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Maximum Likelihood Fusion of Stochastic Maps
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Abstract—The fusion of independently obtained stochastic maps
by collaborating mobile agents is considered. The proposed ap-
proach includes two parts: generalized likehood ratio matching
and maximum likelihood alignment. In particular, an affine in-
variant hypergraph model is constructed for each stochastic map
and a bipartite matching via a linear program is used to establish
landmark correspondence between stochastic maps. A maximum
likelihood alignment procedure is proposed to estimate rotation,
translation and scale parameters in order to construct a global map
of the environment. A main feature of the proposed approach is its
scalability with respect to the number of landmarks: the matching
step has polynomial complexity and the maximum likelihood align-
ment solution is obtained in closed form. Experimental validation
of the proposed fusion approach is performed using the Victoria
Park experimental benchmark.

Index Terms—Data association, data fusion, hypothesis testing,
maximum likelihood estimation, mobile robot navigation.

I. INTRODUCTION

HE general nature of the problem under consideration is to
construct a global map of landmarks from the individual
efforts of collaborating agents that operate outside of a global
frame of reference. Each agent independently builds a vector of
estimated landmark locations referred to as a stochastic map [1],
[2]. Constructing a combined global map within a common ref-
erence frame from the individual maps of the agents is referred
to as a problem of fusion of stochastic maps. Intuitively, the
problem has the interpretation of a mathematical jigsaw puzzle:
the stochastic maps are the disoriented pieces and the sought
after global map is the completed puzzle.
A benchmark scenario based on the Victoria Park dataset is
illustrated in Fig. 1. The satellite image shows the ground truth
environment from which the stochastic maps are obtained. Trees
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Fig. 1. A data fusion problem involving stochastic maps. The stochastic maps
of agent p (bottom left) and agent g (bottom right) illustrate landmark locations
estimated from the sensor observations of two mobile agents operating outside
of a global reference frame. Uncertainties in estimation are indicated by ellipses
and the path of exploration is shown by dotted lines. Estimation of a common
global map from the individual stochastic maps, each obtained in a separate
coordinate system, requires inferring common landmarks in addition to deter-
mining a common frame of reference.

(landmarks) located in the park are mapped from the global ref-
erence frame of the environment to the individual local refer-
ence frames of the mobile agents. Each agent thus has an in-
dependent, but partial model of the explored environment. The
shared objective of the agents is to reconstruct the state of na-
ture from the sensor measurements independently obtained by
each agent, which is a common problem encountered in signal
processing [3]-[7], computer vision and robotics.

Stochastic maps are obtained by independent agents using
various estimation techniques. In robotics, the solution to the
simultaneous localization and mapping (SLAM) problem pro-
vides an agent with a stochastic map of the environment as a
model of landmark locations (see [1], [2], [8]-[10] and the refer-
ences therein). The focus of this paper, however, is on the fusion
— rather than building — of stochastic maps obtained in separate
coordinate systems. Our starting point is at the individual sto-
chastic maps, which are made available to a fusion agent for the
construction of a global map.

The fusion problem with multiple sensor observations is
challenging for several reasons, one being that the problem
contains both discrete and continuous parts [11], [12]. In order
to construct a global map, the fusion agent must first identify
common landmarks residing in two separate maps. Using the
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earlier jigsaw analogy, the solver has to first identify common
edges in order to match the individual pieces. Prior to ex-
changing stochastic maps, the agents are assumed to operate
with no prior knowledge concerning the common landmarks
(i.e., the common trees when considering the Victoria Park
example) that are contained within the individual maps. The
problem of matching common landmarks is of a combinatorial
nature in general, which eliminates exhaustive search as an
option for large maps.

Even if common landmarks between two maps have been
identified, the agents are faced with the alignment problem of
determining not only the best landmark estimates of common
and uncommon landmarks contained by noisy maps obtained in
separate coordinate systems, but also to determine the spatial pa-
rameters of rotation, translation and scale. Describing this again
in terms of the earlier jigsaw analogy: not only are the pieces dis-
oriented, but the edges are also imprecise (which makes it harder
to see how the pieces fit together). The alignment optimization
is continuous in nature, but is also nonlinear and non-convex in
general.

