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Abstract— The problem of optimizing retail pricing of elec-  hour to hour within each day. In particular, we focus on
tricity for price-responsive dynamic loads is considered.For  the class of pricing mechanisms, referred to as day-ahead
the class of day-ahead dynamic prices (DADPSs), the problenf o dynamic pricing (DADP), where the retailer posts day-ahead

retail pricing is modeled as a Stackelberg game with the retiter : : . )
as the leader and its customers the followers. It is shown thdahe hourly prices, and these prices will be fixed at the day of

optimal customer response to a DADP has an affine structure consumption. First considered in [3], DADP has been in

with a deterministic negative definite sensitivity matrix and a  place for large retail customers for years. The advantage
stochastic bias. With this structure, tradeoffs between casumer  of DADP for a consumer is that the consumer has the
surplus and retail profit can be characterized by a convex remn price certainty one day ahead of time so that he can plan

with a concave and non-increasing Pareto front, each pointro dinalv based on th ted pri d his desired i
the Pareto front corresponding to an equilibrium in a dynamic accordingly based on the posted prices and nis desireayjuall

game with a particular payoff function; any consumer surplus-  Of service.
retail profit pair above the Pareto front is not attainable by any Although the day ahead pricing reduces price uncertainties

dynamic pricing scheme. The optimal DADP that maximizes to the consumer, it presents nontrivial challenges to the
the social welfare is shown to be that maximizes the consumer (e iaijar who has to cope with wholesale price fluctuations
surplus thus making retail profit zero. Effects of renewable . . - -
energy are also considered. in real-time anq other en\_nronmental uncertainties such as
weather conditions. To this end, the retailer has to hedge
. INTRODUCTION against real-time operating risks by optimizing the rgtaite
. accordingly.
Demaf‘d résponse 1s one of the key feature_s of a futureA main focus of this paper is to characterize fundamental
smart grid. Through pricing and other mechanisms, a Caltradeoffs between retalil profits and consumer surplusngaki

fully 0_|e5|gned demand response program offers €CONOM|G4 account stochastic uncertainties in the whole sale- mar
benefits to the consumers and empowers a consumeraié)

. t, the environmental (e.g. weather) factors, and end user
manage energy usage actively. Demand response can ?)%rating conditions
provide the flexibility that allows an operator or a retailer '
to improve operation efficiency, enable greater renewab)® Related work

integration, and increase overall spmal welfare. Among the earliest studies of dynamic pricing of electric-
One form of demand response is to enroll consumers toi@, at the retail level are reported in [3], [5], in which the

program that provides reduced price. In return, the CONSUME, 145 show that dynamic pricing can introduce economic
allows the retailer to interrupt his services with a certaify,centives to the demand side and also improve the operation
probability. In such a demand response program, a CoNSUMgficiancy. The DADP scheme considered in this paper has
enjoys price certginty with gya_ranteed economic benefitﬁﬂle same structure as that in [3], [4], albeit the pricingesok
but“ he faces service uncertalntle”s_. Examples of such kindhase early papers is not optimized. In [3], DADP is shown
of "emergency demand response” include [1], [2]. to provide more benefits to consumers and can attract, in
A second form of demand response is to let the consSUMg{e |ong run, all the consumers,compared with other pricing
manage his own energy usage but offer incentives to th&nhemes such as flat rate and TOU. The authors of [6],
consumer through pricing. The retailer determines theepriqz] present a more elaborate formulation of retail markets,
based on the risks it faces, and the consumer responds,ifiich incorporates load models, retail profit functionsd an
prices voluntarily. Here, the consumer has the full controj,ancia risks. The idea of DADP was put in field trials. The
of the level of service, but he faces price uncertaintie,;thors of [4] conclude that such a pricing scheme “not only
Examples of such programs can be found in [3], [4]. improves the linkage between wholesale and retail markets,
We consider the second approach to demand response thg{ 550 promotes the development of retail competition.”
allows the consumer to optimize his own demand in responggyative to this line of existing work, the main contributio
to dynamic pricing that varies from day to day and fromf this this paper is the optimized DADP and the use of a

