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Abstract— The problem of dynamically pricing of electricity
by a retailer for customers in a demand response program is
considered. It is assumed that the retailer obtains electricity in
a two-settlement wholesale market consisting of a day ahead
market and a real-time market. Under a day ahead dynamic
pricing mechanism, the retailer aims to learn the aggregated
demand function of its customers while maximizing its retail
profit. A piecewise linear stochastic approximation algorithm
is proposed. It is shown that the accumulative regret of the
proposed algorithm grows with the learning horizon T at the
order of O(log T ). It is also shown that the achieved growth
rate cannot be reduced by any piecewise linear policy.

Index Terms— Demand response; electricity retail pricing;
online learning; stochastic approximation; optimal stochastic
thermal control.

I. INTRODUCTION

We consider the problem of pricing of electricity by a
retailer for customers who participate in a demand response
program but whose demand functions are unknown. We
assume that the retailer obtains electricity from a two-
settlement electricity market where the retailer receivesa
financially binding day ahead schedule in terms of the day
ahead cleared price and quantity. In real time, the retailer
serves its customers by purchasing electricity in the whole-
sale market, and the amount of electricity deviated from
the day ahead schedule is settled according to the real-time
wholesale price.

We assume that the retailer can influence the demand of
its customers through some form of real-time pricing. If the
retailer knows how its customers response to price through
their individual demand functions, the retailer can choose
its price to optimize a its objective,e.g., the social welfare
or its own profit. Obtaining the demand functions of its
customers, however, is nontrivial because a customer is likely
to consider such information private; neither the willingness
of sharing nor the truthfulness of the shared information can
be assumed.

We formulate this problem as one of online learning prob-
lems where the retailer learns the behavior of its customers
by observing the response of its customers to carefully
designed prices. The basic principle of online learning is to
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achieve a tradeoff between “exploration” and “exploitation”;
the former represents the need of using sufficiently rich
pricing signals to achieve accuracy of learning, whereas the
latter represents the need of capturing as much reward as
possible based on what has been learned.

In the classical online learning theory, the performance
of a learning algorithm can be measured by the notion
of accumulative regret. For the pricing problem at hand,
the regret is defined by the difference between the “oracle
profit” associated with the actual demand function and the
profit achieved by the online learning algorithm. While the
accumulative regretRT grows with the learning horizonT ,
the rate of regretRT /T should diminish, which implies
that, for the infinite horizon problem, the profit achieved
per unit time without knowing the demand function matches
that when the demand function is known. However, because
the consumption of electricity depends on environmental and
behaviorial patterns, it is more relevant to consider the finite
horizon problem. To this end, the appropriate measure is the
rate of convergence,i .e., the rate at whichRT /T decays
to zero, or equivalently, how slowlyRT grows withT . One
would prefer an algorithm whose accumulative regret grows
at the order ofO(log(T )) rather thanO(Tα).

A. Summary of results

This paper presents an application of on-line learning
theory tailored for the problem of pricing of electricity for
distribution customers who participate in a demand response
program. We focus on thermal dynamic loads for which
electricity is consumed to maintain temperature near pre-
ferred settings. The retailer may have many such customers.
We assume that the retailer does not know the desired
temperature set-points, nor the parameters that characterize
the thermal dynamics of their environments.

We assume that the retailer employs a widely used real-
time pricing scheme, referred to as day ahead dynamic price
(DADP), under which the retailer posts the hourly price
of electricity 24 hour ahead of time. First proposed by
Borenstein, Jaske, and Rosenfield [1], this pricing scheme
has been implemented in practice [1], [2].

A key advantage of DADP is that a customer has the short-
term (24 hours) price certainty with which it can optimize its
consumption. For thermal dynamic load, it is shown that the
aggregated thermal load is an affine function of the 24 hour
pricing vectorπ. This result, first shown in [3], characterizes
the customer behavior except that parameters of the affine
function is unknown to the retailer.



We show in this paper that, in a two-settlement market,
maximizing retail profit can be achieved by minimizing the
2-norm deviation of real-time demand from the day-ahead
schedule. As a result, the problem becomes one of tracking
with unknown system parameters.

