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Abstract— The problem of optimizing retail electricity price
for residential demand response is considered. A two stage
stochastic optimization is formulated in which the retailer
optimizes the day ahead price in the first stage, and residential
customers schedule their demands optimally in respond to
the optimized retail price and in a distributed fashion. For
the control of thermal dynamic loads, the optimal residential
demand response policy is obtained based on a form of
consumer surplus that captures the tradeoff between comfort
level and cost. It is shown that the optimal control is an affine
function of the retail price with a negative definitive factor
matrix. The optimal retail pricing is obtained through a convex
program that maximizes average profit or a form of conditional
value at risk. Effects of incorporating renewable energy are also
considered.

I. INTRODUCTION

In a conventional demand response program, a residential
consumer benefits from reduced electricity price by giving
the retailer a level of control of his energy use. The retailer,
on the other hand, benefits from such a program by shaping
the aggregated load so as to maximize the profit in the
presence of operation and wholesale price uncertainties.
As an example, the consumer may be offered a lowered
electricity price by allowing the retailer to interrupt his
services a number of hours in a year [1].

One of the barriers to the wide adoption of demand
response is the intrusive nature of such programs. A con-
sumer may feel uncomfortable for letting the utility affecthis
lifestyle in such a direct and unpredictable fashion. And itis
difficult to price the inconvenience caused by interruptions
at some unknown time. From a retailer’s perspective, the
implementation of demand response for a large number of
customers is highly nontrivial, even though the underlying
technologies have existed for decades.

We consider in this paper an alternative residential demand
response framework. The objective of the proposed scheme is
twofold. First, it gives the consumer full control in schedul-
ing his own energy usage in responding to a (day-ahead)
price from the retailer, which removes the retailer from
implementing and managing a control system that involves a
large number of distributed components. Second, the retailer
optimizes its profit by taking into account the volatility of
the wholesale price, the availability of low cost renewable
sources, and response behavior of the residential customers.

Because the proposed scheme allows the consumers
choose the state of the art technology in home energy
management and the retailer adjusts its (daily) price based
on the operating conditions of the network, it is hoped

that the prosed scheme is more compatible with existing
modus operandi, potentially offering a more attractive path
to broader adoption.

Furthermore, by shielding the consumer from reacting
to real-time wholesale price fluctuations, such a demand
response program reduces price volatility and the potential
of instability postulated recently in [2].

A. Summary of Results

In this paper, we propose a new retail market mechanism
in which the retailer optimizes a day ahead price for residen-
tial customers who engage in distributed demand response in
scheduling price-elastic load. The proposed market structure
is compatible with the current deregulated wholesale market
and offers the customers to decide their own energy usage
pattern in response to different retail prices.

We formulate the problem of optimal pricing for residen-
tial demand response as a two-stage stochastic optimization.
To this end, we first consider optimal demand response given
a fixed day ahead retail price. Using a criterion based on a
linear combination of the cost of electricity and the quadratic
deviation of the desired temperature setting, the optimal
control is shown to be an affine function of price with a
negative definite factor matrix. It is this relationship that
leads to a convex optimization of retail price at the retailer
end.

We also consider the problem of integrating stochastic
renewable generation at the retail level. In particular, we
assume that the retailer has access to low cost renewable
sources, which allow the retailer reduce the retail price in
exchange for a higher volume. We show that the problem of
optimal pricing remains convex. We also demonstrate that
the accuracy of prediction of renewable generation affects
the profit of the retailer in a monotonic fashion.

B. Related Work

Although extensive research has been conducted on the
wholesale electricity market, limited attentions have been
paid to the retail market. Among the earliest studies of retail
electricity market is [3] where the authors present simulation
studies of expected profit for retailers. The authors of [4],
[5] present a more elaborate formulation of retail markets
that incorporate load models, retailers profit functions, and
financial risks. Our work is related to [3,4] but different
in several important aspects. Specifically, the results in
this paper establish the dynamic demand side response to
different prices by the retailer. When incorporating random



phenomena in stochastic optimization, our approach avoids
approximating continuous random variables through quanti-
zation. The pricing scheme considered in this paper is also
different from and appears to be more flexible than that in
[4], [5].

