the
sensing devices that measure the home environment, gpimization involves a quadratic optimization with limean-
desired comfort level, and budget constraints. The custon#raints, which can be solved easily using standard nualeric
may specify a certain monthly energy expenditure and expeethniques. At the fast time scale, because of the on-affreat
the HEM device to optimize intelligently energy usage thaif HVAC control, the problem becomes a stochastic integer
fits the customer’s specific lifestyle. program where a suboptimal heuristic approach is proposed.
_ _ _ The underlying principle for the multi-stage stochastic
CoIFﬁpthfr' IEZﬁgirTgérir?;,d Clz).rnejlon%nisgsit;\,mhlth:ci\, SNC:](OOELQS;Ugllsmgr?]lail?ndoptimizations at the two different time scale is the Model
{192, zy73, 1t 35}@or nel | . edu. M. Murphy-Hoye, A. Pratt, and E. Piccioli Predictive Control (MPC) [1]. In particular, MPC forecatte
are with Intef Corp., USA. state of the physical plant into the future and makes temtati
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MPC is to excersize only the immediate tentative decisiah athat the charging of the PHEV can be suspended temporarily
refine its forecast as it collects more information. MPC doesd resumed at a later time. We assume that the charging can
not lead to the optimal solution in general, but the strategyart atT’4 and must be completed Wy, . The control strategy
is widely used in practice; it is computationally tractahled affects the comfort level of the customer indirectly thrbube
often offers satisfactory performance. constraints on peak power and available budget. We assume in
this paper that the PHEV must charged to a certain level by the
B. Related Wrk deadline, putting this job at a higher priority over miniimig
The literature on home energy management is expandip@ discomfort level.
rapidly, but few published work provides an integrated ap- The third load type isleferrable and non-interruptible load.
proach to loads of different types, addressing design tiésle The example considered in this paper is the scheduling of
among comfort requirements and peak power and budg@{sher or dryer for which the the start time of the load can be
constraints. Authors of [2] proposed a three-layer contrgdoyed based on power consumption and pricing information.
mechanism and use Tabu search to find a feasible solutipfpre the control is the start time of the load within the
In [3], particle swarm optimization is used to find the optimagarliest start timel’s and the latest start tim&;. The load
solution for coordinately scheduling multiple energy i@s@s. characteristics (power drawn from the grid) is assumed to be
These approaches require accurate prediction of the ensrgyknown. As in the control of PHEV charging, the schedule of

age of future. In [4], uncertainty consideration is incagted deferrable load is a hard requirement and it affects thel leve
into the optimization, but the control is an open loop sggte of comfort indirectly.

without using the real-time measurement.The authors of [5]
considered a similar scheduling problem as one treatedsn tB. MIMO Thermal Dynamics

Paper. _T_he gmphasis in .[5] Is on th_e tradeoff between COSt\Ne assume a multi-input and multi-output (MIMO) model
and W‘f.’"tmg time in a multi-home setting. The work presente{ﬂat specifies the indoor room temperature evolutitft] as
here, in contrast, focuses on energy management prOblerPunction of the outdoor temperaturg't] and the power of

L ) . : a
within a single home with a design tradeoff between. cost arPﬁjultiple HVACs p"*°[t]. As a generalization of the standard
comfort level subject to budget and power constraints. It R ; . S o .
— . . - ynamic model for residential air conditioning, the model i

also significant that the scheduling problem consideredis ta stochastic linear difference equation given by
paper involves thermal dynamics that dictates the forrrarat
of multi-stage stochastic dynamic optimization. The tharm ®(A,G,C): zt+1] = Az[t] + Gp™©°[t] + v[t] 1
dynamics is not modeled in [5] and the optimization involved y[t] = Cx[t] + wlt] @)
is considerably simpler.

The MPC strategy adopted in this paper goes back to [GJhere the state vecto@[t]é(a;in [t], z°*[t]) consists of the
[7], [8]. In [6], an algorithm referred to as LQG-MPC wasindoor temperature:y and outdoor temperature®[t]. The
proposed to deal with the state and control linear inequalitnultiple HVACs are controlled via vectgr'*°[t]. The mea-
constraints. In [7], [8], the Quadratic Dynamic Matrix Comoit surement is denoted ast]. The model includes process noise
is used to solve nonlinear process optimization with staté/] and measurement noiset], both assumed to be zero-
estimation. mean white Gaussian noise with known covariances.