Assuming that demand level determined by the day-ahead
market is discrete, we propose a piecewise linear stochastic
approximation (PWLSA) policy, as a generalization of an
approach first proposed by Lai and Robbins in [4]. Specifi-
cally, the policy maintains adaptively a dictionary{(Di, µ

i
t)}

whereDi is the day ahead demand level andµi
t is a linear

stochastic approximation pricing policy associated withDi at
time t. Given the day-ahead dispatchdDA

t = Di, the PWLSA
pricing policyµi

t generates the real-time retail priceπt.
We show that the accumulative regret of the PWLSA

pricing policy grows with the learning horizonT at the
order ofΘ(logT ). We show further that any piecewise (time
varying) linear policy cannot have the accumulative regret
grow ato(logT ).

B. Related work

The problem of dynamic pricing for demand response
assuming known demand function has been extensively stud-
ied. See [1], [5], [2] for discussions of the pricing scheme
considered in here and [6], [7], [8], [9] for more general
settings. These results assume implicitly that the demand
function is known. A precursor of the work presented here is
[3] where a parametric form of demand function is obtained.
In [10], the tradeoff between retail profit and consumer
surplus is characterized under a Stackelberg formulation
under the assumption that the demand functions of customers
are known.

Online learning of unknown demand functions has been
studied extensively in multiple communities. This problem
can be formulated as a multi-armed bandit (MAB) problem
by treating each possible price as an arm. When the price
can only take finite possible values, the problem becomes
the classic MAB for which Lai and Robbins showed that
the optimal regret growth rate isΘ(logT ) when the arms
generate independent reward [11]. When the price takes value
from an uncountable set, the dynamic pricing problem is
an example of the so-called continuum-armed bandit intro-
duced by Agrawal in [12] where the arms form a compact
subset ofR. An online learning policy with regret order
of O(T 3/4) was proposed in [12] for any reward function
satisfying Lipschitz continuity. Further development on the
continuum-armed bandit under various assumptions of the
unknown reward function can be found in [13], [14], [15].
The reason that PWLSA proposed in this paper achieves
a much better regret order (O(log T )) than in the case of
a general continuum-armed bandit is due to the specific
linearly parameterized demand which leads to a specific
quadratic cost/reward function. A similar message can be
found in [16], [17], [18] where different regret orders were
shown to be achievable under different classes of demand
models for dynamic pricing.

The problem considered in this paper deals with linearly
parameterized demand function, thanks to the closed-form
characterization of the optimized demand function for ther-
mal dynamic load. The learning approach proposed in this
paper is rooted from the stochastic approximation problem
originally formulated by Lai and Robbins [19], [4] where
the authors considered a form of optimal control problem
when the model contains unknown parameters and the cost of
control is explicitly modeled. For scaler models, the authors
of [19], [4] showed that the cumulative regret (if translated
from our definition) of a simple linear stochastic approxi-
mation scheme grows at the rate ofO(log T ). However, it
is not clear whether such growth rate is the lowest possible.
Our result provides a generalization to the vector case witha
lower bound for a general class of piecewise linear policies
of which linear stochastic approximation is a special case.

Also related is the work of Bertsimas and Perakis [20]
who tackled the problem as a dynamic program with in-
complete state information. The authors showed in numerical
simulations that considerable gain can be realized over the
myopic policy where the price in the next stage is based
on the least squares estimate of the model parameter. When
the parameters are assumed to be random, Lobo and Boyd
considered same problem here under a Bayesian setting
[21]. The authors introduced a randomization policy via a
dithering mechanism.

Machine learning techniques have been applied to pricing
problems in electricity markets, although there seems to
be limited literature on discovering real-time price with
unknown known demand functions at retail level. While
such problems can be viewed as part of the general learning
problem discussed above, the nature of electricity market
and electricity demand impose special constraints. A related
learning problem of bidding strategy of a retailer in the whole
sale market when the supply functions of the generators are
unknown has been studied. See [22], [23], [24] where Q-
learning techniques have been applied.

II. T HE TWO-SETTLEMENT WHOLESALE MARKET

Most US deregulated wholesale electricity markets adopt a
two-settlement system consisting of a day-ahead market and
a real-time market. We describe in this section the participa-
tion of a retailer in the wholesale market and argue that, if
the retailer is to influence the consumption of its customers
via retail pricing in real-time, the profit maximizing strategy
is to choose the retail price to minimize the2-norm deviation
between the day ahead scheduled demand and the real-time
counter part. This is not surprising except perhaps that the
2-norm measure of deviation is the appropriate metric.

A. The day-ahead wholesale market

In the day-ahead market, a retailer (or a Load Serving
Entity (LSE)) submits a utility curveu(d) that represents the
benefit of getting served withd units electricity in the second
day. An electricity generator, on the other hand, submits a
cost curvec(p) that represents the cost of servingp units
electricity in the next day. Because the day-ahead market is



defined at the hourly time scale, the demand scheduled and
generation schedulesp are24 dimension vectors.