. . . . Stackelberg game model to obtain a full characterization of
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consumer to consume proper amount of electricity such th&bnt under which all CS-RP pairs can be achieved by a

the social welfare maximization is achieved. In this papegertain DADP, and any CS-RP pair above the Pareto front is

we also use the Stackelberg game model for load modeist attainable by any DADP.

that have significant statistical inter-temporal depet)

and our objective goes beyond that of welfare maximization;

we aim to characterize the Stackelberg equilibrium prices

for a class of objective functions that can be used by the

retailer. Recent work of Yang, Tang, and Nehorai [9] also

viewed the interactive retail market structure as a game

model. Their work is based on an abstract characterization

of static interactions between a retailer and consumers.
There is an extensive line of work focusing on the op-

timization aspects of demand response, with pricing as a 7

by-product of such optimizations. These approaches obtain CS

optimized wholesale market price aimed at maximizing so-

cial welfare with the retailers (aggregators) acting as letho Fig. 1: CS-RP trade-off curve with three dynamic

agents who can manage the consumers’ energy consumption pricing schemes: social welfare maximizing

quantity directly. In [10], for a hierarchical market sttuce price 7%, regulated monopoly price’, and

that includes the loads at the bottom layer, load service ent retail profit maximizing pricer®

ties at the middle layer, and a independent service opeatitor

the top, a distributed optimization algorithm is proposethw  \ve can place some well known pricing schemes on the

guaranteed convergence. The significance of this approagls.Rp plane: the social welfare maximizing pricing)’ is

lies in that the optimization at the wholesale level (and thgnhown to be on the CS axis. The optimal regulated monopoly

resulting wholesale pricing) does not require that the @jper price ' is located at the Pareto front where the retailer

having full access to the consumer model at the bottom lay§jyofit has a regulated profit margi. The retailer profit

The consumer preferences are represented iterativelyedy ¥haximizing price isx® where no constraint is imposed on

load serving entities. In [11], a distributed optimizationne retailer.

algorithm is proposed to solve the utility maximization at \we also consider effects of incorporating renewable en-

the retail level. Focusing on PHEV charging, the authorgrgy. It is showed that increased uncertainty of wind power

of [12] investigate the contract design among the renewahi@|| decrease both the retail profit and consumer surplus,
generators and the aggregator, who is responsible for th@nce shrink the Pareto front.

scheduling of the large scale PHEV charging.

Il. STACKELBERG GAME MODEL AND EQUILIBRIA

B. Summary of results The DADP scheme can be viewed as a Stackelberg game

Given that temperature control represents a substantial pgnodel [14]. The retailer acts as the leader who makes
of the energy consumption [13], we focus in this paper ofl€cision first, and the consumers act as the followers who
thermal loads (HVACs unitd that can be controlled based observe the leader's action and then make the decision.
on consumer preference and dynamic pricing. A challengingpecifically, the action sequence in DADP is as follows:
aspect of thermal load control is that the underlying thérma « The retailer reveals the day ahead hourly price.
dynamics introduces inter-temporal correlation, making t < The consumers schedule demands in real time.
problem of finding optimal response to dynamic pricing « The retailer meets the demand subject to real time
a stochastic dynamic program, which in general is not wholesale market price and integrates renewable re-
tractable. sources.

For the consumer, we introduce the notion of consumer The Stackelberg game can be solved via backward in-
surplus (CS) as a linear combination of the energy cost arfiiction. We thus present first the analysis of demand side
mean squared deviation from the preferred temperature. Fefsponse to a fixed day ahead hourly price We then
the retailer, we define the retail profit (RP) as the revenusonsider the problem of optimizing.
received from the consumer minus the retail cost associated . .
with the real-time price in the wholesale market and loss i%‘ Consumer action: optimal demand response
delivery. The social welfare is therefore the sum of congume We consider in this section the optimization of the resi-
surplus and retail profit. dential demand response to DADP. Assuming home energy

A main result of this paper is to provide a completenanagement devices are implemented to optimize consumer
characterization of the Pareto front of the CS-RP tradg-offurplus (utility minus cost), the resulting optimal demand
which is illustrated in Fig. 1. We show that the CS-RP planéesponse serves as the predicted behavior of a rational

is partitioned by a concave and monotonic decreasing Paréi@nsumer in the Stackelberg game described above.
Let 7 = (m,---,m4) be the DADP vector wherer;

*Heating, ventilation, and air conditioning units is the day-ahead price for th#gh hour. The home energy



management system, on the other hand, typically operates
in a much faster time scale, usually at the rate of 1 minute.

N
Thus this is inherently a multi-time scale problem. max [ {Zi:l[_U(Ii —t:)?] - WTUTP}
For the duration of 24 hours covered by the DADP, we stz =wxi1 +ala; — xi-1) — i + wi,
assume that there af€ = 24 x 60 control periods. Letr; yi = (x4, a;) + v;.

be the average indoor temperature during pefidéimpirical ) .
study [15] has shown that the dynamic equation that gover§d'€r€y = (y1,%2,...yn) is the observation vector; =

the temperature evolution is given by (v1,v2,...,un) the observation noise vector. N
For computation convenience, under mild conditions (the

price doesn’t vary too much during a day amds large), we
ignore the positive constraint and rate constraint for gyer
wherea = (a1, as, ..., an) is the vector of average outdoor consumptionp. This problem is similar to (but different
temperature in each periog, = (p1,...,pn) the vector of from) the standard linear quadratic Gaussian (LQG) problem
control variable representing the total amount of eleityric where the costs on the control and states are both quadratic.
drawn by the HVAC unit during each period and = By backward induction, the following theorem [16] gives the
(w1, ws,...,wy) the process noise. System parameters optimal demand response.

(0 < a < 1) and 8 model the insolation of the building  Theorem 1: For fixed retail pricer, the optimal aggre-

and efficiency of the HVAC unit. Note that the abovegated residential demand response has the following matrix
equation applies to both heating and cooling scenariosdiut rform and properties

simultaneously. We focus herein the cooling scenatio-(0)

and the results apply to heating & 0) as well. p(m,w) = —GUm + b(w), (5)
To control the HVAC unit, temperature measurements need o N o )

to be collected. We assume that thermometers are install#€re the factor matri¢: is positive definite and determin-

for both indoor and outdoor temperatures. The measureméfic, depending only on the dynamic system parameters.

T =Tj—1 + Oé(ai - xifl) — Bpi + w;, (1)

equation is given by Proof: See Appendix. |
Eq. (5) gives an affine form of residential demand re-
Y = [xz QJT + v, (2) sponse. The property thét is positive definite is important

) ) to our later discussion.
wherew; is the vector of measurement noise.

Assume that for minuté, the consumer wants to keep thep, Retailer action: optimal DADP
indoor temperature close to the desired temperaturéhe . o ) )
In this paper, we assume that the retailer is a price taker in

deviation of the actual indoor temperaturgfrom ¢; can be : . )
used to measure the consumer's uncomfort level. Hence tr}; wholesale market. This means that the retailer coresider

reasonable consumer utility as a function of responsemctiéi‘ere serves customers yvhog.e aggr(_egated dgmand does not
p is given by affect the wholesale price in real-time. Additionally, we

assume that the Stackelberg game discussed in this paper
u(m,w) = _“Z(I' )2 3) is with perfect information. It means that the form of the
’ - L follower’s payoff function is completely known to the leade

. . The retailer needs to keep the balance of the power flow
where i is a weight factor to convert the temperature P b

o . and provide electricity to the consumers. To achieve this,
deviation to a monetary value. Note that the state variable : . . .
) the retailer has to pay for the retail cost, including the
is affected by the response vector

) Y , . distribution loss, the real-time payment to the wholesale
Given the retail pricer and the consumers’ responsive

X market, and so on.
demandp, the consumer surplugs(w,w) can be defined

as the difference between the consumer utility (3) and total Let Mw) = (A1(w), A2(w), ..., Aur(w)) denote the random
vector of per unit retail cost during each cost period (ugual

payment frqm the consumers to the retailer. Hereatter, wfminutes). In total, there arkl = 24 x 12 cost periods for
usew to indicate random variables and vectors. . . . .

a day. The retail profitrp(w,w), is the difference between
the real-time retail revenue and the retail cost, calcdlat®e
below,
whereU is the transform matrix to change hourly time scale
to minute level time scale. With € R*, Ur € RJ\T, ie., p(r,w) = [Ur — WAW)]"p(r, w), (6)

Ur is a N-dimensional vector, and for all the periods in the

same hour, the prices all equal ta;. whereW are the transformation matrices to chande) to
Under the DADP scheme, the consumption can be adjustede minute based, similar @ in (4).

in real-time to maximize the expected consumer surplus. As the leader of the Stackelberg game, the retailer’s gyicin

Specifically, the optimal stochastic residential demand realecision depends on its own payoff function. If the retailer

sponse is defined as the solution to following optimal cdntranly focuses on the expected retail profit, as in the claksica

problem, monopoly case, and there is no correlation between real-tim

cs(m,w)2u(m,w) — 7 U p(r, w), (4)



retail cost and demand, the solution to the following prable where n is the preference of the retailer on the consumer
is the optimal pricing strategy. surplus. Ifn = 1, this is equivalent to optimizing the social
_ - . welfare. If n = 0, this is equivalent to optimizing the retail
ma 7p(r) = (U — WA)'(~GUn + ), (7) profit. Therefore, a rational retailer should chogdeetween
where bar is used to represent the expected value, also in fAel], depending on how much the consumer surplus is
following part of this paper. As shown in Theorem@,is considered. They's beyond this region doesn’t make sense
positive definite, hence the problem is a quadratic prograrfince that) < 0 means the retailer can benefit from reducing
However, as a load serving entity, the retailer needs to al$be consumer’s surplus, and> 1 means that the retailer will
take into consideration of consumer satisfaction measoyed reduce its own profit (maybe to negative) to achieve better
consumer surplus. Given the retail priceby replacing the payoff at the maximized social welfare, which is usually
optimal demand response in Theorem 1 back into the coiirational for the retailer.
sumer optimization problem, the expected consumer surplusAn alternative formulation is the optimal CS-RP trade-offs

can be expressed as In particular, we are interested in characterizing the t®are
_ N . g T front involving (€s(w), Tp(m)).
Cs(m) =D iy [—pla] —1:)°] —p" Un (8) A point on the Pareto front can be obtained by considering

=7mUTGUr/2 = 7'UTH, a practical situation where the retailer optimizes its profi
wherez* andp* are the same as the values in the proof ofinder the constraint that the consumer surplus exceeds a
Theorem 1, see the Appendix. Thus, the expected consung@rtain level. In particular,
surplus is represented as a functionnof
The other extreme case is the retailer takes the expected
social welfare, defined as the sum of consumer surplus and
retail profit, as the payoff function. The expected sociafrom the above optimization, the Pareto front can be traced

max rp(n)

s.t. ¢s(m) > . (11)

welfare,sw(7) can be expressed as, by varying the consumer surplus level, as shown in Fig 1.
Theorem 3: For any specifiay, if the solution in (10) is
Sw(r) = p(7) + ¢S(n). (9) *, 7" is also a solution to (11) withr = cs(7*). Varying

) _ _ in optimization (11) and varying in optimization (10) will
The social welfare reflects the combined benefit of thgjye the same trade-off curve between expected retail profit
consumers and the retailer. By maximizing the expecteg,q expected consumer surplus.

social welfare, we can get the following theorem. Proof: See Appendix. -

Theorem 2: The optimal retail pricer™” that maximizes  Thegrem 3 implies that the two optimization problems are
the social welfare is given by the linear combination of th%quivalent and give the same Pareto front (Fig. 1). Each

expected real-time retail coste, point on the Pareto front is attainable and corresponds to
w _ a equilibrium point in the Stackelberg game with particular
™= KA, payoff function. The following theorem shows the concave

where matrixK is a function of system parameters and usefnd optimality property of this trade-off curve. The regas
preferences, ang(7S") = 0. For anyr’ such thafp(r’) >  Pricing capability is constrained by this trade-off curve.

0, we havecs(n’) < ¢s(7%"). Theorem 4: The Pareto front ofCs,Tp) is concave and
Proof: See Appendix. m decreasing. _
Theorem 2 shows that, if the social welfare is to be Proof: See Appendix. [ ]

maximized, the retailer generates no profit. This result is e can place some well known pricing strategies on
consistent with the situation when there is perfect competih® Pareto front, as shown in Fig.1. The social welfare
tion among identical retailers, in which case, social welfa Maximaxing pricingm®" is located on the CS axis. This is
maximization leads to zero profit. intuitive since maximizing social welfare dictates the oaal

A particularly informative case is when the time scalef retail profit. The optimal regulated monopoly prig€ is
of demand response matches that of the hourly day ahe'gated at thg Pareto front whgre the_retaller .prof|t has a
pricing. It can be shown in this case thet¥ = E[\(w)]. In  regulated profit marginA (see Fig.1)x® is the price when
other words, in maximizing social welfare, the retailergiyn  the retailer's objective is purely maximizing its profit.
matches the DADP with the expected real-time price, thus
receiving no expected retail profit.

IV. BENCHMARK COMPARISONS

In this section, we compare some benchmark schemes and
[1l. ACHIEVABLE TRADEOFF place them in the achievable CS-RP tradeoff region. The

Now we extend the previous results to use a more geneff@lowing two benchmark pricing schemes are considered:
retail payoff function. Assume that the retailer's payoff « Constant pricing: in this case, the price remains constant
function is a linear combination of retail profit and consume for the whole day,i.e., m = m = ... = moy. By
surplus as follows varying the price value, we get the CS-RP pairs.

« Constant mark-up pricing: in this case, the ratio of day-
max {rp(w) + ncs(r)}, (10) ahead price to the expected real-time price remains the



same,i.e., g~ = g = .. = gr.. Similarly, by solved by a convex program. With a fixedl the retail profit
varying the ratio, the CS-RP trade-off is plotted. is a increasing function of, and the consumer surplus is
We used the actual temperature record in Hartford, CThdependent of;. Comparing with the case without wind

from July 1st, 2012 to July 30th, 2012. The day-head priceower, i.e., q = 0, the Pareto front is enlarged with the
(used as prediction) and real-time price (used as realizati existence of positive wind power.
are also for the same period from ISO New England. The In evaluating effects of wind power on the consumer
HVAC parameters for the simulation is set as:= 0.5, surplus-retail profit tradeoff, we conducted numerical -sim
B =1, u = 10. The desired indoor temperature is set to b&lations. The parameter setting is the same as Section IV.
18°C for all hours. Assume the wind power is free to the retailer and uniformly
distributed ovefg— A, g+ A], where thej is the mean value.
Here we compare four cases: no wind exists, constant wind,
wind with low uncertainty, and wind with high uncertainty.
~ e For the latter three, we mean fixingbut increasingA in
R o - - - proportional pricing order.

R e G constant pricing
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Fig. 2: comparasion of three pricing schemes
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Fig. 3: Effect of incorporating wind

The result in Fig. 2 shows that the trade-off curve cor-
responding to the first two pricing schemes both fall below
the Pareto front as we expected. Indeed, the optimal trhdeof Figure 3 shows that with wind power, the area under the
curve is the Pareto front for the retailer, and CS-RP paimBareto front is enlarged comparing with the case without
will stay below the front. wind. On the other hand by fixing and increasing\, the
area under Pareto front shrinks. This means making a better

V. EFFECT OF RENEWABLE ENERGY . - . . . - .
, ~.wind prediction will benefits the retailer’s pricing behawi
As a large load aggregator, the retailer has the ability

to build its own facility. We now consider a scenario that VI. CONCLUSION
the retailer has a large wind farm, the power from which We have studied in this paper the DADP—a day ahead
can also be used to compensate the real-time load from tdgnamic pricing mechanism for demand response in un-
consumers. Technically, serving the local area is mucteeascertain and dynamic environments. Such a pricing scheme
than serving back the grid, which may require additional dehas the advantage of reducing consumer anxiety of pricing
vices and may cause instability. Hence, we restrict oueselvuncertainties and allowing the retailer optimize the tetai
to the case that the retailer cannot sell the wind power b@ack pricing to protect itself from uncertainties in the whollesa
the wholesale market. The reason for this is that the retailenarket and uncertainties existed in the consumer end.
we model here is not participating the day-ahead market We formulate the problem as a Stackelberg game in which
schedule thus sending power back to grid will increase thibe retailer plays the role of a leader and the consumers
instability of the system which is beyond the scope of thishe follower. For thermal dynamic load and price inelastic
paper. random load, we obtain the optimal demand response to
Assume that the marginal cost of wind power is zero. DeEDADP from which the retailer optimizes payoff functions
note the random wind power agw) = (¢1(w), ...,qn(w)).  of its own choice.
Notice here we assume the wind power is in the same scale ad’The DADP framework established in this paper allows us
the residential demand. Then, the retailer's profit is cleang to study a number of benchmark pricing mechanisms and

to place them in the achievable region of performance tradeoff
py(mw) = 7TUT[~GUr + b(w)] .bet_ween. consumer surplus and retail profit. It also provided
“ANw)TWT[=GUr + b(w) — q(w)]T, insights into the role of renewable sources procured by the

retailer.

where the functior{z)™ is the positive part of;, defined as
max{z, 0}. APPENDIX

Notice that the expected retail profit is also a concave Proof: (Theorem 1) Solving the optimal dynamic pro-
function of 7. Thus the profit maximization problem can begram by backward induction, the optimal strategy is



Hence, the solution is given by

*

D} = % (;ﬁi71|i71 =+ Oé(di‘ifl - i'ifl\ifl) - x;k)’
* é Ui

171’7(1704)U¢+17T X
:Ci 21”6 +t’L|

where ;_,,_; and a,,—, are the estimated indoor and
outdoor temperatures based on observations up to period
respectively,U; represents théth row of U, andz} is an
ancillary value.

Let superscripti denote the parameter associated with
consumer k. Expanding the solution above will give
P (m,w) = g {(1 = a®)Uim = [L+ (1 - aP)Um +
(1 — a"NU;y 7} + %) (w), whereb™® (w) is independent
on 7. So the total demand of consumeris p*) (7, w)
—~GR U 4+ b*) (w), whereG*¥) satisfies

1+ (1 —a®)2/s0if i=j
G =1 (~1+a®)/p® if i —j| =1
0 o.w.

T = = (UTGU) (1 = nUTb + UTGW ).

Define the resulted retail profit and consumer surplus as

rp*(n)%m(ﬂ*(n));
cs*(n)=cs(m*(n)).

It can be showed that,

arp* (n)
an
acs* (n)
on

op*(n) _
acs*(n)

= —’[’I_

On the other hand, it can be verified theg*(n) is a
increasing function ofn. Therefore
cs*(n) increases. The curve is concave.

arp* (n)

'+ BesT () decreases as

|
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with positive diagonal elements. Hencé(*) is positive
definite.
On the other hand, the aggregated demand

p(m,w) = Zp(k)(w,w) = —-GUr + b(w),
&

(1]

[2]
where b(w) = Y bvF(w), G = S G®. Since G®) is Bl
positive definite and deterministi€; is also positive definite

and deterministic, depending only on the dynamic systen?4]
parameters.

Proof: (Theorem 2) Since> is positive definite, the
formula of expected social welfar&w(r), is a concave [5]
function of 7. So taking derivative and setting it to zero will [g]
give us the optimal price for social welfare maximization as
below,

_ 7
W= (UTGU)'UTGW . )

On the other hand, replacing™ will make the retail profit

(™) = [UUTGU)'UTGWA — WAT
[~GUUTGU) 1 UTGW X + b]
=0.

(8]
El

a [0

Proof: (Theorem 3) With a particulay, assumer™ is
a solution to (10). Letr = ¢s(x*) in (11). Thenz* will
be in the feasible set of (10). If there exist§ such that
rp(n’) > rp(x*), andcs(n’) > 7, then

(11]

[12]

(') +nes(x’)  >Tp(r*) +7

> Tp(7*) + nes(m™). (23]

Hence,n* is not the solution to (10) since’ achieves [14]
better objective value. It contradicts with the assumptiorhS]
Therefore,r* is also a solution to (11).

Proof: (Theorem 4) Fom € [0, 1], the optimization of
(10) can be expressed as (6]
(7TUT = ATWT)(~GUr + b)
+n(r"UTGUT/2 — nTUTD).

max
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