We have performed validation of the above model using
) ] ) ) real data collected from a residential home. The measuresmen

We present in this section the basic system model apg,de indoor, outdoor temperature, and HVAC power usage.
the overall solution architecture. In dealing with modeis iyjqde| parameters are extracted by the least squares method
multiple time scale, we adopt the notation thét] stands sing one month of measurements. The validation of the model
for the representation of signal in the fast time scale (88Y 5 performed using data in two different months. The modglin

minutes) whereas:,, represents the signal in the slow timeynq prediction mean squared error are below 0.1 degree [9].
scale é.g., for hourly measurements).

II. PROBLEM FORMULATION AND HEM ARCHITECTURE

A Load classes and characteristics C. Control Policy, Cost, and Figures of Merits

We consider three types of load in this paper: The first is theA control/scheduling policy 7 is a power allocation to the
HVAC unit which draws powep™<|t] and drives the indoor three types of loadspl,..[t], pr.e[t], po.(t]) at the fast time
room temperature:"[¢] following a thermal dynamic model Scale (minute intervals) using measurem#ft;) up to .
given in Sec. II-B. The control of HVAC directly affects the Let & be the set ofadmissible policies that satisfy the
qua”ty of service and is subject to peak power and bud@ﬁh@dUllng constraints including the required start-éme for
constraints. The quality of service is defined by the level #harging and start time for deferrable loads. Of particutar
discomfort measured by the deviation of room temperatup@rtance is the the vector of aggregated hourly load cansira
from the desired setting. (Py,---, Pp,). Specifically, given a control policyr € 27,

The second type of load is the charging of PHEV. This igt p™ [t]ép;’VAC [t] + plet] + PLlt] be the aggregated power
a deferrable and interruptible load. By preemption we mean consumption in intervak. The hourly power consumption
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limits mandates that constraint. To this end, we consider the following multigss
stochastic optimization:
p:': Zpﬁ[t]S—Pza Z:O,l,,Th
minimize /" E. |2t — d;|?
Given the price signat[t], the cost of a policyr is give by subject to (z1, 1) ~ (4, G, C)
Tp<s<Tg
A e Def i <
C(m= D" 2l x p7). @) pot = { e Most<std
. 0 o.W.
. . 5
We measure the (lack of) quality of a polieye 2 by the 0 %ZZ;%HZ Spgﬁfv ®)
discomfort level by =0 Pi=Q

P =0 ift<Taort>Tp

A in 2

1mwm;Wdex 3) 0 < g% 47 <
n—1 HVAC PHEV Def
where z"[t] is the indoor temperature andl¢] the desired uto #PC P 0T < B
temperature settings. Given a daily budget constr&inthe wherez}, the indoor temperature vector, is part of the state
optimal policy is the solution of the following constrainecevolution (z:,y:) ~ ®(A, G, C) specified by the stochastic
optimization thermal dynamic equation (1). For simplicity, we will asseim
. that the deferrable load draws constant rated pafer

Iniélz D(m) subjectto C(m) < B.

me: IV. FAST TIME SCALE STOCHASTIC OPTIMIZATION

D. HEM Control Architecture We now consider the scheduling and control at the fast
We propose a multi-scale and multi-stage control architeéme scale. The principle established for the slow time escal
ture shown in Fig. 2 with detailed functionalities of thewlo optimization applies here as well, except that we now deal

and fast time scale optimizations defined in Sections IlI-IV with scheduling with integer decision variables.

The architecture is based on the principle of model predic-Due to space limitation, we focus on the control of HVAC at
tive control (MPC). Sensor measurements (indoor and outddbe fast time scale. The most widely used control stratetyeis
temperatures)(t] are taken at the fast time scale and a Kalma®n-off control of HVAC where the heating and air conditiogin
filter is used to predict future thermal dynamic statéisr-k|¢t]. is turned on or off based on the desired temperature set
The slow time scale MPC uses state prediction and pricipgint and actual temperature measurements [10]. In pegctic
signal z[t] to allocate power budget to the three types of loagpnsiderations of equipment longevity may put additional
at the slow time scale, and the fast time scale MPC determirg@istraints on how frequent the switching between differen

the detailed control at the fast time scale. states can be.
Within the class of on-off controls, we formulate the prob-
2[¢] pricing lem as choosing the on-off switching time subject to mininiz
HVAC the discomfort level and subject to the hourly power budget
. Feeanon |-t bLEER RS | 7 LT Fastme angEvm constraint. Once the switching time is chosen, the control
iy ' P B P>e[t] of HVAC can be implemented through artificially choosing
the desired temperature set points without actually ihstal
ylt]  measurement °’e/"‘\°"°" PiC (slow scale) different controller.