The independent system operator (ISO) aims to maximize
the social welfare by solving an optimal power flow (OPF)
problem. In its simplest form without complications of
a capacity constrained transmission network and multiple
participating agents, the OPF problem is of the following
form

max u(d)− c(p)
s.t. d = p

Let the solution of the above optimizationdDA = pDA be
the cleared day ahead dispatch. The day-head cleared price
is the marginal cost of generatingpDA , calculated asλDA =
∂c
∂p (p

DA). Note that the clearing of the day-ahead market is
financially binding, in the sense that regardless of the actual
consumption in the real time, the day-ahead payment from
retailer to the system operator is(λDA)T dDA and the payment
from system operator to generator is(λDA)T pDA.

The retail surplus of a retailer can be illustrated in the
Price-Quantity plane. As shown in Fig. 1, the day-ahead
equilibrium is(dDA , λDA) and Area I represents the day-ahead
retail surplus [25].
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Fig. 1: The day ahead and real-time market equilibria

B. The real-time wholesale market

In the real time wholesale market, the actual consumption,
dRT, may be different from the day ahead dispatch, which
affects the wholesale price in the real-time market. In par-
ticular, the real-time price may be calculated according to
λRT = ∂c

∂p (d
RT). Here, for simplicity, we assume that the

cost function of the generator in real-time is the same as
that in the day ahead market. In practice, however, the cost
functions are not necessarily the same. The intuitions behind
our arguments remain.

In the real-time market, payments from the retailer to
system operator and from system operator to generator are
both (λRT)T (dRT−dDA) if this quantity is positive. Otherwise,
the compensations from system operator to retailer and from
generator to system operator are both(λRT)T (dDA − dRT).

In the real-time market, if the real-time consumptiondRT =
dDA , there is no real-time payment. The total retail surplus is
Area I in Fig. 1. However, if the real-time consumptiondRT

is different fromdDA, as shown in Fig. 1, the real-time price,
λRT, is determined by the supply function. Hence, the total
retail surplus is,

u(dRT)− dDAλDA − (dRT − dDA)λRT,

which can be represented by the area difference between the
Area I and Area II. Therefore, Area II is the retail surplus
loss, and the loss grows in the order of(dRT − dDA)2—the
deviation between the day-ahead scheduled consumption and
the actual real-time consumption.

For the general vector case, the result is formally expressed
in the following theorem.

Theorem 1:Under the two-settlement market system, if
the generation cost functionc(·) has a quadratic form,
c(d) = dTKd + hTd + c(0), where K is p.s.d., then
the retailer’s surplus loss is approximately measured by
2(dRT − dDA)TK(dRT − dDA).

Proof: see Appendix.
In practice,K is usually diagonal. In the later discussion,

without loss of generality, we assumeK = I. Then, the
objective of the retailer is to minimizing squared deviation
from the real-time demand to day-ahead dispatch. The ex-
pected surplus loss for thet-th day can be defined as

Lt
∆
=E[||dRT

t − dDA
t ||22].

wheredDA
t anddRT

t are the day-ahead dispatch and real-time
demand for dayt.

III. D YNAMIC PRICING IN THE RETAIL MARKET

In this section, we describe interactions between a retailer
and its customers. It is assumed that the retailer has received
the day-schedule for the committed day ahead quantity,
denoted here asdDA

t for day t. Without knowing the demand
functions of its customers, the retailer aims to optimize its
surplus by adaptively choosing the real-time price for its
consumers.

A. Day-ahead dynamic pricing

In this paper, we focus on a particular class of pric-
ing mechanisms, referred to as day-ahead dynamic pricing
(DADP), to control the demand response. The principle of
DADP is that the retailer posts day-ahead hourly prices, and
these prices will be fixed at the day of consumption. First
considered in [1], DADP has been in place for large retail
customers for years. The advantage of DADP for a consumer
is that the consumer has the price certainty one day ahead
of time so that he can plan accordingly based on the posted
prices and his desired quality of service.

The sequence of the retail market operations under the
DADP pricing is as follows:

• The retailer offers the consumer day ahead hourly retail
priceπ and keeps it fixed for the next day.

• In real-time, a consumer optimizes its consumption
based onπ.



• The payment from a consumer to the retailer is settled
as the product ofπ and real-time consumption.

• The retailer meets aggregated demand by purchasing
electricity at the wholesale market and pay the real-time
wholesale price for the deviation from the day ahead
amount.