A. Related Work

The data fusion problem considered in this paper has been
studied in various forms. Zhou et al. [3] derived a two-step it-
erative optimization procedure for estimating the locations of
common targets using range and azimuth measurements ob-
tained by two separate radar sensors. Each sensor observes the
locations of targets within a reference frame related by a known
displacement. The framework proposed in this paper considers
the more general case that the sensor reference frames are re-
lated by an unknown displacement, rotation and scale as part
of a nonlinear least squares optimization, the solution of which
is obtained in closed form. Thrun and Liu [11] proposed an
SR-tree (Sphere/Rectangle-tree) search [13] in consideration of
the matching problem. Common landmark correspondences and
rotation-translation parameters are found using an iterative hill
climbing approach to match triplet combinations formed within
a small radius of the landmarks in each map. The radius forming
the feature vectors of the SR-tree, however, would need to be
adaptive in order to generalize to different environments and
scales. Estimates of common landmarks are determined sepa-
rately by a collapsing operation performed on matched land-
marks in information form (see Grime and Durrant-Whyte [14],
as well as Sukkarieh et al. [15], for further reading on fusion
using information filtering). Julier and Uhlmann [16] introduced
the covariance intersection algorithm as an approach to the data
fusion problem. Their algorithm uses a convex combination of
state information to achieve data fusion, but has the limitation
that the input data must be of the same dimension (which is often
not the case of stochastic maps built within different regions of
exploration). Tardos et al. [17], and later Castellanos et al. [18],
proposed map joining as a technique to enable an individual mo-
bile robot to construct a global stochastic map based on a se-
quence of local maps. The approach is related to this paper by
considering the sequence of local maps as being obtained from
separate robots, but requires knowledge of a base reference to
construct a global map.
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Williams et al. [19] considered the fusion problem by pro-
viding parameter estimates of the relative rotation and transla-
tion between global and local maps. The expressions are de-
rived by observing the geometry of the landmarks within each
map. Our approach is distinct from [19] in that the geometry of
the landmarks is incorporated in a nonlinear least squares so-
lution based on the maximum likelihood principle. Several au-
thors such as Zhou and Roumeliotis [20], Andersson and Ny-
gards [21], Benedettelli et al. [22] and Aragues et al. [23] con-
sidered rendezvous approaches to the alignment problem. Ren-
dezvous approaches, however, are somewhat restrictive as the
agents are required to be in close proximity.

The matching approach of this paper is motivated by the work
of Groth [24] and Ogawa [25]. Groth proposed one of the ear-
liest matching algorithms in the context of astronomical point
patterns, where a list of star measurements are matched against
a known star catalog. In the proposed approach, structured point
triplets referred to simply as triangles are used to match the mea-
surements against the catalog. The Groth triangle convention is
also incorporated in our approach, however the matching ap-
proach of Groth is not practical for large maps since all pos-
sible combinations of triangles are considered. An alternative
approach was proposed by Ogawa [25], which instead incorpo-
rated Delaunay triangulations [26] to address the star matching
problem. This paper therefore uses Delaunay triangulations with
triangles that follow the Groth convention as a graphical model
for matching stochastic maps.

B. Summary of Results and Organization

A maximum likelihood framework is proposed for the con-
struction of a global map from local stochastic maps. The pro-
posed approach includes (i) a landmark matching approach re-
ferred to as generalized likelihood ratio (GLR) matching and (ii)
a least squares approach for jointly estimating rotation, transla-
tion, scale and common landmark locations referred to as max-
imum likelihood (ML) alignment. A Gaussian likelihood func-
tion is presented as the main proxy for deriving the procedures
of each step.

Matching is a step that is performed in the absence of a global
frame of reference, which requires a technique that is affine
invariant. To this end, the original stochastic maps are repre-
sented as directed hypergraphs constructed from Delaunay tri-
angulations. The hyperedges of each directed hypergraph are
constructed from directed Delaunay triangles that follow the
Groth convention, which leads to an affine invariant approach
for determining common landmarks. The GLR matching algo-
rithm uses a generalized likelihood ratio as a matching metric
in order to obtain globally optimal landmark correspondences
from the solution of a bipartite matching problem. The GLR
metric is computed in closed form and the bipartite matching is
solved in polynomial time as a solution to a linear program.

Once common landmarks are identified, the solution to the
alignment problem of determining rotation, translation, scaling
and common landmark locations between two stochastic maps
is computed from the determined matched landmarks. The main
contribution is a closed-form solution to the alignment problem
as nonlinear non-convex optimization, which makes optimal
alignment trivial to obtain computationally.
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The remainder of the paper is organized as follows. The
problem formulation and models used throughout the paper are
provided in Section II. While the alignment and matching steps
share common likelihood functions, the maximum likelihood
alignment problem is presented first in Section III in order to
introduce the proposed solution for closed form computations.
The problem of determining common landmarks is treated in
Section IV, where we present the GLR matching approach.
Numerical examples and simulations are provided in Section V.
The conclusion is given in Section VI and is followed by an
appendix of proofs.

II. MODEL AND PROBLEM FORMULATION

A. Ground Truth Model of Landmarks

A landmark is represented by a vector in R? under a specific
coordinate system. Two collaborating agents p and ¢ each esti-
mate the locations of landmarks within a local frame of refer-
ence. The coordinate systems of p and ¢ are related by a scaling
parameter s > 0, a rotation with parameter § € [—x, 7] and a
translation parameter ¢ € R?. Specifically, if € R? is the lo-
cation of a landmark under coordinate system p, the landmark
location under coordinate system ¢ is then

cos

sin 6 cos

@ o= sr(@)pu+t, r(6) 2 [ —smﬁ} .

