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ABSTRACT can cause significant changes in LMPs throughout the net-
work, sometimes at locations remote from the attack.
Malicious data attacks to the real-time electricity maret The power grid is monitored and controlled by its energy
studied. In particular, an adversary launches an attackdy Mmanagement system (EMS) at the control center. One of the
nipulating data from a set of meters with the goal of influ-yey functions of EMS is bad data detection where the EMS
encing revenues of a real-time market. The adversary MUgltermines whether a particular piece of data is unreliide
deal with the tradeoff between avoiding being detected by thyg meter malfunction or perhaps simply an outlier that needs
control center and making maximum profit from the real timey e excluded. Thus anomalies from data may be detected by
market. Optimal attacking strategy is obtained through@n 0 5 gophisticated EMS design. The adversary therefore faces a
timization of a quasi-concave objectlye function. It_ ISWO 4 deoff between acting aggressively to cause large clsdnge
that the probability of detection of optimal attack will @6 rqfit/joss and acting covertly to avoid being detected.sThi
be Igss tha.5. Attack performance is evaluated using SIM-tradeoff, referred to as thaitacker operating characteristic,
ulations on the IEEE 14-bus system. is fundamental for both the adversary and grid EMS.
Index Terms— Smart grid, electricity market, location
margli(nal price, cyber-physical systems, cyber securt§yad 1 1. Summary of Results and Contributions
attack.
In this paper, we study effects of malicious data attack en th
real-time electricity market. We consider attacks in weak
1. INTRODUCTION attack regime where the adversary does not have control of so
many meters that its attackusmobservable[4, 5].
During the last decade, nationwide deregulation has ctthnge  For a fixed detection scheme, the EMS at the control cen-
the EIGCtriCity market in the United States from a tradi'ter Operates ataparticu|ar Operating point, typ|ca||y'|at01
tional monopolized market to a competitive one. Locationakg|se alarm probability of the receiver operating chanastie
Marginal Prices (LMP) are commonly used as a means tgrOC) curve. Given the network configuration, we formulate
determine day-ahead and real-time price [1, 2] by varioughe problem of optimal attack as finding the attacking meters
regional transmission organizations. and the corresponding attacking data to maximize the dveral
In the day-ahead market, by matching the generation ofprofit at a particular location.
fers and demand bids, the LMP is calculated from the Opti- For a fixed Congestion pattern, we show that the maximum
mal Power Flow (OPF) solution [3]. In the real-time market, profit gain by a single meter attack is a quasi-concave fancti
on the other hand, an ex-post formulation is often ussgl,(  of the attacking data vector, and the resulting optimakétta
by PJM and ISO-New England [1]) to calculate the real-timejs a solution of an optimization of the quasi-concave fumcti
LMP by solving an incremental OPF. The prices in the dayunder linear constraints. We also show that, for the single
ahead and the real-time market are used in the final clearingeter attack, the probability of detection of optimal akttéc
and settlement process. always below 0.5.
An adversary can affect the real-time market in two ways.
It can manipulate the meter readings that affect directy th
quantity of electricity usage. Indirectly, and often mofe e 1.2. Related Work
fectively, is to manipulate meter readings that will affée¢  Although the detection of bad data has been studied for a long
LMP calculation. This latter approach, as shown in Section 3time, see [6] and references therein, the problem of maitcio
T T bart by the Intel Fellowsh he NSE data attack and its detection has only attracted atten&en r
R PR it by e e el e NS cently,due in arge part by the work of Liv, Reiter and Ning

under award CCF-0424422, PSerc, and the DoE supported TOIRG-  [7]- They have shown that, by compromising enough me-
worthy Cyber Infrastructure for the Power Grid) consortitim ters, the adversary can perturb the state estimate ailyitrar




in some subspace. Kosettal. found that the condition for wherezp andz are the parts in: corresponding ta® and
the existence of such attacks is equivalent to the network oll,, andH is the part ind corresponding to the line flows.
servability condition [8], and a graph theoretic approach i
developed to characterize the so-caledurity index—the 2 2. Attack and detection models
smallest set of attacked meters that will cause unobsédityabi
[4, 5]. When the attacker has only limited access to meterdow we present the attack model. Assume the adversary can
in the weak attack regime, algorithms for detecting malisio Manipulate values of a set of meters. ebe the set of pos-
attack have been considered [9, 8]. sible attack patterns. For example, if the adversary cay onl
The effect of malicious data attack on real-time marke@{tack one meter at a timg, contains only singletons, each
was first considered in [10, 11]. In [11], the authors presént is_ an index of a vulnerable meter. The attack model is then
the financial risks induced by the malicious attack and prodiven by
posed a heuristic for finding profitable attacks. However, it 2o = Hr +w +a, 4
only considered the situation that the malicious attackpss wherez, is the measurement vector (with attack) anthe
the estimated line flows all below the limits. The formula- attack vector constrained By, Specifically, there exists
tion and strategies presented here leads to optimal attatk aJ that gives the indices of nonzero entriesiof
applies to more general situations. One of the widely used detector in practice is the residue
The structure of this paper is as follows: in Section 2 detector [13] (also referred to as thiéx)-detector). Define

we introduce the problem formulation, making precise definithe residuat as
tions of the system model, market model and attack model. In A
Section 3 we propose an strategy to find the optimal single at-" = z — Hi = Gz, G=I—H(H"R™'H)"'"H"R™". (5)
tack \(ector, which is exact.and efficient. Finally, in Sectih The residue detectdris a threshold detector of
we will show some numerical results on IEEE 14 bus system ,
by using the proposed strategy. L iffr* >

y using the prop 9y 5(2):{ oo ©)

2. PROBLEM FORMULATION wherer is the threshold for a certain false alarm probability.

2.1. System model .
2.3. Electricity market model

Consider a lossless power transmission network wiblises. - .
P The deregulated electricity market consists of day-ahesd m

Measurements are collected from the network in a vector ) .
M Our model accommodates various types of measurr{-Et and real-time market. In the Day-ahead market, given the

ments including the real line flows of branches, the powe oad forecasL, the following OPF problem is solved

generations and loads, and possibly PMU measurements. In minimizep 3. C; P;

real time market, the calculation of LMP usually involves a subject to Z; P,—Y.L;=0
DC power flow based on the linearized network model. Since pmin < p, 2 pmax
there exists a bijection between nodal power injections and ii S;;Pi gT]??ax

voltage phases [12], we define the stateas the combina-
tion of power generation vectd? and demand vectif,, i.e.  whereP; is the generation at bus L; the forecast load at
z =[P, L"]". The DC model of a power system is given by busj, P™" and P the lower and upper capacity bounds
for generator at bug Sy, the shift factor of branch to busi,
z=Hz+w, (1) and7;" the line flow limit for branch:.

whereH is the factor matrix of nodal power injection vector ~ The solutionP* is calledeconomic dispatch, and the lo-

andw the Gaussian noise of measurements. cational marginal price (LMP) at buds given by
Given the observation of the measurementshe max-
imum likelihood (weighted least squares) state estimate is A =A— ZSkiMh ()
given by k
) A _ _ _ where), u;, are the dual variables corresponding to the equa-
b= Kz KS(H'R™H)'H'R™, @ tionand ﬁne flow constraints, respectively.
where R is the covariance matrix of the noise Accord- As for the real-time market, an ex-post formulation solves

ingly, the maximum likelihood estimation of power genera-the following incremental linear programming problem([2],
tions, loads, and line flows would be minimize " C,AP, — S C,AL,

P ip subjcetto Y AP =Y AL;
Ll =1 21 3) APMN < AP; < APmax
F Hrpz Zz Sk AP; + Zj SkJALJ <o0,forallk e C



where the sef’ is the set of congested lines, whichwe referto  Under the attack vectarintroduced by the adversary, the
ascongested pattern. C'is determined by the state estimation. residual’s 2-norm will be
In practice, the upper and lower boundAp; are chosen as

P ° ! Iral P = G (Hz + 0+ a)|

0.1MW and -2MW [14]. The real-time LMP is calculated as — wTCw + 2aT G + T Ga. (12)
5\1' 225\— SzA 8 .
; gitts ® Assumingw ~ N (0, 5%I), we then have[13]
J
E(||ra||2) =(n— m)o2 +a"Ga (13)

where A and (i; are the dual variable corresponding to the
linear constraint and line flow constraints, respectively. Var(|[rq|[?) = 2(n — m)o* + 46%a” Da (14)

In the day-ahead market, the operator calculates the eco-
nomic dispatch P*,\*). The generator at busreceives wheren andm are the number off’s rows and columns re-
Py A;, and the customer at byspaysZ;\*. In the real time spectively, and) = diag(Gi1, G2z, ..., Gnn)- o
market, the operator does the state estimation and casulat V\ghen the size of the system is large, the distribution of
the real-time LMP,}, then the generator at busreceives |/7«/|” can be approximated by [13]

P, — P*))\,; and the customer at byspays(L,; — L)\
(P = PAs Yspays(L; = L;)A; [rall? ~ N(E([ral2) Var(ra]2). (15)

3. OPTIMAL ATTACK STRATEGY So given an attack vectarand the threshold for the detector,
the detection probability is

Assume our objective is to make maximum profit for the gen-
erator at bus in the real-time market. We callthe target p 7= ((n —m)o® + a" Ga) ) (16
location. Let P*, L and F'* denote the value of generations, \/2 % (n—m)o* + 402 % aT Da
loads and line flows in the day-ahead economic dispatch.

I the attack vector is detected by the bad data detectioryvhereQ(:) is the function of the tail probability of standard
the adversary’s attempt for making profit fails. So we focughormal distribution.

on the expected profit and the objective of our problem should Now we only consider the single attack problere, a =
be ae;. For afixed congestion patte€i, the real-time LMP;

maximize, \;(P; — P*)(1 — Pp) (9) Isfixed. Then, the objective function is

wherePp, is the detection probability, which is a function of - 7' —((n —m)o? + G4ja?)
the attack vector. Fle) = Ak, ol = \/2 (n —m)ot + 402G ;02 )

Now we consider a simple scenario, in which every par- (17)
ticipant in market follows the day-ahead dispatch. Then the —\ye have the following two theorems, the proofs of Whlch

tern. For each congestion patteth if it is achieved by the  gmitted due to the page limit.

state estimation with attack, a set of linear constraintsikh

be satisfied for the attack vecter Theorem 1 The objective function for single attack, F'(«), is
. max . quasi-concaveon [0, co) when K, ; > 0, and quasi-concave
Fi+3", Skia; > T"® foreveryk € C on (oo, 0] when K, ; < 0.

Fy+ 3, Spia; < T for everyk ¢ C
Theorem 2 At the optimal point of the objective function, F'(«),
Actually, for a specific economic dispatch, only the lin€sine detection probability is less than 0.5.

with flows close to the limit can be made into the congestion

set by attack vector under relatively low detection prolitgbi These two theorems show that the objective function is
So we define theulnerable set of lines,V, as unimodal. Therefore the unique zero point6f(«), ap, is
A e i the maximal point for the unconstrained problem. Then, our
VE{k 1™ = Fy <6} (10)  problem can be converted into the following one
whered is a arbitrary threshold. min  |o — ag

According to equation (2), the expectation of the differ- st Ff+ Y, Swa; > TM*  for everyk e C
ence between estimated generation and economic dispatch is F"; S Skiaf ; T]?”ax for everyk ¢ c
k 7 1% k

given by, K, ja>0

(18)

E(P, — P}) =E(Kp,(Hx +w+a)) — P} = Kp,a (11) _ )
Then we can test every congestion patt€ri 1 and every

whereK p, is the part of’ corresponding to the measurementpossible meter for single meter attack, getting the one with
of generation at bus maximal objective value as the optimal attack.



4. NUMERICAL RESULTS

20 respectively.

In the future, we may consider how to find the optimal

multiple attack vector or the sub-optimal one. Also we are
We test our proposed strategy on the IEEE-14 bus system {@aterested in the counterpart of this problem, designirigae

show its validity. Assume all of the generations at bus 1, 2, 3tors to protect the electricity market from malicious aktac
6 and 8 can generate real power, with cost 15, 31, 30, 10 and

In Fig. 1, we show the attacker operating characteristic,
which is the tradeoff between detection probability and the [1] T. Zheng and E. Litvinov, “Ex post pricing in the co-optized
expected profit made in real-time market, with generation at
bus 1 as target. We see that the objective function is uniinoda

and achieves its maximum beld# 0.5.
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Fig. 1: the attacker operating characteristic curve
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To compare with our proposed strategy, we use another
two possible strategies for the market attack, randomligttac [7]

choosing a random attack vector within detection probigbili

[0,0.5], and 0.5 detection probability attack, choosing the at-

tack vector with exactly 0.5 detection probability. In fig. 2

we show the numerical result for single attack to market un-[8]

der these three attack strategies, at different targetitota

Still, the Y-axis is the expected profit in real-time market.
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Fig. 2. Real-time profit at different target locations for
3 attack strategies

5. CONCLUSION

In this paper, we investigated the effect of malicious &ttac

(10]

(11]

(12]

(13]

on real-time electricity market, and showed the chance thggj

adversary can make profit by intelligently manipulating som
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