B. Optimal demand respose

We consider in this section the optimization of the demand
response to DADP. In practice, thermal loads (HVACs units∗)
represent a significant part of price responsive demand.
Empirical study [26] has shown that the dynamic equation
that governs the HVAC temperature evolution is given by

xi = xi−1 + α(ai − xi−1)− βui + ξi, (1)

where x = (x1, x2, ..., x24) is the vector of average out-
door temperature in each hour,a = (a1, a2, ..., a24) is the
vector of average outdoor temperature in each hour,u =
(u1, ..., u24) the vector of control variable representing the
total amount of electricity drawn by the HVAC unit during
each hour andξ = (ξ1, ξ2, ..., ξ24) the process noise. System
parametersα (0 < α < 1) and β model the insolation of
the building and efficiency of the HVAC unit. Note that the
above equation applies to both heating and cooling scenarios
but not simultaneously. We focus herein the cooling scenario
(β > 0) and the results apply to heating (β < 0) as well.

Using a linear combination of total cost and squared
deviation of indoor temperature from desired temperature as
the objective function, the optimized demand response from
the customer can be formulated as the following stochastic
optimization problem,

min E

{

∑24
i=1[−µ(xi − ti)

2]− πTu
}

s.t. xi = xi−1 + α(ai − xi−1)− βui + ξi,
yi = (xi, ai) + νi.

where y = (y1, y2, ..., y24) is the observation vector,ν =
(ν1, ν2, ..., ν24) the observation noise vector.

The solution of the above stochastic optimization can be
obtained in closed form via a direct backward induction.
More significantly, it is shown in [10] that the total demand
is a linear function of the retail price.

Theorem 2 ([10]): Assume that the process noiseξ and
ν are Gaussian distributed with zero mean. For fixed retail
priceπ, the optimal aggregated residential demand response
has the following matrix form and properties

dRT = b−Aπ + w, (2)

where the factor matrixA is positive definite,b and A
are deterministic, depending only on the dynamic system
parameters, andw is a random vector with zero mean.

∗Heating, ventilation, and air conditioning units

IV. DYNAMIC PRICING VIA ONLINE MACHINE LEARNING

As described in Section II-B, the retailer’s objective is to
minimize the surplus loss, defined as the squared deviation
of real-time electricity consumption,dRT, from the day-ahead
optimal dispatch,dDA .

If the parameters,A and b, are known to the retailer in
the demand model (2), at dayt, given the day-ahead dispatch
dDA
t , the optimal retail price should be designed as

π∗

t = argminπt
E[||dRT

t − dDA
t ||22]

= argminπt
E[||b−Aπt + w − dDA

t ||22]
= A−1(b− dDA

t ).
(3)

The minimum of the expected surplus loss is

E[||b−Aπ∗

t + w − dDA
t ||22] = Σw,

whereΣw is the covariance matrix of demand model noisew
in (2). Notice that the minimized surplus loss is independent
of the day-ahead dispatchdDA

t .
However, it is nontrivial for the retailer to obtain the

parameters of the demand functions of its customers because
a customer is likely to consider such information private. At
day t, the only information available to the retailer is the
record of previous electricity consumption up tot − 1 and
day-ahead dispatch up tot. Hence, the retail pricing policy
µ is defined as

πµ
t = µt(d

RT
1 , ..., d

RT
t−1, d

DA
1 , ..., dDA

t−1, d
DA
t ) (4)

wheredDA
i , anddRT

i are the day-ahead dispatch and real-time
electricity consumption for dayi.

A. Piecewise Linear Stochastic Approximation policy

In [4], Lai and Robbin show that ifπt and dRT
t are both

scalars anddDA
t = dDA is constant for allt, the stochastic

approximation policy,

πt = π̄t−1 + γ(d̄RT
t−1 − dDA), (5)

achievesπt → π∗ a.s. andO(log(T )) aggregated regret
(defined in Section IV-B), whereπ∗ is the optimal price
in (3) with day-ahead dispatchdDA , π̄t−1 is the average of
π1, ..., πt−1 and d̄RT

t−1 is the average ofdRT
1 , ..., d

RT
t−1.

In this paper, we propose a policy namedPiecewise
Linear Stochastic Approximation (PWLSA), extending the
stochastic approximation policy to multi-dimensional case
with countable many day-ahead dispatch levels.

