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Abstract— The problem of dynamically pricing of electricity — achieve a tradeoff between “exploration” and “exploitatio
by a retailer for customers in a demand response program is the former represents the need of using sufficiently rich
considered. It is assumed that the retailer obtains electdity in pricing signals to achieve accuracy of learning, whereas th

a two-settlement wholesale market consisting of a day ahead .
market and a real-time market. Under a day ahead dynamic latter represents the need of capturing as much reward as

pricing mechanism, the retailer aims to learn the aggregate ~ POssible based on what has been learned.
demand function of its customers while maximizing its retal In the classical online learning theory, the performance
profit. A piecewise linear stochastic approximation algothm  of a learning algorithm can be measured by the notion
is proposed. It is shown that the accumulative regret of the ot accymulative regret. For the pricing problem at hand,
proposed algorithm grows with the learning horizon T' at the . . . W
order of O(logT). It is also shown that the achieved growth the _regret |s_def|ne(_1 by the difference between_ the “oracle
rate cannot be reduced by any piecewise linear policy. profit” associated with the actual demand function and the
Index Terms—Demand response; electricity retail pricing; profit achieved by the online learning algorithm. While the
online learning; stochastic approximation; optimal stoctastic —accumulative regreR grows with the learning horizoff,
thermal control. the rate of regretR;/T should diminish, which implies
that, for the infinite horizon problem, the profit achieved
l. INTRODUCTION per unit time without knowing the demand function matches
We consider the problem of pricing of electricity by athat when the demand function is known. However, because
retailer for customers who participate in a demand respontiee consumption of electricity depends on environmentdl an
program but whose demand functions are unknown. Weehaviorial patterns, it is more relevant to consider thigefin
assume that the retailer obtains electricity from a twohorizon problem. To this end, the appropriate measure is the
settlement electricity market where the retailer receiges rate of convergence,e., the rate at whichR; /T decays
financially binding day ahead schedule in terms of the dap zero, or equivalently, how slowl® grows with7. One
ahead cleared price and quantity. In real time, the retailevould prefer an algorithm whose accumulative regret grows
serves its customers by purchasing electricity in the wholat the order ofO(log(T")) rather thanO(T?).
sale market, and the amount of electricity deviated from
the day ahead schedule is settled according to the real-tifle SUummary of results
wholesale price. This paper presents an application of on-line learning
We assume that the retailer can influence the demand thieory tailored for the problem of pricing of electricityrfo
its customers through some form of real-time pricing. If thelistribution customers who participate in a demand respons
retailer knows how its customers response to price througitogram. We focus on thermal dynamic loads for which
their individual demand functions, the retailer can chooselectricity is consumed to maintain temperature near pre-
its price to optimize a its objectives.g., the social welfare ferred settings. The retailer may have many such customers.
or its own profit. Obtaining the demand functions of itsWe assume that the retailer does not know the desired
customers, however, is nontrivial because a customerdlylik temperature set-points, nor the parameters that chaizecter
to consider such information private; neither the williegs the thermal dynamics of their environments.
of sharing nor the truthfulness of the shared informatiom ca We assume that the retailer employs a widely used real-
be assumed. time pricing scheme, referred to as day ahead dynamic price
We formulate this problem as one of online learning prob(DADP), under which the retailer posts the hourly price
lems where the retailer learns the behavior of its customee$ electricity 24 hour ahead of time. First proposed by
by observing the response of its customers to carefulBorenstein, Jaske, and Rosenfield [1], this pricing scheme
designed prices. The basic principle of online learningis thas been implemented in practice [1], [2].
A key advantage of DADP is that a customer has the short-
This work is supported by the National Science Foundatiotleui@rant  tarm (24 hours) price certainty with which it can optimize it
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We show in this paper that, in a two-settlement market, The problem considered in this paper deals with linearly
maximizing retail profit can be achieved by minimizing theparameterized demand function, thanks to the closed-form
2-norm deviation of real-time demand from the day-aheadharacterization of the optimized demand function for ther
schedule. As a result, the problem becomes one of trackimgal dynamic load. The learning approach proposed in this
with unknown system parameters. paper is rooted from the stochastic approximation problem