Recent work of Yang, Tang, and Nehorai [6] considers
a similar retail market structure. Their work is based on
an abstract characterization of static interactions between a
retailer and consumers. The scenario considered in this paper
incorporates thermal dynamics, resulting a policy involv-
ing optimal dynamic demand response. In [7], competition
among retailers is considered. Their analysis is based on
market share modeling and each retailer is using a mixed
strategy.

Given a specific market structure, a key step in obtaining
optimal pricing is to establish an optimal or suboptimal
demand response policy at the consumer end. To this end,
there have been several approaches, all appear to be attacking
the problem of optimal demand response without coupling
with the optimal pricing problem. For example, authors of
[8] use statistical methods to model the household electricity
demand, and addresses the fact that accurate modeling is very
difficult. In [9], Callaway and Hiskens discussed the some
key issues and applications of nondisruptive control strate-
gies for aggregated electric loads. In terms of responding to
different prices, the approaches in [10], [11], [12] used MPC
(Model Predictive Control) method to control HVAC.

II. MARKET STRUCTURE

The proposed residential electricity retail market structure
consists of three main components: the wholesale electricity
market, the retail market, and the residential demand, as
shown in Fig. 1. We describe in this section briefly models
for each component. As a notational convention, we use
ω to indicate a sample in the native probability space.
When necessary, a random variable is written explicitly as a
function ofω, eg.x(ω).
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... ...

wind farm
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... ...
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Fig. 1: Market structure

A. The wholesale electricity market

We assume a deregulated wholesale electricity market
where the cost of electricity to a retailer is determined in
a two settlement system: a day ahead market that generates
the day ahead wholesale price and a real-time market that
provide necessary adjustments based on the actual operating
condition.

Thus the actual cost to a retailer can be modeled as a
24 dimensional random vectorλ(ω) with known mean (at
the day ahead wholesale price) and variance. Note that the
wholesale price in the peak hours might be tens or even
hundreds times of the regular price. Such kind of price
uncertainty imposes high risk to the retailer who must hedge
against its exposure to price hikes when optimizing the retail
price.

B. The retail market

Serving as an intermediate agent between the wholesale
market and end customers, the retailer has to guarantee power
flow to the customer while maintaining a healthy cash flow
for itself. In our setting, any level of demand from the end
customers has to be satisfied by acquiring power from either
the wholesale market or, if possible, from alternatives such
as its own renewable generationq(ω) or through bilateral
contracts with independent wind farms.

Previous study shows that allowing real-time response to
wholesale market price may cause price instability [2]. In
our setting, the retailer shields the end users from the risk
of real-time price fluctuations by offering its customers a
fixed day ahead priceπ = (π1, · · · , π24). In the following,
without loss of generality, we assume the retailer provides
hourly price. However, the period length is flexible to be
generalized.

While this retail market avoids price shocks to consumers
who expect the price of electricity stays within a certain
nominal range, the challenge of market design is to maximize
the retail profit by hedging against uncertainties in the
wholesale market, the availability of renewable generation,
and exploiting of the demand response behavior of the end
users.

C. Residential demand and thermal dynamics

Let the aggregated demand from end customers be denoted
as d(π, ω), which is a function of the deterministic retail
priceπ and random factors such as weather conditions.

We partition the load into two components,

d(ω, π) = p(π, ω) + pu(ω), (1)

where p(π, ω) is the price elastic component that can be
controlled by the residential customer andpu(ω) the price
inelastic component that is only affected by random factors
in electricity usage.

According to [13] in which the U.S. Energy Information
Administration reports that the dominant residential electric-
ity usage comes from space heating and air conditioning,
in this paper, we assume that the price elastic demand
comes primarily from the control of a certain HVAC unit



that maintains the indoor temperature at a certain desirable
setting.

To this end, we assume that the thermal energy state of
a residential home satisfies a linear state space model as
detailed below.

III. OPTIMAL RESIDENTIAL DEMAND RESPONSE

We consider in this section the optimal demand response
to the day ahead retail priceπ by the residential customers.
Here we specialize a particular thermal dynamic model
involving an HVAC temperature control.

Consider a single residential home. Letxi be the indoor
temperature at houri. Empirical studies [14], [15], [11],
[12] have shown that the dynamic equation that governs the
temperature evolution is given by

xi = xi−1 + α(ai − xi−1)− βpi + wi, (2)

whereai is the outdoor random temperature at houri, pi
the control variable representing the power drawn by the
HVAC unit andwi the process noise. System parametersα
and β model the insolation of the building and efficiency
of the HVAC unit. Note that the above equation applies to
both heating and cooling scenarios but not simultaneously.
We focus herein the cooling scenario and the results apply
to heating as well.