The basic idea is that we record all the day-ahead dispatch
levels up to dayt in setDt. For dayt+1, if dDA

t+1 ∈ Dt, we
let Dt+1 = Dt. Otherwise,Dt+1 = Dt

⋃{dDA
t }. For each

day-ahead dispatch level inD =
⋃

Dt, we keep a separate
stochastic approximation to calculate the retail price.

Therefore, for differentdDA
t , we have a different linear

function to calculate the next retail price. The policy is
piecewise linear. Formally, the PWLSA policy,µPWLSA, is
defined as,

Definition 1 (PWLSA):Assume for allt ∈ N
+, dDA

t ∈ D

andD is countable.



• If d∗t = Di ∈ Dt, Dt+1 = Dt,

πPWLSA
t =

1

|Ci
t|

(

∑

k∈Ci

πPWLSA
k + γ(dPWLSA

k − dDA
t )

)

whereCi
t = {k ∈ N

+ : k ≤ t− 1, dDA
k = Di}

• Otherwise,Dt+1 = Dt

⋃{dDA
t }

B. Regret analysis of PWLSA

For each policyµ as in (4), the regret at dayt, Rµ
t , is

defined as the difference of retail’s expected surplus loss
between usingπµ

t andπ∗

t . Therefore, according to (3),

Rµ
t

∆
=E[||b−Aπµ

t + wt − dDA
t ||22 − Σw

= E[||b−Aπµ
t − dDA

t ||22]
(6)

Now we want to use the regret to evaluate the performance
of PWLSA. First, we show that PWLSA can achievelog(T )
accumulated regret under certain conditions.

Theorem 3:Assume that day-ahead dispatchdDA
t ’s are

from a finite set,i .e., |D| < ∞. If γ ≥ 1
2λmin(A) ,

T
∑

t=1

RµPWLSA

t ∼ O(log(T ))

Proof: see Appendix.
Now we focus on those piecewise linear pricing policies,

whose changing points are independent ofdRT
i , i = 1, 2, ....

Formally, the set of such polices,P, is defined as,

P = {µ : πt = µt(d
RT
1 , ...d

RT
t−1; d

DA
1 ..., dDA

t )} (7)

whereµt(·; dDA
1 , ..., dDA

t ) is a linear function ofdRT
1 , ...d

RT
t−1.

Clearly, our proposed policyµPWLSA ∈ P. The following
theorem shows thatlog(T ) accumulated regret is the best
rate that can be achieved by any policy inP.

Theorem 4:For any policyµ ∈ P,

T
∑

t=1

Rµ
k ≥ Cµ log(T )

Proof: see Appendix.

V. CONCLUSION AND FUTURE WORK

We present in this paper an online learning approach to the
dynamic pricing of electricity of a retailer whose customers
have price responsive dynamic loads with unknown demand
functions. We exploit the linear form of the aggregated
demand function, and cast the problem of online learning
as one of tracking day-ahead wholesale prices via a stochas-
tic optimization. This approach leads to a simple learning
algorithm with the growth rate of accumulative regret at the
order of O(log T ), which is the best rate achievable for a
class of piecewise linear policies.
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APPENDIX

Proof of Theorem 1

Given the day-ahead demanddDA and real-time demand
dRT, the demand side surplus is

u(dRT)− (λDA)T dDA − (λRT)T (d− dDA).

Therefore, the surplus loss due to deviation ofdRT from
dDA is

Loss = [u(dDA)− (λDA)TdDA ]
−[u(dRT)− (λDA)TdDA − (λRT)T (dRT − dDA)]

= u(dDA)− u(dRT)− (λRT)T (dDA − dRT).

Consider the first order approximation

u(dDA)− u(dRT) ≈ [
∂u

∂d
(dDA)]T (dRT − dDA).

At the optimal day ahead dispatch,dDA = pDA and

∂u

∂d
(dDA) =

∂c

∂p
(dDA).

Hence,

Loss≈ ( ∂c∂p (d
RT)− ∂c

∂p (d
DA))T (dRT − dDA)

= (dRT − dDA)TK(dRT − dDA).

�

Proof of Theorem 3

First, we consider the case when there is a single day-
ahead dispatch leveldDA, andπ∗ = A−1(b− dDA).

From the policy, we have

π̄i+1 =
1

i+ 1
[πi+1+iπ̄i] = (1− γA

i+ 1
)π̄i+

γ

i+ 1
[Aπ∗+ω̄i].

Therefore,

π̄i+1 − π̄∗ = [Πi
k=1(1− γA

k+1 )](π1 − π∗)

+
∑i

j=1
γ

j+1 [Π
i
k=j+1(1− γA

k+1 )]ω̄j .