Assuming that demand level determined by the day-aheaxdiginally formulated by Lai and Robbins [19], [4] where
market is discrete, we propose a piecewise linear stochastihe authors considered a form of optimal control problem
approximation (PWLSA) policy, as a generalization of arwhen the model contains unknown parameters and the cost of
approach first proposed by Lai and Robbins in [4]. Specificontrol is explicitly modeled. For scaler models, the auho
cally, the policy maintains adaptively a dictiongfyD;, %)} of [19], [4] showed that the cumulative regret (if transthte
where D; is the day ahead demand level andis a linear from our definition) of a simple linear stochastic approxi-
stochastic approximation pricing policy associated withat ~mation scheme grows at the rate @flog7"). However, it
time t. Given the day-ahead dispatdff = D;, the PWLSA is not clear whether such growth rate is the lowest possible.
pricing policy ui generates the real-time retail prige. Our result provides a generalization to the vector case avith

We show that the accumulative regret of the pwLSAower bound for a general class of piecewise linear policies
pricing policy grows with the learning horizofi at the of which linear stochastic approximation is a special case.
order of©(log T'). We show further that any piecewise (time Also related is the work of Bertsimas and Perakis [20]

varying) linear policy cannot have the accumulative regrévho tackled the problem as a dynamic program with in-
grow ato(logT). complete state information. The authors showed in numlerica

simulations that considerable gain can be realized over the
myopic policy where the price in the next stage is based
on the least squares estimate of the model parameter. When
The problem of dynamic pricing for demand responseéne parameters are assumed to be random, Lobo and Boyd
assuming known demand function has been extensively stugbnsidered same problem here under a Bayesian setting
ied. See [1], [5], [2] for discussions of the pricing schemg21]. The authors introduced a randomization policy via a
considered in here and [6], [7], [8], [9] for more generaldithering mechanism.
settings. These results assume implicitly that the demandMachine learning techniques have been applied to pricing
function is known. A precursor of the work presented here igroblems in electricity markets, although there seems to
[3] where a parametric form of demand function is obtaineche limited literature on discovering real-time price with
In [10], the tradeoff between retail profit and consumeunknown known demand functions at retail level. While
surplus is characterized under a Stackelberg formulatigguch problems can be viewed as part of the general learning
under the assumption that the demand functions of customgyi®blem discussed above, the nature of electricity market
are known. and electricity demand impose special constraints. Aedlat
Online learning of unknown demand functions has beelearning problem of bidding strategy of a retailer in the Veho
studied extensively in multiple communities. This problensale market when the supply functions of the generators are
can be formulated as a multi-armed bandit (MAB) problenunknown has been studied. See [22], [23], [24] where Q-
by treating each possible price as an arm. When the pri¢earning techniques have been applied.
can only take finite possible values, the problem becomes
the classic MAB for which Lai and Robbins showed that !l- THE TWO-SETTLEMENT WHOLESALE MARKET
the optimal regret growth rate ®(log7') when the arms  Most US deregulated wholesale electricity markets adopt a
generate independentreward [11]. When the price takeg valtwo-settlement system consisting of a day-ahead market and
from an uncountable set, the dynamic pricing problem ia real-time market. We describe in this section the padicip
an example of the so-called continuum-armed bandit intragion of a retailer in the wholesale market and argue that, if
duced by Agrawal in [12] where the arms form a compadhe retailer is to influence the consumption of its customers
subset ofR. An online learning policy with regret order via retail pricing in real-time, the profit maximizing stegty
of O(T3/*) was proposed in [12] for any reward functionis to choose the retail price to minimize thenorm deviation
satisfying Lipschitz continuity. Further development dret between the day ahead scheduled demand and the real-time
continuum-armed bandit under various assumptions of tfeunter part. This is not surprising except perhaps that the
unknown reward function can be found in [13], [14], [15].2-norm measure of deviation is the appropriate metric.
The reason that PWLSA proposed in this paper achieves
a much better regret ordeO(log T')) than in the case of A The day-ahead wholesale market
a general continuum-armed bandit is due to the specific In the day-ahead market, a retailer (or a Load Serving
linearly parameterized demand which leads to a specifientity (LSE)) submits a utility curve(d) that represents the
guadratic cost/reward function. A similar message can Heenefit of getting served witl units electricity in the second
found in [16], [17], [18] where different regret orders wereday. An electricity generator, on the other hand, submits a
shown to be achievable under different classes of demandst curvec(p) that represents the cost of servipgunits
models for dynamic pricing. electricity in the next day. Because the day-ahead market is

B. Related work



defined at the hourly time scale, the demand schedaled In the real-time market, if the real-time consumptitsh =
generation schedulesare 24 dimension vectors. d™, there is no real-time payment. The total retail surplus is

The independent system operator (ISO) aims to maximizerea | in Fig. 1. However, if the real-time consumptidfi
the social welfare by solving an optimal power flow (OPF)s different fromd™, as shown in Fig. 1, the real-time price,
problem. In its simplest form without complications of A\sr, is determined by the supply function. Hence, the total
a capacity constrained transmission network and multipietail surplus is,
?oa;rrﬂupatlng agents, the OPF problem is of the following w(d™) — dPA — (d — PN,

max u(d) — ¢(p)

ot d which can be represented by the area difference between the
1 =D

Area | and Area Il. Therefore, Area Il is the retail surplus
Let the solution of the above optimizatioft* = p™ be loss, and the loss grows in the order @F" — d™)?—the
the cleared day ahead dispatch. The day-head cleared prégsiation between the day-ahead scheduled consumption and
is the marginal cost of generating*, calculated as\™ = the actual real-time consumption.
g—;(p"“). Note that the clearing of the day-ahead market is For the general vector case, the result is formally exptesse
financially binding, in the sense that regardless of theadctuin the following theorem.
consumption in the real time, the day-ahead payment from Theorem 1:Under the two-settlement market system, if
retailer to the system operator ([8”)”'d> and the payment the generation cost function(-) has a quadratic form,
from system operator to generator(is*)? p*. c(d) = d"Kd + h'd + ¢(0), where K is p.s.d., then
The retail surplus of a retailer can be illustrated in thehe retailer’s surplus loss is approximately measured by
Price-Quantity plane. As shown in Fig. 1, the day-ahea@(d®™ — )T K (df" — d™).
equilibrium is (d*, \**) and Area | represents the day-ahead Proof: see Appendix.
retail surplus [25]. In practice,K is usually diagonal. In the later discussion,
without loss of generality, we assuni€ = I. Then, the
Price objective of the retailer is to minimizing squared deviatio
from the real-time demand to day-ahead dispatch. The ex-
Area | pected surplus loss for theth day can be defined as

Supply function LtéE[”d?T _ d?AH%]

whered?* andd;" are the day-ahead dispatch and real-time
\RT Area ll demand for day.

\oA IIl. DYNAMIC PRICING IN THE RETAIL MARKET
O((d™ — d™)?) In this section, we describe interactions between a retaile
and its customers. It is assumed that the retailer has exteiv
Demand function the day-schedule for the committed day ahead quantity,
denoted here ag* for dayt. Without knowing the demand
functions of its customers, the retailer aims to optimize it
surplus by adaptively choosing the real-time price for its
consumers.

P Quantity

Fig. 1: The day ahead and real-time market equilibria A, Day-ahead dynamic pricing

In this paper, we focus on a particular class of pric-
B. The real-time wholesale market ing mechanisms, referred to as day-ahead dynamic pricing
In the real time wholesale market, the actual consumptiokPADP), to control the demand response. The principle of
d*, may be different from the day ahead dispatch, whicRPADP is that the retailer posts day-ahead hourly prices, and
affects the wholesale price in the real-time market. In pathese prices will be fixed at the day of consumption. First
ticular, the real-time price may be calculated according teonsidered in [1], DADP has been in place for large retail
AR — %(dm)_ Here, for simplicity, we assume that thecustomers for years. The advantage of DADP for a consumer
cost function of the generator in real-time is the same d8 that the consumer has the price certainty one day ahead
that in the day ahead market. In practice, however, the cagt time so that he can plan accordingly based on the posted
functions are not necessarily the same. The intuitionsriaehi Prices and his desired quality of service.
our arguments remain. The sequence of the retail market operations under the
In the real-time market, payments from the retailer td?ADP pricing is as follows:
system operator and from system operator to generator ares The retailer offers the consumer day ahead hourly retail
both (A\*") 7 (d"" — d®) if this quantity is positive. Otherwise, price m and keeps it fixed for the next day.
the compensations from system operator to retailer and frome In real-time, a consumer optimizes its consumption
generator to system operator are by (d™ — df). based onr.



o The payment from a consumer to the retailer is settledlV. DYNAMIC PRICING VIA ONLINE MACHINE LEARNING

as the product ofr and real-time consumption. As described in Section 1I-B, the retailer’s objective is to

« The retailer meets aggregated demand by purchasiggnimize the surplus loss, defined as the squared deviation
electricity at the wholesale market and pay the real-timgs (o5|-time electricity consumption®"

) O =T, from the day-ahead
wholesale price for the deviation from the day aheagptimal dispatchd™.

amount. If the parameters4 and b, are known to the retailer in

the demand model (2), at daygiven the day-ahead dispatch

B. Optimal demand respose d>, the optimal retail price should be designed as
We consider in this section the optimization of the demand
response to DADP. In practice, thermal loads (HVACs uits 77 = argmin,, E[||dF" — d%*||3]
represent a significant part of price responsive demand. = argmin,, E[||b — Am +w — d?*||3] 3)
Empirical study [26] has shown that the dynamic equation =AY (b—d).

that governs the HVAC temperature evolution is given by The minimum of the expected surplus loss is

z; =21+ ofa; — xi-1) = Pui + &, (1) E[l[b — A} +w — dp[[3] = Bu,

. wherel,, is the covariance matrix of demand model naise
wherez = (z1,22,...,224) IS the vector of average out- .

! . in (2). Notice that the minimized surplus loss is indepernden
door temperature in each hout,= (a1, as, ...,a2) is the . "
; of the day-ahead dispately*.
vector of average outdoor temperature in each hout

(- 1) e vecto o convol vrabie represetngthe, YOUSYT. L 12 TNV or e eteer o obieh e
total amount of electricity drawn by the HVAC unit during

. a customer is likely to consider such information private. A
each hour and = (&1, &2, ..., £24) the process noise. System . . ; B
. ) day ¢, the only information available to the retailer is the
parametersy (0 < « < 1) and 8 model the insolation of

the building and efficiency of the HVAC unit. Note that therecord of previous electricity consumptlon. up_tt(_} ! an_d
. ) . : day-ahead dispatch up to Hence, the retail pricing policy
above equation applies to both heating and cooling scenario . :
k X . is defined as

but not simultaneously. We focus herein the cooling scenarf’
(8 > 0) and the results apply to heating & 0) as well. T = (A5 dE AT dR D) (4)

Using a linear combination of total cost and squared - . . .
deviation of indoor temperature from desired temperatsre 4/hered;”", andd;" are the day-ahead dispatch and real-time

the objective function, the optimized demand response frof{€ctricity consumption for day.
the customer can be formulated as the following stochasti¢ piecewise Linear Stochastic Approximation policy

optimization problem, , ) ,
In [4], Lai and Robbin show that ifr; and df" are both
scalars and?* = 4™ is constant for all, the stochastic

min E {Z?ﬁﬂ—ﬂ(%‘ — )% — 7TTu} approximation policy,

stz =z + ala; — xi—1) — Pui + &, =1 +y(di, —d™), (5)

yi = (25,a:) + v .
achievesm; — 7* a.s. andO(log(T)) aggregated regret

wherey = (yi1,¥2,...,y24) iS the observation vector; = (defined in Section IV-B), wherer* is the optimal price

(v1,v9, ..., 124) the observation noise vector. in (3) with day-ahead dispatct#*, 7, is the average of
The solution of the above stochastic optimization can b@, ..., m:—1 anddf” , is the average of, ..., df" ;.

obtained in closed form via a direct backward induction. In this paper, we propose a policy nam&iecewise

More significantly, it is shown in [10] that the total demandLinear Stochastic Approximation (PWLSAgxtending the

is a linear function of the retail price. stochastic approximation policy to multi-dimensional eas
Theorem 2 ([10]): Assume that the process noiseand With countable many day-ahead dispatch levels.

v are Gaussian distributed with zero mean. For fixed retail The basic idea is that we record all the day-ahead dispatch

price T, the optimal aggregated residential demand responivels up to day in setD,. For dayt + 1, if d’; € Dy, we

has the following matrix form and properties let D¢y = D¢ Otherwise,Dyy1 = Dy [J{d?"}. For each
day-ahead dispatch level ib = |J D;, we keep a separate
A" =b— Am +w, (2) stochastic approximation to calculate the retail price.

Therefore, for differentd?*, we have a different linear
where the factor matrix4A is positive definite,b and A  function to calculate the next retail price. The policy is
are deterministic, depending only on the dynamic systepiecewise linear. Formally, the PWLSA policy™"*, is
parameters, and is a random vector with zero mean. defined as,

Definition 1 (PWLSA):Assume for allt € N*, d* € D

*Heating, ventilation, and air conditioning units andD is countable.



o If d? =D, € Qt, ®t+1 = Dy,

ﬂ,;’WLSA — |ell| Z ﬂ_]F;WLSA

t kee;

(1]

(R~ )

(2]

whereCi = {k e Nt : k<t —1,d?" = D;}

o Otherwise,D;11 = D, J{d?"} 3]
B. Regret analysis of PWLSA 4]
For each policyu as in (4), the regret at dag R}, is  [5)
defined as the difference of retail’s expected surplus loss
between usingr’ and ;. Therefore, according to (3), [6]

LE[||b - Arf + w, — &3 — S, )

= E[|[b — Ar}’ — d*|[3]

R ©)

(8]

Now we want to use the regret to evaluate the performance

of PWLSA. First, we show that PWLSA can achidwg(7") [9]
accumulated regret under certain conditions.

Theorem 3:Assume that day-ahead dispateff’s are [10]
from a finite set,i.e., |D| < oco. If v > m
- [11]
PWLSA
D ORI ~ O(log(T))
t=1 [12]
Proof: see Appendix.
[13]

Now we focus on those piecewise linear pricing policies,
whose changing points are independent®f i = 1,2, ....

Formally, the set of such police®, is defined as, (14]
15

P={u:m = p(d, A A ) (7))
where (- d%, ...,d2*) is a linear function offy", ...d5" ;. [16]

Clearly, our proposed policy™"* € P. The following
theorem shows thalbg(7") accumulated regret is the best[17]
rate that can be achieved by any policyJin

Theorem 4:For any policyu € P, (18]
T

> R} > C"log(T) [19]

Proof: see Appéﬁéix. (20]

(21]

V. CONCLUSION AND FUTURE WORK

We present in this paper an online learning approach to tfiz]
dynamic pricing of electricity of a retailer whose customer
have price responsive dynamic loads with unknown demarsgk;
functions. We exploit the linear form of the aggregated
demand function, and cast the problem of online learning
as one of tracking day-ahead wholesale prices via a stoch
tic optimization. This approach leads to a simple learning
algorithm with the growth rate of accumulative regret at the
order of O(log T'), which is the best rate achievable for ay,s
class of piecewise linear policies.
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APPENDIX
Proof of Theorem 1

Given the day-ahead demam® and real-time demand
d¥, the demand side surplus is

u(dRT) _ (/\DA)TdDA _ ()\RT)T(d o dDA).

Therefore, the surplus loss due to deviationd®f from
d™ is

Loss = [u(d®) — (A*)Td™]
_[u(dRT) _ ()\DA)TdDA _ ()\RT)T(dRT _ dDA)]
— u(dDA) _ u(dRT) _ (/\RT)T(dDA _ dRT)'
Consider the first order approximation
U(dDA) _ U(dRT) ~ [gd (dDA)] (dRT _ dDA).
At the optimal day ahead dispatc#f® = p™ and
ou, pon  Oc, o
5 () = 5, (@)
Hence,
LoSS~ (g_(dRT) _ C(dDA)) (dRT_dDA)
— (d dDA)TK(dRT dDA)'

Proof of Theorem 3

First, we consider the case when there is a single day-

ahead dispatch leveP*, andn* = A=1(b — d™).

From the policy, we have
~A
i+ 1

7Tri+1 = )ﬁZ—FL[A?T*—l—Q_JZ]

[Miv1+im] = (1- T

+1
Therefore,

[y (1 = kfl)](m
+Z] 1 7+1 [H?c ]Jrl(

Tiy1 —7TF 7T*)
A
=9l
Therefore,

T+l — Tptq
= n+ s — ) = (i — %)

= (1= A (1~ 27)](m — %)

DD/ E D i1 Y O

For the first term in (8),

(A—yA)y
J(G+1)

)] Jeok-

(1 =y ML = 203
<1 =~ A) BT 11||( — FIB.

Since
~A ~A 2vA ~2 A2
1-—=)"1-—=)=1~- —,
i+ 1 i+1 i+1  (i+1)
denoting),, as the minimum eigenvalue of, we have,
1A 29 m
a1 -— —
14 141

21 —L__|IA]3.
1)||2_ (i+1)2|| 112

Let C12||1 — vAJ2. Then, sincey,, > 1

(1 =y IS (1 -

e
<GS - 220 4 2 A]R)

2
< Crexp{Y1_, — 22 + 2l AlB)

i+l
< Clexp{— log(n + 1) +~2||Al|3}
=Cy—~

n+1’

whereCy = Crexp{y?||A||3} doesn’t depend on.
For the second term in (8),

NI (1= 2511 — 7A)[3
SOleXp{Zi:jH 234;\1% + z+1)2||A||2}

j+1
< 02(%)2')/)\771

Then,

1L+ >0 1[H"—f+1(
<{r+X0

_ ﬁ)] (A—A)y
i1 /175G

Pl Eaa G —m)](
<{E+30C ¢c_2<3:1> m )
< {Z+ T WG () A
<{V+~y\/0_2( ) A ()17 Am Y2
<235 4 2yCy(L)(L)2Am 1 (L)2-270m

Sum all the two terms up,

13
”YA)||2]-(]-+1)}2

n—1 n A
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Now, define)M = max{|m — 7*[|3, [[Xo|[3, ||Zdl[3}, we
have
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If |D| is finite, and we use a separate stochastic approx-
imation to calculate the retail price, then the accumulated
regret>."_ R, < C|D|log(T).
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Proof of Theorem 4
For a particular sequence af*, ..
dayn has a linear form,
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Sinceb is arbitrary and in order to not introduce constant

.d>, the regret term at

term,1— ", ¢; = 0 should always hold. Therefore,
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Hence,
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whereC = tr(2I'y,,).