To control the HVAC, temperature measurement values
need to be collected. We assume thermal meters are im-
plemented both for indoor and outdoor temperatures. The
measurement equation is

yi =
[

xi ai
]T

+ vi, (3)

wherevi is the measurement noise.
Assume at houri, the resident wants to keep the indoor

temperature asti. The deviation of actual indoor temperature
xi from ti can be used to measure the resident’s uncomfort
level. Hence, a reasonable residential utility function is

u(x) = −µ
∑

i

(xi − ti)
2, (4)

whereµ is a weight factor to convert the deviation ofxi

from ti to money.
Given the retail priceπ, the objective of residential de-

mand response is to maximize the consumer surplus defined
as the difference of utility and energy payment. Specifically,
the residential optimal stochastic demand response is defined
as the solution to following optimal control problem,

minp E

(

∑24
i=1(πipi + µ(xi − ti)

2)
)

s.t. xi = xi−1 + α(ai − xi−1)− βpi + wi,

yi =
[

xi ai
]T

+ vi.

(5)

For computation convenience, under mild conditions (the
price doesn’t vary too much during a day andµ is large), we
ignore the positive constraint and rate constraint for energy
consumptionp.

Assumewi andvi are jointly Gaussian. Backward induc-
tion gives a well structured solution

p∗i = 1
β

(

x̂i−1|i−1 + α(âi|i−1 − x̂i−1|i−1)− x∗
i

)

,

x∗
i

∆
= πi−(1−α)πi+1

2µβ + ti,
(6)

where x̂i−1|i−1 and âi|i−1 are the estimated indoor and
outdoor temperatures based on observations up to houri− 1
respectively, andx∗

i is an ancillary value.
Notice thatx∗

i can be viewed as the indoor temperature
target for houri at houri − 1. If wi = 0, x̂i−1|i−1 = xi−1

and âi|i−1 = ai−1, then applyingp∗i will lead the actual
indoor temperature at houri, xi = x∗

i .
This problem is almost the same as the classical LQG

(Linear Quadratic Gaussian) control problem. The solution
can be viewed as the certainty equivalence [16] with a form
of separation principle where the certainty equivalence is
implemented by conditional expectation on noisy measure-
ments. Expanding and writing the solutionp∗i matrix form
will give us the following theorem

Theorem 1:For fixed retail priceπ, assume that residen-
tial load k has the form

dk(π, ω) = pk(π, ω) + pku(ω). (7)

Assuming optimal demand response, the aggregated demand

d(π, ω) =
∑

k

dk(π, ω) = −Gπ + c(ω), (8)

where matrixG ≥ 0 is positive definite and deterministic,
depending only on the dynamic system parameter.

Proof: Let supk denote the parameter associated with
loadk. For individual loadk, expanding the form of Eq. (6)
will give pki (π, ω) =

1
βk ((1 − α)πi−1 − (1 + (1− α)2)πi +

(1 − α)πi+1)) + bk(ω), wherebk(ω) is independent onπ.
So the total demand of userk is dk(π, ω) = pk(π, ω) +
pku(ω) = −Gkπ+ ck(ω), whereck(ω) = bk(ω)+ pku(ω) and
Gk satisfies

Gk
ij =







1 + (1− α)2)/βk if i = j
−1 + α if |i− j| = 1
0 o.w.

(9)

Notice Gk is deterministic and diagonal dominant with
positive diagonal elements. Hence,Gk is positive definite.

On the other hand, the aggregated demand

d(π, ω) =
∑

k

dk(π, ω) =
∑

k

(−Gkπ+ck(ω)) = −Gπ+c(ω),

(10)
where c(ω) =

∑

ck(ω), G =
∑

Gk. SinceGk is posi-
tive definite and deterministic,G is also positive definite
and deterministic, depending only on the dynamic system
parameter.

Eq. (8) gives an affine form of residential demand re-
sponse. The property thatG is positive definite is important
to our later discussion.



IV. OPTIMAL RETAIL PRICING

In this section, we focus on optimizing pricing for the
retailer. We consider two different objectives: the expected
profit and a measure derived from the conditional value at
risk (CVaR); the latter represents a form of robustness.

A. Optimal retail price over expected profit

Recall that the wholesale price of electricity is a random
vector λ(ω) = (λ1(ω), ..., λ24(ω)), which represents the
marginal cost to the retailer. Given the day-ahead priceπ and
the randomness realizationω, the total profit of the retailer
can be represented as the product of the demand quantity
and the net unit profit, which is the difference between the
day-ahead retail priceπ and the costλ.

r(π, ω) = (π − λ(ω))T d(π, ω)
= (π − λ(ω))T (−Gπ + c(ω)).

(11)

Assume the retailer knows the distribution of the costλ(ω)
and the stochastic demand responsed(π, ω), the expected
profit of the retailer can be calculated as Eq. (12). SinceG
is positive definite,E[r(π, ω)] is a concave function ofπ.

E[r(π, ω)] = −πTGπ + (E[λ])TGπ
+(E[c])Tπ − E[λT c].

(12)

On the other hand, the pricing behavior of the electricity
retailer will be regulated by many factors. In this paper,
we simplify all the regulations into one price cap̄π, i.e.
the retailer’s priceπi ≤ π̄. Then, the retailer’s optimal
pricing strategy over expected profit can be formulated as
the following quadratic programming

max −πTGπ + (E[λ])TGπ + (E[c])T π − E[λT c]
s.t. πi ≤ π̄.

(13)
The objective is concave and the constraint is linear.

Hence, the optimization is convex. All the classical nonlinear
convex programming methods apply to this problem and the
solution can be easily found.

B. Optimal retail price over CVaR

In the presence of uncertainty, maximizing the expected
profit is not always the best choice, especially when the
random variable has a long tail distribution. One alternative
is to use risk measures as metric to make decisions. CVaR
(Conditional Value at Risk, also know as Expected shortfall)
is one commonly used coherent risk measure. The CVaR at
γ level is defined as the expected profit in the worstγ of the
cases, as shown in Eq. (14).

γ-CVaR= Eω[r(π, ω)|r(π, ω) < τγ(π)], (14)

whereτγ(π) = inf{τ ∈ R : P[r(π, ω) < τ ] ≥ γ}.
Using the equivalent form of CVaR in [17], the retailer’s

best pricing strategy over CVaR can be formulated as the
following optimization problem with the price cap constraint.

maxξ,π ξ − 1
γ
Eω[ξ − r(π, ω)]+

s.t. πi ≤ π̄.
(15)

Theorem 2:Problem (15) is a convex programming with
π as the variable.

Proof: According to the result of [17],γ-CVaR is a
concave function with respect to the decision variable as long
as the value function is concave with respect to the decision
variable. Sincer(π, ω) = (π−λ(ω))T (−Gπ+c(ω)) andG is
a positive definite matrix,r is a concave function ofπ. Hence
the objective function is concave. Maximizing a concave
function with linear constraints is a convex programming
problem.

The convex property makes this problem solvable by many
nonlinear convex programming methods. Notice that we do
not make any assumption that the random variables are
discrete, although in practice we can do disretization to
simplify the computation. In that case, the objective function
will become piecewise linear concave.

V. EFFECTS OFWIND INTEGRATION

We now consider a scenario in which the retailer has
access to renewable sources such as a wind farm. We assume
that the cost of renewable to the retailer is zero. However,
the generation of renewable is stochastic that cannot be
controlled by the retailer. The retailer does know the distri-
bution of the renewable generation. This knowledge will be
exploited for maximizing its profit. The wind power is used
to supply the residential load, but if it is larger than needed,
extra wind power cannot be sold back to the wholesale
market.

Denote the wind generation for the next day as a24 dimen-
sional random vectorq(ω) = (q1(ω), ..., q24(ω)). Similar
to Eq. (11), given the day-ahead priceπ and the demand
responsed(π, ω), the retailer’s profit with windrw(π, ω) can
be represented as

rw(π, ω) = πTd(π, ω)− λ(ω)T (d(π, ω) − q(ω))+

= πT (−Gπ + c(ω))
−λ(ω)T (−Gπ + c(ω)− q(ω))+.

(16)
The following theorem gives the nice property of the

retailer’s objectives after incorporating wind power.
Theorem 3:E[rw] and γ-CVaR are both concave func-

tions of π.
Proof: For eachω, (−Gπ+c(ω)−q(ω))+ is equivalent

to max{−Gπ + c(ω) − q(ω), 0}. Both of −Gπ + c(ω) −
q(ω) and 0 are linear functions hence convex. The max of
two convex function is convex. So−λ(ω)T (−Gπ + c(ω)−
q(ω))+ is concave. SinceG is positive definite,πT (−Gπ+
c(ω) is concave. As the sum of two concave functions,rw is
concave. So both ofE[rw ] andγ-CVaR are concave functions
of π.

Hence, the retailer’s optimization problems in terms of
both expected profit and CVaR remain as convex program-
ming, which are solvable by numerical nonlinear program-
ming methods. In the simulation part, we will test how the
uncertainty of wind power affects the retailer’s objective
values.



VI. SIMULATION RESULTS

In order to illustrate the optimality of the proposed pricing
scheme, two alternative commonly used pricing schemes are
compared to the optimal pricing: constant pricing scheme and
constant mark-up pricing scheme. Constant pricing means
the retailer will offer constant price for the next day, i.e.
π1 = π2 = ... = π24. The constant mark-up pricing scheme
is to design the price according to the prediction of next
day’s costλ, and each hour’s price has the same mark-up
over the predicted cost, i.e.π1

Eλ1
= π2

Eλ2
= ... = π24

Eλ24
.

We use the optimal pricing scheme as benchmark. The
y-axis is the expected profit of constant pricing or constant
mark-up pricing divided by the expected profit of optimal
pricing scheme. Thex-axis is the average price of the two
compared pricing schemes, i.e.

∑
i
πi

24 . The parameter for
testing is the same as [12]. The result is shown in Fig. 2,
from which we can see that the proposed pricing scheme is
much better than the two dummy pricing schemes.
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Fig. 2: Expected profit comparison of three pricing
schemes

The same simulation is conducted for the pricing scheme
over CVaR, as shown in Fig. 3. In terms of CVaR, the
advantage of using optimal pricing scheme over dummy
alternatives is more significant.
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Fig. 3: CVaR comparison of three pricing schemes

After incorporating wind power, we show that the problem
can still be formulated as a convex program. Now we want
to test how the uncertainty of the wind power will affect the
retailer’s objective, both expected profit and CVaR. Assume
the wind power is uniformly distributed over[q̄ −∆/2, q̄ +
∆/2]. Fix q̄, simple calculation can give us that∂rw

∂∆ ≤ 0. So
better prediction will give the retailer more profit, as shown
in Fig. 4. Thex-axis is the uncertainty∆, and they-axis is
the expected profit.
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Fig. 4: Wind uncertainty vs. retailer’s expected profit

As for CVaR, although analytical result is hard to show,
intuitively, large uncertainty of wind will cause more loss
for the worst cases. Hence CVaR will be decrease as the
uncertainty increases as shown in Fig. 5. Comparing Fig. 4
and Fig. 5, the uncertainty affects the retailer’s CVaR more
significantly than expected profit.
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Fig. 5: Wind uncertainty vs. retailer’s CVaR

Then we fix the uncertainty∆ but increase the average
wind level, q̄. The result is shown in Fig. 6. Thex-axis is
the average wind divided by the base case and they-axis is
the corresponding CVaR divided by the CVaR at the base
case. The CVaR increases monotonically as expected since
more wind production will increase the retailer’s profit for
each realization.
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Fig. 6: Average wind vs. retailer’s CVaR

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new retail market structure
with fixed day-ahead retail price from retailer and real-time
stochastic demand response from the residents. The problem
of optimal retail pricing for residential demand response is



formulated as a two-stage stochastic optimization. A closed
form solution to the optimal residential demand response
is shown to be an affine function of price with a negative
definite factor matrix. At the retailer side, optimal pricing
strategy is given as the solution to a convex program, over
both expected profit and CVaR. Finally, effect of incorporat-
ing wind power is considered. It is shown that the problem
of optimal pricing remains convex. We also demonstrate that
the accuracy of prediction of renewable generation affectsthe
profit of the retailer in a monotonic fashion.

The framework in this paper is compatible with the current
deregulated wholesale market and flexible for generaliza-
tions. More comprehensive resident side model will help
to get more precise stochastic demand form. Deferrable
loads, energy storage, and other controllable loads need tobe
considered. In addition, competition among different retailers
in a more competitive environment can be formulated within
the current framework. These issues are currently under
investigation.
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