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Abstract—Impacts of malicious data data attack on the
real-time electricity market are studied. It is assumed that
an adversary has access to a limitted number of meters
and has the ability to construct data attack based on what
it observes. Different observation models are considered.A
geometric framework is introduced based on which upper and
lower bounds on the optimal data attack are obtained and
evaluated in simulations.
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I. I NTRODUCTION

The deregulated electricity market has two interconnected
components. The day-ahead market determines the Loca-
tional Marginal Prices (LMPs) based on dual variables of
the Optimal Power Flow (OPF) solution [1] given bids,
demand forecast, constraints on generator capacity and flow
limits. The calculation of LMP does not depend on the actual
system operation. In the real-time market, on the other hand,
an ex-post formulation is often used (e.g., by PJM and ISO-
New England [2]) to calculate the real-time LMP by solving
an incremental OPF. The prices in the day-ahead and the
real-time market are used in the final clearing and settlement
process.

Because the real-time price is a function of state esti-
mates, the real-time LMP is a function of data measured
from meters. Therefore, anomalies in data will affect prices
in the real-time market. If data obtained normal random
measurement errors, the bad data detection at the control
center will likely filter the outliers out. The net effect of
random measurement error is insignificant. The bad data
detection also plays the role of removing outliers due to
malfunctions of meters, packet drops in communications,
and other outliers.

The increasing reliance on networking for wide area
situation awareness comes with the threat that an adversary
may break into the information network, obtain vital system
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information, and launch intelligent attacks that can influence
covertly the real-time electricity market. While there is no
publicized incidents of such attacks, it is of significant value
to assess the potential impacts of such attacks. Such analysis
may also reveal the vulnerability of the network topology,
the inadequacy of meter placement, and potential security
enhancement solutions

A. Summary of Results and Contributions

In this paper, we study effects of malicious data attack
on the real-time electricity market. We consider attacks in
the weak attack regime where the adversary does not have
control of so many meters that its attack isunobservable [3],
[4]. Consequently, the adversary faces conflicting objectives:
(i) evading bad data detection by limiting the perturbationof
data sent to the control center; (ii) causing as large economic
impact as possible to the real-time market. Here by economic
impact we mean the change of real-time prices at different
locations.

We focus in this paper attack strategies of an adversary
and try to characterize the attack performance measured by
the expected price change. A main contribution of this paper
over existing work—see Sec I.B for a brief survey—is the
adaptive nature of the attack. In particular, the attacker uses
the observed data to construct data-dependent attack. This
is a significant departure from several related work where
time invariant attacks are derived [5], [6].

Our approach is based on a geometric characterization
of real-time LMPs on the state space of the power network.
By partition the state space into polytope regions where each
region is associated with a unique LMP, we formulate the
problem of designing malicious data attack as an optimiza-
tion with the objective of maximizing expected price change
subject to flow limits and detection probability constraints.

We consider several observation scenarios that model
different levels of intrusion by the adversary. At one extreme,
one may assume that the adversary has the full network
observation (even though he can only alter data at few
locations). In this case, the adversary knows exactly the data
that will be received by the control center, which gives the
greatest power to the adversary to influence the actual real-



time price. This is the worst case attack that serves as the
upper bound on the maximum price deviation.

A more realistic scenario is that the attack can only access
a fraction of the meter data. The part of data unobservable
to the adversary introduces uncertainties such that the ad-
versary can only estimate what the control center observes
and it can only hope to maximize the expected change
based on some optimized attack vector as a function of the
meter data accessible to him. The optimization formulated
in this paper does not have closed-form solution, and we
present some suboptimal solutions. As achievable schemes,
these suboptimal solutions serve as lower bound on the price
deviation caused by the optimal attack.

B. Related Work and Organization

Although the detection of bad data is a classic subject,
see [7] and references therein, the problem of malicious
data attack and its detection has only attracted attention
recently, due in large part by the work of Liu, Reiter
and Ning [8]. They have shown that, by compromising
enough meters, the adversary can perturb the state estimate
arbitrarily in some subspace. Kosutet al. found that the
condition for the existence of such attacks is equivalent to
the network observability condition [9], and a graph theoretic
approach is developed to characterize the so-calledsecurity
index—the smallest set of attacked meters that will cause
unobservability [3], [4]. When the attacker has only limited
access to meters in the weak attack regime, algorithms for
detecting malicious attack have been considered [9].

The effect of malicious data attack on real-time market
was first considered in [10], [6]. In [6], the authors presented
the financial risks induced by the malicious attack and
proposed a heuristic technique for finding profitable attacks.
While there are similarities between this paper and [6],
both consider mechanisms to influence the real-time LMP
price based on incremental DC OPF, there some significant
differences; most important is that the class of attacks
considered in this paper are based on real-time measurement
whereas the attacks presented in [6] are data independent.

The structure of this paper is as follows: in Section II, we
introduce the problem formulation, making precise defini-
tions of the system model and market model. In Section IV
we show the possibility of changing real-time LMP’s by alter
some meters’ values by a simple 5-bus example. Finally, in
Section V, we will show the attack problem formulation,
under three different scenarios, with full, partial and no
observations in real-time.

II. SYSTEM MODELS UNDERNORMAL CONDITIONS

We describe in this section models for the power system,
the state estimation, and the day ahead and real-time markets
in the absence of malicious attack. We will assume that
the control center does not deploy sophisticated intrusion
detection schemes; it simply relies on a standard bad data

detection based on residue error—the so-calledJ(x) test
[11].

A. Power system model

Consider a lossless power transmission network withn
buses. Measurements are collected from the network in a
vectorz ∈ <M . Our model accommodates various types of
measurements including the real line flows of branches, the
power generations and loads, and possibly PMU measure-
ments. In real-time market, the calculation of LMP usually
involves a DC power flow based on the linearized network
model. Since there exists a bijection between nodal power
injections and voltage phases [12], we define the statesx
as the vector of power generation vectorP and load vector
L, i.e. x = [P T, LT]T. The DC model of a power system is
given by

z = Hx+ w, (1)

whereH is the factor matrix of nodal power injection vector
andw is the Gaussian noise of measurements.

B. State estimation and bad data detection

Given the observation of the measurementsz, the max-
imum likelihood (weighted least squares) state estimate is
given by

x̂ = Kz, K
∆
=(HTR−1H)−1HTR−1, (2)

whereR is the covariance matrix of the noisew. By the
invariance property of the ML estimator, the maximum
likelihood estimation of power generations, loads, and line
flows would be
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wherex̂P andx̂L are the parts inx corresponding toP and
L, andHF is the part inH corresponding to the line flows.

To make sure the topology and measurement used in
the state estimation is correct, the control center will also
conduct the bad data detection procedure. One of the widely
used detector in practice is the residue detector [11] (also
referred to as theJ(x)-detector). Define the residualr as

r = z−Hx̂ = Gz, G
∆
=I−H(HTR−1H)−1HTR−1. (4)

The residue detectorδ is a threshold detector ofr:

δ(z) =

{

1 if ||r||2 > τ
0 if ||r||2 ≤ τ

(5)

whereτ is the threshold calculated from a certain false alarm
probability.



C. Models of day ahead and real-time markets

The deregulated electricity market consists of two com-
ponents, a day-ahead market and a real-time market. In the
day-ahead market, given the load forecastL, the following
OPF problem is solved

minimizeP
∑

i CiPi −
∑

j CiLj

subject to
∑

i Pi −
∑

j Lj = 0

Pmin
i ≤ Pi ≤ Pmax

i
∑

i AkiPi −
∑

j AkjLj ≤ Tmax
k

,

wherePi is the generation at busi, Lj the forecast load at
busj, Pmin

i andPmax
i the lower and upper capacity bounds

for generator at busi, Aki the shift factor of branchk to
bus i, andTmax

k the line flow limit for branchk.
The solutionP ∗ of the above optimization is called the

economic dispatch. The locational marginal price (LMP) is
defined as the cost of supplying an additional MW of load
at a particular location. From the OPF formulation above,
the LMPλ∗

i at busi is given by

λ∗

i = λ−
∑

k

Akiµk, (6)

where λ, µk are the dual variables corresponding to the
equation and line flow constraints, respectively.

As for the real-time market, an ex-post formulation
(adopted by PJM, ISO-NE, and etc.) solves the following
incremental linear programming problem [13],

minimize
∑

Ci∆Pi −
∑

Cj∆Lj

subjcet to
∑

∆Pi =
∑

∆Lj

∆Pmin
i ≤ ∆Pi ≤ ∆Pmax

i

∆Lmin
j ≤ ∆Lj ≤ ∆Lmax

i
∑

iAki∆Pi +
∑

j Akj∆Lj ≤ 0, for all k ∈ Ĉ

where the set̂C is the set of estimated congested lines
on which the estimated flows are equal or above the flow
limits. Since the estimated flows are determined by the state
estimate, the estimated congested patterĈ is also a function
of the state estimate. In practice, the upper and lower bound
of ∆pi are chosen as 0.1MW and -2MW [14].