Therefore,

πn+1 − π∗

n+1

= (n+ 1)(π̄n+1 − π∗)− n(π̄n − π∗)

= (1− γA)[Πn−1
i=1 (1− γA

i+1 )](π1 − π∗)

+
∑n

k=1{ γ
n +

∑n−1
j=k [Π

n−1
i=j+1(1− γA

i+1 )]
(1−γA)γ
j(j+1) }ωk.

(8)
For the first term in (8),

||(1− γA)[Πn−1
i=1 (1− γA

i+1 )]||22
≤ ||(1 − γA)||22Πn−1

i=1 ||(1− γA
i+1 )||22.

Since

(1 − γA

i + 1
)T (1− γA

i+ 1
) = 1− 2γA

i+ 1
+

γ2A2

(i + 1)2
,

denotingλm as the minimum eigenvalue ofA, we have,

||(1− γA

i+ 1
)||22 ≤ 1− 2γλm

i+ 1
+

γ2

(i+ 1)2
||A||22.

Let C1
∆
=||1− γA||22. Then, sinceγλm > 1

2

||(1− γA)[Πn−1
i=1 (1− γA

i+1 )]||22
≤ C1Π

n−1
i=1 (1 − 2γλm

i+1 + γ2

(i+1)2 ||A||22)
≤ C1exp{∑n

i=1 − 2γλm

i+1 + γ2

(i+1)2 ||A||22}
≤ C1exp{− log(n+ 1) + γ2||A||22}
= C2

1
n+1 ,

whereC2 = C1exp{γ2||A||22} doesn’t depend onn.
For the second term in (8),

||[Πn−1
i=j+1(1− γA

i+1 )](1 − γA)||22
≤ C1exp{∑n

i=j+1 − 2γλm

i+1 + γ2

(i+1)2 ||A||22}
≤ C2(

j+1
n+1 )

2γλm

Then,

|| γn +
∑n−1

j=k [Π
n−1
i=j+1(1− γA

i+1 )]
(1−γA)γ
j(j+1) ||22

≤ { γ
n +

∑n−1
j=k ||[Πn−1

i=j+1(1− γA
i+1 )](1 − γA)||2 γ

j(j+1)}2
≤ { γ

n +
∑n−1

j=k

√
C2(

j+1
n+1 )

γλm
γ

j(j+1)}2
≤ { γ

n +
∑n−1

j=k γ
√
C2(

1
n )

γλm(1j )
2−γλm}2

≤ { γ
n + γ

√
C2(

1
n )

γλm( 1k )
1−γλm}2

≤ 2 γ2

n2 + 2γC2(
1
n )(

1
n )

2γλm−1( 1k )
2−2γλm

Sum all the two terms up,

∑n−1
k=1 || γn +

∑n−1
j=k [Π

n−1
i=j+1(1− γA

i+1 )]
(1−γA)γ
j(j+1) ||22

≤ 2 γ2

n + 2γC2(
1
n )(

1
n )

2γλm−1
∑n−1

k=1 (
1
k )

2−2γλm

≤ 2 γ2

n + 2γC2(
1
n )(

1
n )

2γλm−1( 1
n )

1−2γλm

≤ C3
1
n

Now, defineM = max{||π1 − π∗||22, ||Σω||22, ||Σd||22}, we
have
∑n

i=1 Ln = E
∑n

i=1 ||A(πi − π∗)||22
≤∑T

n=1 ||A||22[(C2 + C1)
1
n ]M ≤ C log(T ).

If |D| is finite, and we use a separate stochastic approx-
imation to calculate the retail price, then the accumulated
regret

∑T
n=1 Rn ≤ C|D| log(T ).

�

Proof of Theorem 4

For a particular sequence ofdDA
1 , ...dDA

n , the regret term at
dayn has a linear form,

Rµ
n = E||b −Aπn − dDA

n ||22
= E||(1 −∑n−1

i=1 Pi)b

−∑n−1
t=1 (Ptwt) +

∑n
t=1 Qtd

DA
t )||22

Sinceb is arbitrary and in order to not introduce constant
term,1−

∑n
i=1 φi = 0 should always hold. Therefore,

Rµ
n ≥ Emin∑

n−1

i=1
Pi=I

∑n−1
i=1 ||Pi||22

≥ 1
n tr(ΣT

wΣw)

Hence,
T
∑

n=1

Rµ
n ≥ C log(T ).

whereC = tr(ΣT
wΣw). �


