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Abstract— The problem of optimizing retail pricing of elec-
tricity for price-responsive dynamic loads is considered.For
the class of day-ahead dynamic prices (DADPs), the problem of
retail pricing is modeled as a Stackelberg game with the retailer
as the leader and its customers the followers. It is shown that the
optimal customer response to a DADP has an affine structure
with a deterministic negative definite sensitivity matrix and a
stochastic bias. With this structure, tradeoffs between consumer
surplus and retail profit can be characterized by a convex region
with a concave and non-increasing Pareto front, each point on
the Pareto front corresponding to an equilibrium in a dynamic
game with a particular payoff function; any consumer surplus-
retail profit pair above the Pareto front is not attainable by any
dynamic pricing scheme. The optimal DADP that maximizes
the social welfare is shown to be that maximizes the consumer
surplus thus making retail profit zero. Effects of renewable
energy are also considered.

I. INTRODUCTION

Demand response is one of the key features of a future
smart grid. Through pricing and other mechanisms, a care-
fully designed demand response program offers economic
benefits to the consumers and empowers a consumer to
manage energy usage actively. Demand response can also
provide the flexibility that allows an operator or a retailer
to improve operation efficiency, enable greater renewable
integration, and increase overall social welfare.

One form of demand response is to enroll consumers to a
program that provides reduced price. In return, the consumer
allows the retailer to interrupt his services with a certain
probability. In such a demand response program, a consumer
enjoys price certainty with guaranteed economic benefits,
but he faces service uncertainties. Examples of such kind
of “emergency demand response” include [1], [2].

A second form of demand response is to let the consumer
manage his own energy usage but offer incentives to the
consumer through pricing. The retailer determines the price
based on the risks it faces, and the consumer responds to
prices voluntarily. Here, the consumer has the full control
of the level of service, but he faces price uncertainties.
Examples of such programs can be found in [3], [4].

We consider the second approach to demand response that
allows the consumer to optimize his own demand in response
to dynamic pricing that varies from day to day and from
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hour to hour within each day. In particular, we focus on
the class of pricing mechanisms, referred to as day-ahead
dynamic pricing (DADP), where the retailer posts day-ahead
hourly prices, and these prices will be fixed at the day of
consumption. First considered in [3], DADP has been in
place for large retail customers for years. The advantage
of DADP for a consumer is that the consumer has the
price certainty one day ahead of time so that he can plan
accordingly based on the posted prices and his desired quality
of service.

Although the day ahead pricing reduces price uncertainties
to the consumer, it presents nontrivial challenges to the
retailer who has to cope with wholesale price fluctuations
in real-time and other environmental uncertainties such as
weather conditions. To this end, the retailer has to hedge
against real-time operating risks by optimizing the retailprice
accordingly.

A main focus of this paper is to characterize fundamental
tradeoffs between retail profits and consumer surplus, taking
into account stochastic uncertainties in the whole sale mar-
ket, the environmental (e.g. weather) factors, and end user
operating conditions.

A. Related work

Among the earliest studies of dynamic pricing of electric-
ity at the retail level are reported in [3], [5], in which the
authors show that dynamic pricing can introduce economic
incentives to the demand side and also improve the operation
efficiency. The DADP scheme considered in this paper has
the same structure as that in [3], [4], albeit the pricing scheme
in these early papers is not optimized. In [3], DADP is shown
to provide more benefits to consumers and can attract, in
the long run, all the consumers,compared with other pricing
schemes such as flat rate and TOU. The authors of [6],
[7] present a more elaborate formulation of retail markets,
which incorporates load models, retail profit functions, and
financial risks. The idea of DADP was put in field trials. The
authors of [4] conclude that such a pricing scheme “not only
improves the linkage between wholesale and retail markets,
but also promotes the development of retail competition.”
Relative to this line of existing work, the main contribution
of this this paper is the optimized DADP and the use of a
Stackelberg game model to obtain a full characterization of
tradeoffs between the achievable retail profit and consumer
surplus.

The idea of using Stackelberg game to study pricing of
responsive load is considered in [8]. It is shown in [8] that
the retailer can design a real-time retail price to lead the



consumer to consume proper amount of electricity such that
the social welfare maximization is achieved. In this paper,
we also use the Stackelberg game model for load models
that have significant statistical inter-temporal dependencies,
and our objective goes beyond that of welfare maximization;
we aim to characterize the Stackelberg equilibrium prices
for a class of objective functions that can be used by the
retailer. Recent work of Yang, Tang, and Nehorai [9] also
viewed the interactive retail market structure as a game
model. Their work is based on an abstract characterization
of static interactions between a retailer and consumers.

There is an extensive line of work focusing on the op-
timization aspects of demand response, with pricing as a
by-product of such optimizations. These approaches obtain
optimized wholesale market price aimed at maximizing so-
cial welfare with the retailers (aggregators) acting as whole
agents who can manage the consumers’ energy consumption
quantity directly. In [10], for a hierarchical market structure
that includes the loads at the bottom layer, load service enti-
ties at the middle layer, and a independent service operatorat
the top, a distributed optimization algorithm is proposed with
guaranteed convergence. The significance of this approach
lies in that the optimization at the wholesale level (and the
resulting wholesale pricing) does not require that the operator
having full access to the consumer model at the bottom layer.
The consumer preferences are represented iteratively by the
load serving entities. In [11], a distributed optimization
algorithm is proposed to solve the utility maximization at
the retail level. Focusing on PHEV charging, the authors
of [12] investigate the contract design among the renewable
generators and the aggregator, who is responsible for the
scheduling of the large scale PHEV charging.

B. Summary of results

Given that temperature control represents a substantial part
of the energy consumption [13], we focus in this paper on
thermal loads (HVACs units∗) that can be controlled based
on consumer preference and dynamic pricing. A challenging
aspect of thermal load control is that the underlying thermal
dynamics introduces inter-temporal correlation, making the
problem of finding optimal response to dynamic pricing
a stochastic dynamic program, which in general is not
tractable.

For the consumer, we introduce the notion of consumer
surplus (CS) as a linear combination of the energy cost and
mean squared deviation from the preferred temperature. For
the retailer, we define the retail profit (RP) as the revenue
received from the consumer minus the retail cost associated
with the real-time price in the wholesale market and loss in
delivery. The social welfare is therefore the sum of consumer
surplus and retail profit.

A main result of this paper is to provide a complete
characterization of the Pareto front of the CS-RP trade-off,
which is illustrated in Fig. 1. We show that the CS-RP plane
is partitioned by a concave and monotonic decreasing Pareto

∗Heating, ventilation, and air conditioning units

front under which all CS-RP pairs can be achieved by a
certain DADP, and any CS-RP pair above the Pareto front is
not attainable by any DADP.

CS
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∆

Fig. 1: CS-RP trade-off curve with three dynamic
pricing schemes: social welfare maximizing
priceπsw, regulated monopoly priceπr, and
retail profit maximizing priceπo

We can place some well known pricing schemes on the
CS-RP plane: the social welfare maximizing pricingπsw is
shown to be on the CS axis. The optimal regulated monopoly
price πr is located at the Pareto front where the retailer
profit has a regulated profit margin∆. The retailer profit
maximizing price isπo where no constraint is imposed on
the retailer.

We also consider effects of incorporating renewable en-
ergy. It is showed that increased uncertainty of wind power
will decrease both the retail profit and consumer surplus,
hence shrink the Pareto front.

II. STACKELBERG GAME MODEL AND EQUILIBRIA

The DADP scheme can be viewed as a Stackelberg game
model [14]. The retailer acts as the leader who makes
decision first, and the consumers act as the followers who
observe the leader’s action and then make the decision.
Specifically, the action sequence in DADP is as follows:

• The retailer reveals the day ahead hourly price.
• The consumers schedule demands in real time.
• The retailer meets the demand subject to real time

wholesale market price and integrates renewable re-
sources.

The Stackelberg game can be solved via backward in-
duction. We thus present first the analysis of demand side
response to a fixed day ahead hourly priceπ. We then
consider the problem of optimizingπ.

A. Consumer action: optimal demand response

We consider in this section the optimization of the resi-
dential demand response to DADP. Assuming home energy
management devices are implemented to optimize consumer
surplus (utility minus cost), the resulting optimal demand
response serves as the predicted behavior of a rational
consumer in the Stackelberg game described above.

Let π = (π1, · · · , π24) be the DADP vector whereπi

is the day-ahead price for theith hour. The home energy



management system, on the other hand, typically operates
in a much faster time scale, usually at the rate of 1 minute.
Thus this is inherently a multi-time scale problem.

For the duration of 24 hours covered by the DADP, we
assume that there areN = 24 × 60 control periods. Letxi

be the average indoor temperature during periodi. Empirical
study [15] has shown that the dynamic equation that governs
the temperature evolution is given by

xi = xi−1 + α(ai − xi−1)− βpi + wi, (1)

wherea = (a1, a2, ..., aN) is the vector of average outdoor
temperature in each period,p = (p1, ..., pN ) the vector of
control variable representing the total amount of electricity
drawn by the HVAC unit during each period andw =
(w1, w2, ..., wN ) the process noise. System parametersα
(0 < α < 1) and β model the insolation of the building
and efficiency of the HVAC unit. Note that the above
equation applies to both heating and cooling scenarios but not
simultaneously. We focus herein the cooling scenario (β > 0)
and the results apply to heating (β < 0) as well.

To control the HVAC unit, temperature measurements need
to be collected. We assume that thermometers are installed
for both indoor and outdoor temperatures. The measurement
equation is given by

yi =
[

xi ai
]T
+ vi, (2)

wherevi is the vector of measurement noise.
Assume that for minutei, the consumer wants to keep the

indoor temperature close to the desired temperatureti. The
deviation of the actual indoor temperaturexi from ti can be
used to measure the consumer’s uncomfort level. Hence, a
reasonable consumer utility as a function of response action
p is given by

u(π, ω) = −µ
∑

i

(xi − ti)
2, (3)

where µ is a weight factor to convert the temperature
deviation to a monetary value. Note that the state variablex
is affected by the response vectorp.

Given the retail priceπ and the consumers’ responsive
demandp, the consumer surplus,cs(π, ω) can be defined
as the difference between the consumer utility (3) and total
payment from the consumers to the retailer. Hereafter, we
useω to indicate random variables and vectors.

cs(π, ω)∆=u(π, ω)− πTUTp(π, ω), (4)

whereU is the transform matrix to change hourly time scale
to minute level time scale. Withπ ∈ R24, Uπ ∈ RN , i .e.,
Uπ is aN -dimensional vector, and for all the periods in the
same houri, the prices all equal toπi.

Under the DADP scheme, the consumption can be adjusted
in real-time to maximize the expected consumer surplus.
Specifically, the optimal stochastic residential demand re-
sponse is defined as the solution to following optimal control
problem,

p
max E

{

∑N
i=1[−µ(xi − ti)

2]− πTUTp
}

s.t. xi = xi−1 + α(ai − xi−1)− βpi + wi,
yi = (xi, ai) + vi.

where y = (y1, y2, ..., yN ) is the observation vector,v =
(v1, v2, ..., vN ) the observation noise vector.

For computation convenience, under mild conditions (the
price doesn’t vary too much during a day andµ is large), we
ignore the positive constraint and rate constraint for energy
consumptionp. This problem is similar to (but different
from) the standard linear quadratic Gaussian (LQG) problem
where the costs on the control and states are both quadratic.
By backward induction, the following theorem [16] gives the
optimal demand response.

Theorem 1: For fixed retail priceπ, the optimal aggre-
gated residential demand response has the following matrix
form and properties

p(π, ω) = −GUπ + b(ω), (5)

where the factor matrixG is positive definite and determin-
istic, depending only on the dynamic system parameters.

Proof: See Appendix.
Eq. (5) gives an affine form of residential demand re-

sponse. The property thatG is positive definite is important
to our later discussion.

B. Retailer action: optimal DADP

In this paper, we assume that the retailer is a price taker in
the wholesale market. This means that the retailer considered
here serves customers whose aggregated demand does not
affect the wholesale price in real-time. Additionally, we
assume that the Stackelberg game discussed in this paper
is with perfect information. It means that the form of the
follower’s payoff function is completely known to the leader.

The retailer needs to keep the balance of the power flow
and provide electricity to the consumers. To achieve this,
the retailer has to pay for the retail cost, including the
distribution loss, the real-time payment to the wholesale
market, and so on.

Let λ(ω) = (λ1(ω), λ2(ω), ..., λM (ω)) denote the random
vector of per unit retail cost during each cost period (usually
5 minutes). In total, there areM = 24× 12 cost periods for
a day. The retail profit,rp(π, ω), is the difference between
the real-time retail revenue and the retail cost, calculated as
below,

rp(π, ω) = [Uπ −Wλ(ω)]Tp(π, ω), (6)

whereW are the transformation matrices to changeλ(ω) to
one minute based, similar toU in (4).

As the leader of the Stackelberg game, the retailer’s pricing
decision depends on its own payoff function. If the retailer
only focuses on the expected retail profit, as in the classical
monopoly case, and there is no correlation between real-time



retail cost and demand, the solution to the following problem
is the optimal pricing strategy.

maxπ rp(π) = (Uπ −Wλ̄)T(−GUπ + b̄), (7)

where bar is used to represent the expected value, also in the
following part of this paper. As shown in Theorem 1,G is
positive definite, hence the problem is a quadratic program.

However, as a load serving entity, the retailer needs to also
take into consideration of consumer satisfaction measuredby
consumer surplus. Given the retail priceπ, by replacing the
optimal demand response in Theorem 1 back into the con-
sumer optimization problem, the expected consumer surplus
can be expressed as

cs(π) =
∑N

i=1[−µ(x∗
i − ti)

2]− p̄∗TUπ
= πTUTGUπ/2− πTUTb̄,

(8)

wherex∗ andp∗ are the same as the values in the proof of
Theorem 1, see the Appendix. Thus, the expected consumer
surplus is represented as a function ofπ.

The other extreme case is the retailer takes the expected
social welfare, defined as the sum of consumer surplus and
retail profit, as the payoff function. The expected social
welfare,sw(π) can be expressed as,

sw(π) = rp(π) + cs(π). (9)

The social welfare reflects the combined benefit of the
consumers and the retailer. By maximizing the expected
social welfare, we can get the following theorem.

Theorem 2: The optimal retail priceπsw that maximizes
the social welfare is given by the linear combination of the
expected real-time retail cost,i.e.,

πsw = Kλ̄,

where matrixK is a function of system parameters and user
preferences, andrp(πsw) = 0. For anyπ′ such thatrp(π′) ≥
0, we havecs(π′) ≤ cs(πsw).

Proof: See Appendix.
Theorem 2 shows that, if the social welfare is to be

maximized, the retailer generates no profit. This result is
consistent with the situation when there is perfect competi-
tion among identical retailers, in which case, social welfare
maximization leads to zero profit.

A particularly informative case is when the time scale
of demand response matches that of the hourly day ahead
pricing. It can be shown in this case thatπsw = E[λ(ω)]. In
other words, in maximizing social welfare, the retailer simply
matches the DADP with the expected real-time price, thus
receiving no expected retail profit.

III. A CHIEVABLE TRADEOFF

Now we extend the previous results to use a more general
retail payoff function. Assume that the retailer’s payoff
function is a linear combination of retail profit and consumer
surplus as follows

max {rp(π) + ηcs(π)}, (10)

where η is the preference of the retailer on the consumer
surplus. Ifη = 1, this is equivalent to optimizing the social
welfare. If η = 0, this is equivalent to optimizing the retail
profit. Therefore, a rational retailer should chooseη between
[0, 1], depending on how much the consumer surplus is
considered. Theη’s beyond this region doesn’t make sense
since thatη < 0 means the retailer can benefit from reducing
the consumer’s surplus, andη > 1 means that the retailer will
reduce its own profit (maybe to negative) to achieve better
payoff at the maximized social welfare, which is usually
irrational for the retailer.

An alternative formulation is the optimal CS-RP trade-offs.
In particular, we are interested in characterizing the Pareto
front involving (cs(π), rp(π)).

A point on the Pareto front can be obtained by considering
a practical situation where the retailer optimizes its profit
under the constraint that the consumer surplus exceeds a
certain level. In particular,

max rp(π)
s.t. cs(π) ≥ τ .

(11)

From the above optimization, the Pareto front can be traced
by varying the consumer surplus level, as shown in Fig 1.

Theorem 3: For any specificη, if the solution in (10) is
π∗, π∗ is also a solution to (11) withτ = cs(π∗). Varying τ
in optimization (11) and varyingη in optimization (10) will
give the same trade-off curve between expected retail profit
and expected consumer surplus.

Proof: See Appendix.
Theorem 3 implies that the two optimization problems are

equivalent and give the same Pareto front (Fig. 1). Each
point on the Pareto front is attainable and corresponds to
a equilibrium point in the Stackelberg game with particular
payoff function. The following theorem shows the concave
and optimality property of this trade-off curve. The retailer’s
pricing capability is constrained by this trade-off curve.

Theorem 4: The Pareto front of(cs, rp) is concave and
decreasing.

Proof: See Appendix.
We can place some well known pricing strategies on

the Pareto front, as shown in Fig.1. The social welfare
maximaxing pricingπsw is located on the CS axis. This is
intuitive since maximizing social welfare dictates the removal
of retail profit. The optimal regulated monopoly priceπr is
located at the Pareto front where the retailer profit has a
regulated profit margin,∆ (see Fig.1).πo is the price when
the retailer’s objective is purely maximizing its profit.

IV. B ENCHMARK COMPARISONS

In this section, we compare some benchmark schemes and
place them in the achievable CS-RP tradeoff region. The
following two benchmark pricing schemes are considered:

• Constant pricing: in this case, the price remains constant
for the whole day,i .e., π1 = π2 = ... = π24. By
varying the price value, we get the CS-RP pairs.

• Constant mark-up pricing: in this case, the ratio of day-
ahead price to the expected real-time price remains the



same,i .e., π1

Eλ1
= π2

Eλ2
= ... = π24

Eλ24
. Similarly, by

varying the ratio, the CS-RP trade-off is plotted.
We used the actual temperature record in Hartford, CT,

from July 1st, 2012 to July 30th, 2012. The day-head price
(used as prediction) and real-time price (used as realization)
are also for the same period from ISO New England. The
HVAC parameters for the simulation is set as:α = 0.5,
β = 1, µ = 10. The desired indoor temperature is set to be
18◦C for all hours.
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Fig. 2: comparasion of three pricing schemes

The result in Fig. 2 shows that the trade-off curve cor-
responding to the first two pricing schemes both fall below
the Pareto front as we expected. Indeed, the optimal tradeoff
curve is the Pareto front for the retailer, and CS-RP pairs
will stay below the front.

V. EFFECT OF RENEWABLE ENERGY

As a large load aggregator, the retailer has the ability
to build its own facility. We now consider a scenario that
the retailer has a large wind farm, the power from which
can also be used to compensate the real-time load from the
consumers. Technically, serving the local area is much easier
than serving back the grid, which may require additional de-
vices and may cause instability. Hence, we restrict ourselves
to the case that the retailer cannot sell the wind power back to
the wholesale market. The reason for this is that the retailer
we model here is not participating the day-ahead market
schedule thus sending power back to grid will increase the
instability of the system which is beyond the scope of this
paper.

Assume that the marginal cost of wind power is zero. De-
note the random wind power asq(ω) = (q1(ω), ..., qN (ω)).
Notice here we assume the wind power is in the same scale as
the residential demand. Then, the retailer’s profit is changed
to

rpw(π, ω) = πTUT[−GUπ + b(ω)]
−λ(ω)TW T[−GUπ + b(ω)− q(ω)]+,

where the function(x)+ is the positive part ofx, defined as
max{x, 0}.

Notice that the expected retail profit is also a concave
function ofπ. Thus the profit maximization problem can be

solved by a convex program. With a fixedπ, the retail profit
is a increasing function ofq, and the consumer surplus is
independent ofq. Comparing with the case without wind
power, i .e., q = 0, the Pareto front is enlarged with the
existence of positive wind power.

In evaluating effects of wind power on the consumer
surplus-retail profit tradeoff, we conducted numerical sim-
ulations. The parameter setting is the same as Section IV.
Assume the wind power is free to the retailer and uniformly
distributed over[q̄−∆, q̄+∆], where thēq is the mean value.
Here we compare four cases: no wind exists, constant wind,
wind with low uncertainty, and wind with high uncertainty.
For the latter three, we mean fixinḡq but increasing∆ in
order.
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Fig. 3: Effect of incorporating wind

Figure 3 shows that with wind power, the area under the
Pareto front is enlarged comparing with the case without
wind. On the other hand by fixinḡq and increasing∆, the
area under Pareto front shrinks. This means making a better
wind prediction will benefits the retailer’s pricing behavior.

VI. CONCLUSION

We have studied in this paper the DADP—a day ahead
dynamic pricing mechanism for demand response in un-
certain and dynamic environments. Such a pricing scheme
has the advantage of reducing consumer anxiety of pricing
uncertainties and allowing the retailer optimize the retail
pricing to protect itself from uncertainties in the wholesale
market and uncertainties existed in the consumer end.

We formulate the problem as a Stackelberg game in which
the retailer plays the role of a leader and the consumers
the follower. For thermal dynamic load and price inelastic
random load, we obtain the optimal demand response to
DADP from which the retailer optimizes payoff functions
of its own choice.

The DADP framework established in this paper allows us
to study a number of benchmark pricing mechanisms and
place them in the achievable region of performance tradeoff
between consumer surplus and retail profit. It also provided
insights into the role of renewable sources procured by the
retailer.

APPENDIX

Proof: (Theorem 1) Solving the optimal dynamic pro-
gram by backward induction, the optimal strategy is



p∗i = 1
β

(

x̂i−1|i−1 + α(âi|i−1 − x̂i−1|i−1)− x∗
i

)

,

x∗
i

∆
= Uiπ−(1−α)Ui+1π

2µβ + ti,

where x̂i−1|i−1 and âi|i−1 are the estimated indoor and
outdoor temperatures based on observations up to periodi−1
respectively,Ui represents theith row of U , andx∗

i is an
ancillary value.

Let superscriptk denote the parameter associated with
consumer k. Expanding the solution above will give
p
(k)
i (π, ω) = 1

β(k) {(1−α(k))Ui−1π− [1+(1−α(k))2]Uiπ+

(1 − α(k))Ui+1π} + b(k)(ω), whereb(k)(ω) is independent
on π. So the total demand of consumerk is p(k)(π, ω) =
−G(k)Uπ + b(k)(ω), whereG(k) satisfies

G
(k)
ij =







[1 + (1− α(k))2]/β(k) if i = j
(−1 + α(k))/β(k) if |i− j| = 1
0 o.w.

Notice thatG(k) is deterministic and diagonal dominant
with positive diagonal elements. Hence,G(k) is positive
definite.

On the other hand, the aggregated demand

p(π, ω) =
∑

k

p(k)(π, ω) = −GUπ + b(ω),

where b(ω) =
∑

b(k)(ω), G =
∑

G(k). Since G(k) is
positive definite and deterministic,G is also positive definite
and deterministic, depending only on the dynamic system
parameters.

Proof: (Theorem 2) SinceG is positive definite, the
formula of expected social welfare,sw(π), is a concave
function ofπ. So taking derivative and setting it to zero will
give us the optimal price for social welfare maximization as
below,

πsw = (UTGU)−1UTGWλ̄.

On the other hand, replacingπsw will make the retail profit

rp(πsw) = [U(UTGU)−1UTGWλ̄−Wλ̄]T

·[−GU(UTGU)−1UTGWλ̄+ b̄]
= 0.

Proof: (Theorem 3) With a particularη, assumeπ∗ is
a solution to (10). Letτ = cs(π∗) in (11). Thenπ∗ will
be in the feasible set of (10). If there existsπ′, such that
rp(π′) > rp(π∗), andcs(π′) ≥ τ , then

rp(π′) + ηcs(π′) > rp(π∗) + τ
≥ rp(π∗) + ηcs(π∗).

Hence,π∗ is not the solution to (10) sinceπ′ achieves
better objective value. It contradicts with the assumption.
Therefore,π∗ is also a solution to (11).

Proof: (Theorem 4) Forη ∈ [0, 1], the optimization of
(10) can be expressed as

max (πTUT − λ̄TW T)(−GUπ + b̄)
+η(πTUTGUπ/2− πTUTb̄).

Hence, the solution is given by

π∗ = 1
2−η

(UTGU)−1[(1− η)UT b̄+ UTGWλ̄].

Define the resulted retail profit and consumer surplus as

rp∗(η)
∆
=rp(π∗(η));

cs∗(η)∆=cs(π∗(η)).

It can be showed that,

∂rp∗(η)
∂cs∗(η) =

∂rp∗(η)
∂η

∂cs∗(η)
∂η

= −η.

On the other hand, it can be verified thatcs∗(η) is a
increasing function ofη. Therefore, ∂rp∗(η)

∂cs∗(η) decreases as
cs∗(η) increases. The curve is concave.
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