The real-time LMP is calculated as

λ̂i := λ̂−
∑

j∈Ĉ

Ajiµ̂j (7)

whereλ̂ and µ̂j are the dual variable corresponding to the
linear constraint and line flow constraints, respectively.

In the day-ahead market, the operator calculates the
economic dispatch (p∗, λ∗) from the OPF formulation. The
generator at busi receivesP ∗

i λ
∗

i , and the customer at bus
j pays Ljλ

∗

j . In the real time market, the operator does
the state estimation, figuring out the network topology and
estimated value of generations, loads, and power flow, then
calculates the real-time LMP,̂λ. In real-time market the
generator at busi receives(P̂i −P ∗

i )λ̂i and the customer at
busj pays(L̂j − Lj)λ̂j .

III. PARTITION OF STATE SPACE BY REAL-TIME PRICE

Our approach relies on a geometric characterization of
the state space. LetX ⊂ <M be the set of possible state
vectors. Given a realization of meter dataz, the control
center obtains the state estimatex̂(z) (we shall drop the
dependency ofz when no confusion arises). From̂x, one
obtains the estimated congestion patternĈ (also a function
of z). From the estimated congestion patternĈ, a real-time
price λ̂ is obtained.

Since the state estimatêx is taken as a sufficient statistic,
we can drop the original dataz. As a result, eachx ∈ X

is associated with a congestion patternC thus a real-time
price λ(x). Define π(C) as the region ofx’s which give
the congestion pattern asC. Notice that we have dropped
the ”hat” on the corresponding variables to indicate that
the relation betweenx ∈ X and real-time priceλ is not
a function of real-time data.

The following Theorem gives a geometric structure of the
state space.

Theorem 1 (Price Partition of the State Space): The
state spaceX is partitioned into polygons (ref. Fig 1)
where the interior of each polygon is associated with a
unique priceλ and the boundaries are defined hyperplanes,
each associated with a congestion condition of a single
transmission line.

State space

π0

π1

π2

π3
π4

x

Figure 1: Partition of the state space by real-time
price

The significance of Theorem 1 is its succinct characteri-
zation of the state space. It is this partition that shows the
underlying strategy of attack to be described in later sections.
In practice, the operating point of the network—the actual
state—is not known precisely. Given observation data from



the networked meters, the state can be estimated. The basic
idea of malicious data attack is to create an illusion at the
control center that the system is operating at different point
from the actual system state. The challenge of creating such
illusions is that the estimates of the system operating point
by the control center and the adversary, however, can be very
different, especially when the adversary has only limited
view of the network.

IV. ATTACK MODEL AND EXAMPLES

We now present the attack model along with several
simple examples to illustrate some characteristics of the
attack. It is perhaps not surprising but nontheless nontrivial,
that the price changes due to data attack can be very much
decoupled from the location of the attack.

A. Attack scheme

Assume the adversary can manipulate values of a set of
meters, which means the adversary can inject a vectora into
the DC system model (1). We define the attack pattern,T (a),
as the indices set of nonzero values ina. Physically,T (a)
means the meters the adversary can manipulate at the same
time. LetT denote the set of all attack patterns available to
the adversary, and thenA = {a : T (a) ∈ T} is the set of all
possible attack vectors the adversary can inject. The attack
model is then given by

za = Hx+ w + a, a ∈ A (8)

whereza is the measurement vector (with attack) anda the
attack vector.

Due to the existence of the bad data detector, the adversary
cannot inject an arbitrary vector into the system. The adver-
sary needs to design some intelligent attack design method
to handle the tradeoff between making profit and avoiding
being detected.

B. A simple example

Now we investigate the cases that disturbance of real time
measurements will affect the real-time price. Consider the
PJM 5-bus system shown below. At bus 2, 3 and 4, there
is 300MW load for each. The bidding prices are shown
in the circle, standing for the generators. At the operating
point, which is the optimal dispatch, branch 1-2 and 4-5 are
congested. The real-time LMPs are shown next to the buses.

Next, assume we can alter the meters of generations at bus
1 and 3. By setting different congestion patterns (shown as
the bold red line), the real-time LMP’s change significantly.
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Figure 2: the congestion pattern and real-time LMP
without attack
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Figure 3: the congestion pattern (no congested lines)
and real-time LMP with attack
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Figure 4: the congestion pattern (line 1-2) and
real-time LMP with attack
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Figure 5: the congestion pattern (line 4-5) and
real-time LMP with attack

From the results above, we can get two conclusions. First,
changing the congestion pattern, even though slightly, can
change the real-time LMP significantly. Second, altering the
local meters (generation at bus 1 and 3) may change the
LMP far away (LMP at bus 4) significantly.

V. PROBLEM FORMULATION

A. Objective function

Assume our target is to make profit for generator at bus
i in the real-time market. The adversary has the knowledge
about some values of the measurement in real-time, and can
also inject an attack vector into the system according to
the observed result. By changing the real-time congestion
pattern, the adversary can alter the corresponding real-time
LMPs.

As stated in the previous section, the real-time compen-
sation for the generator at busi is

λ̂i(p̂i − p∗i ) (9)

In practice,p̂i is given by specific meters, different from
those used for state estimation. So here, we only consider the
price change caused by the change of measurement values.
According to the information known to the adversary, he
wants to increase the real-time LMP,λ̂i, as much as he can.
However, due to the existence of bad data detector, once
the measurements result received by the system operator is
claimed as bad data, the adversary’s attempt to make profit
fails. Hence, there is a tradeoff between making more profit
and avoiding being detected.

In the following, we consider three different scenarios:
the whole set of real-time measurement values is known to
the adversary, only part of the real-time measurement values
are known to the adversary, and no real-time information is
available to the adversary.

We adopt Bayesian formulation in our following analysis.
In real-time, we assume the system state follows a Gaussian

distribution,x ∼ N(x0,Σx), which is known to the adver-
sary ahead of time. This distribution is treated as the prior
knowledge of the system states. Based on the observation
in real-time, the adversary can make posterior estimation of
the states, based on which he makes the attack decision.

B. With full real-time observation

If an attack vectora is injected, according to equation (2)
and (8), we can get the WLS estimation of states with attack
vector

x̂a = Kza = K(z + a) = x̂+Ka (10)

As stated in section III, the price is only determined by
the congestion pattern. Under the congestion patternĈ, the
real-time price isλi = λi(Ĉ). So the adversary’s goal is
simply moving the state to the region with highest price
without triggering the bad data detector. On the other hand,
since the adversary can gather all the real-time measurement
values, he can make sure whether a specific attack vectora
injected to the system will be detected or not.

Define the available set of congestion pattern under the
realization of measurement values is

Γ(z) = {Ĉ : ∃a, s.t x̂a ∈ π(Ĉ), ||Ga||2 ≤ τ} (11)

The best region is chosen as

Ĉ
∗(z) = arg max

Ĉ∈Γ(z)
λi(Ĉ) (12)

The highest price is

λ̂∗(z) = max
Ĉ∈Γ(z)

λi(Ĉ) (13)

The attack vector is an arbitrary one which makesĈ
∗(z)

as the congestion pattern.

C. With partial real-time observation

If only part of the measurement values is known to the
adversary, denoted asz0, the adversary has to make an
estimation of the state based on the observation and prior
distribution. By Bayesian formulation

x̂zo = E(x|z0) = x0 +ΣxH
T
o (HoΣxH

T
o )

−1(zo −Hox0)
(14)

whereHo is the part ofH corresponding to the observed
measurements.

The adversary can only move his estimation of state. The
best he can do is to movêxzo into the region with highest
price. In fact, the actual estimated state will also move in
parallel as shown in fig. (6)

In order to minimize the effect of the uncertainty, we want
to move the estimation of state to the ”center” as much as
possible.



Figure 6: Move of state estimate with attack vector
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Given the attack vectora, the estimate of state under
observationzo is

x̂a,zo = E(x|zo; a) = x̂zo +Ka (15)

Since in this scenario, the adversary doesn’t have the
full map of the measurements. Then, for any attack vector
injected, there will be a positive detection probability. So
he will need an pre-designed parameterε to control the
detection probability. For the congestion patternĈ, the
adversary will solve the following optimization problem.
Among all theĈ’s which make the above problem feasible
set nonempty, we choose the one with highest price,Ĉ

∗.
The solutiona is the injected attack vector and the highest
desired price isλi(Ĉ

∗).

maximize δ

subject to Hix̂a,zo − δ ≥ Tmax
i , i ∈ Ĉ

Hj x̂a,zo + δ ≤ Tmax
j , j /∈ Ĉ

zT
o G

′zo + aTGa ≤ ε
δ ≥ 0, a ∈ A

(16)

where G′ is the part ofG corresponding to the set of
observation.

D. With no real-time observation

If there is no real-time measurement value known to the
adversary, he can only inject a constant value into the system
according to the prior distribution, no matter what happens
in real-time. His best guess of the state isx0. Also, he wants
to move it to the center of the desired region.

Similar to the partial information case, the adversary will
solve the following optimization problem, and the attack
vector is given by the solution.

maximize δ

subject to Hix0 − δ ≥ Tmax
i , i ∈ Ĉ

Hjx0 + δ ≤ Tmax
j , j /∈ Ĉ

aTGa ≤ ε
δ ≥ 0, a ∈ A

(17)

Among all theĈ’s which make the above problem feasible
set nonempty, we choose the one with highest price,Ĉ

∗. By
solving the problem above, we can get the solution as the
injected attack vector. The highest desired price isλi(Ĉ

∗)

VI. SIMULATION RESULTS

In order to show the effect of malicious data to the real-
time market price, we test the three scenarios above on PJM
5-bus system, IEEE 14bus system and IEEE 118-bus system.
In fact, the scenario with full real-time observation can be
also viewed as the worst case for real-time market price
disturbance if bad data exists. Similarly, the scenario with
no real-time observation is the lower bound for the real-time
price change.

If the number of possible congested lines is not small, the
search space grows exponentially with the size of congestion
pattern. Then we will start from the estimated state, find the
best feasible region in neighborhood until no better neighbor
can be found. This strategy will avoid exhaustive search and
improve the search efficiency significantly.

In the following simulation, we consider the DC power
system, with all the measurements for power injections
and power flows(both directions). The redundancy in our
simulation is much higher than that used in practice, which
makes the attack even harder. However, even in this case,
we can still see significant price change in real-time market.
Assume the SNR is 10dB, and the measurement noise is
i.i.d.. Other data is all from the standard data file. For
the partial observation case, we assume half of the meters’
values are observable to the adversary.

For PJM 5-bus system, we take 3 meters to attack as
shown in Fig VI. The price increase at bus 5 is shown in
fig. 8. For the full observation case, the bad data detection is
always avoided. So we use dash line to show this scenario
as upper bound. For the other two cases, as the detection
probability increases, the adversary can make bigger price
change.

We also try the three scenarios on IEEE 14bus system
(Fig. 9) and 118-bus system (Fig. 10) with 5 meters and 7
meters to attack respectively.

In order to show the adversary’s ability under different
sizes of attack pattern, we plot the curve of price change
under detection probability 0.2 versus the dimension of
attack meters. The scenarios with full observation and no
observation are served as upper bound and lower bound
for real-time price disturbance respectively. See Fig. 11 for
IEEE 14-bus system and Fig. 12 for IEEE 118-bus system.
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Figure 7: PJM 5 bus system
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Figure 8: LMP % increase at bus 5 for PJM 5 bus
system
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Figure 9: LMP % increase at bus 1 for IEEE 14-bus
system
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Figure 10: LMP % increase at bus 1 for IEEE
118-bus system
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Figure 11: LMP % increase at bus 1 under 0.2
detection probability versus attack vector
dimension for IEEE 14-bus system
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Figure 12: LMP % increase at bus 1 under 0.2
detection probability versus attack vector
dimension for IEEE 118-bus system

As the size of system increases, the ability of attacking
the system decreases. But since in reality, the ISO uses much
less redundancy for state estimation and there may be some
isolated part in the system, the price change will still be
significant if proper attack vector is injected according to
the real-time information.

VII. C ONCLUSION

In this paper, we investigated the effect of malicious
attack on real-time electricity market, and showed the chance
the adversary can make profit by intelligently manipulating
some values of the measurements. Then we formulated the
problem under three different scenarios. Finally we showed
validity of the proposed strategy by simulation results.

In the future, we are interested in the counterpart of
this problem, designing detectors to protect the electricity
market from malicious attack. Also, since our solution to
the problem is based on the DC model, but in reality, AC
model is used for state estimation and bad data detection,
we will explore the property of AC model and modify our
algorithm to fit the AC model setting.
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