V\/‘\v‘jo»é\o /( e M The fast time scale control of HVAC starts by calculating

| ?f IRETE R HM tﬂ ) the number of on periods within each hour, assuming that
! the HVAC uses the same power level when it is turned on

and schedule the on periods by a stochastic optimization. In

particular, given the total power budget“® in the kth hour,

the number of on periods is given by, = [p}\“°/P2e].

The allocation of the on periods is formulated as a stoobhasti
optimization with the binary action space.

) t '
current time current time

Fig. 2: Multi-scale HEM architecture.

IIl. SLOW TIME SCALE STOCHASTIC OPTIMIZATION

A control policyr is a mapping from measuremeri#s,,, = V. SIMULATIONS
{Yn, Yn—1," "+ ,yo} to decision variable§!° p™*= s) where =~ We present preliminary simulations to illustrate the pro-

s is the start time of the deferrable load. Note that, once tip@sed approach. Three types of loads are included in the
start time is determined, the power allocation to the dafder simulation. As a deferrable load, the dryer is assumed to
load at the fast time scale is determined. last for two hours, assumed starting no earlier than 4PM and
The goal of the slow time scale optimization is to minicompleting no later than 6PM. We also assume that the PHEV
mize the discomfort level subject to power limit and budgeés available for charging between 8PM and 8AM. The charing
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rate is nonnegative which implies it cannot discharge. Akped@he performance bound is obtained by knowing the future
power constraint is applied by the HEM as well as a totglerfectly.

budget constraint. The plot of discomfort level (measured in terms of Predicted
Mean Value(PMV)) against energy cost is shown in Fig. 4
. S e where the proposed approach performed better than LQG-
?% e N MPC. At the PMV value of 1.5, the saving of the proposed
% 3 m — 5 P % approach over LQG-MPC was about 20% While the MPC
D , e spend 8% more than the optimal condition. We noted that,
:ﬂ /H;\ i . \‘ﬂﬂ when the budget constraint was tight, the difference betwee
5" ° ° tmetow ° ® the three approaches was small, which can be explained by
5% WHWW { the fact that both strategies have limitted power availdbte
£l L - L L ) scheduling.
£ Ty _— — { VI. CONCLUSION
£ ol MHW 5 e We presented in this paper a multi-scale multi-stage stecha
% freten tic optimization framework for home energy management that
E}% 4/ ‘ : : { involves loads with different characteristics. With HEMvite
£ % ® ® ety » ® as an interface with the energy aggregator through rea-tim
pricing and economically incentivized load profile, our goa
Fig. 3: Power Policy Example: Indoor Temp, Dryer and here is to provide a conceptual decomposition of the opti-
PHEV Charing, HVAC, Total Energy and Peak mization problem into computationally tractable subpenins.
constraints, Price We have made a number of simplifying assumptions that

need to be justified and studied further for practical imple-

Fig. 3 illustrates on resulting control policy. Given thanentations. The linear thermal model needs to be validated,
tight schedule deadline for the deferrable load, the optimand the assumption that model parameters are known needs to
scheduling for the dryer was between 4PM-6PM. Note al$ replaced by online parameter estimation and tracking alg
that the PHEV charging schedule took advantage the prighms. The impact of the economically based scheduling on
advantage. Given the consumption limit, there are sevetgk |ife-time of appliances, especially in the context offRH
periods that the power limits became binding. As a resuiharging and bang-bang HVAC control, warrants furtherytud
there were two hourly intervals that less power allocation \onetheless, many of the modifications required to circurhve
the HVAC were made, which led to deviation from the desireghe above simplifying assumptions can be incorporatedtirgo
temperature. proposed optimization framework.
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