In the general case of m landmark locations 1z € R*™, again in
coordinate system p, the representation in coordinate system g
is of the form

W= sR(0)u+ Ft

where R(#) £ I,, @7(8) is the rotation matrix in block diagonal
form and I,,, is an m x m identity matrix (the symbol & is the
Kronecker product operator). The matrix F' = €m @ Iy, with
em being an m-vector with all entries equal to 1, applies the
translation ¢ to each landmark in the map.

In this paper, without loss of generality, the ground truth of
agent p is defined in the coordinate system of a ground truth
vector of the form u = (u”, v; ; vqT)T, specified as follows:
common landmarks observed by both agents are contained by
1 € R?", where n is the number of common landmarks, and
landmarks observed exclusively by agent p and exclusively by
agent ¢ are contained by the vectors v, and v,, respectively.
Agent p and agent ¢ thus observe ground truth of the form
up, = (p", v )" and uy = (u",0])7, respectively, with the
representation of u, in coordinate system ¢ given by

uy = sR(0)u, + Ft

(M ) (1) (2):

where the subscripts 1 and 0 indicate the partition the map into
common and uncommon parts.

In addition to the inherent uncertainty of stochastic maps, the
challenge of fusion as it relates to constructing a combined map

(1)
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is that the parameters {s, .6} and the common landmarks ob-
served by both agents are usually also unknown. The ultimate
goal of fusion is thus to estimate the combined map from the
stochastic maps of the individual agents without prior knowl-
edge of the model parameters {y, s.%,6}.

III. MAXIMUM LIKELIHOOD ALIGNMENT

This section describes a maximum likelihood approach for
constructing a global map of landmarks from stochastic maps
obtained in separate coordinate systems. We begin by describing
a Gaussian model for the maps and propose a closed form so-
lution to the maximum likelihood alignment problem of esti-
mating the parameters {4, vp, vq, 8, £, 8 } under the assumption
that the common landmarks between the maps are known (the
more general case of unknown common landmarks is consid-
ered in Section IV).

A. Matched Gaussian Maps

Let the random vectors X, and X, represent the noisy ob-
servations obtained by agents p and g, respectively. Prior to fu-
sion, data is collected in the separate coordinate systems of the
agents (i.e., X, and X, reside in coordinate systems p and g,
respectively). The statistical model of matched Gaussian maps
is given as

Xp =up + W,
Xy =sR(@)u, + Ft + W,

2)
G3)

where W, ~ N(0,021) and W, ~ N(0,031) are indepen-
dent zero-mean additive Gaussian noise vectors. In order to sep-
arate the matching and alignment problems, an assumption is
made that the common landmarks in both maps are known. The
process of obtaining such a matching, however, is nontrivial and
combinatorial in general (see Section IV for an affine invariant
procedure for determining common landmarks).

B. Likelihood Decomposition and Closed Form Solution

Estimators of the parameters { ¢, v,,, vy, $, ¢, 0 } are derived by
considering the likelihood function of the combined global map
given by

1
L(Na'upalvqa 37t: 9) é nCxXp _ij(,u Up, Vg, S:ta 9) (4)

where 7 is a normalizing constant and the function .J, with un-
known parameters as its arguments, is defined as

1 1
J(j1,vp,vq, 8,1,8) 2 F||:an—up||2—i—(f—r_)H:I:q—sR(G’)uq—FtH2

P q
&)
with z, = («}T,257)T and ¢, = (:z:;T,wST)T, corresponding
to the structure of u, and u,, respectively. By partitioning the
problem into common and uncommon parts, it immediately fol-
lows that (5) decomposes as

J(;U/7'Up', Vg 57ta 6) = JO(/Upa Vg 877’:7 0) + Jl(ua Saty 6) (6)
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where .Jy is the squared error function parameterized by the un-
common landmarks v, and v, in addition to the transform pa-
rameters {s,t, 0}, specified as

A

1
Jo(vp, vy, 8,1, 6) FH.’L‘?} - wp||2
P
1
+0_—3||.L2 — SRO(H)'U(I — F’(ﬂf”2 (7)

and .J; is the squared error function parameterized by the vector
& of common landmarks, in addition to {s, %, 8}, specified as

1
Jl(,ursataa) 2 ?H‘L]l) - M||2
P

1 .
+U—2||$; —sRi(f)u— Fit]*. (8)
q

This decomposition is exploited to minimize the combined error
function J by minimizing Jy and .J; separately as follows. Let
the solution {p*, vy, vy, 8™, ¢, 6"} be the global maximum of
the likelihood function L so that

J(pt vl v, 85 7, 0%) =

s Upr Uy & min

HyVp Vg, 5. 1,6

T, vp, 0y, 8,6,6). (9)

It follows that if {/, §, £, 8} is the global minimum of .J; speci-
fied as

(fi,8,1,0) = argmin Jy (p, 5.1, 6),

1,5,t,8

(10)

then the optimal (least squares) parameters corresponding to
{1 8,t,0} are given by u* = i, s* = §,¢* =1, 6* = § since

1
Jo (.q,»g, ;ROT(())(.T‘; — Fyt), s.t, 9) =0 (11)
for any {u, s, 1,8} with the decomposition J = Jy + J1. It
immediately follows that the least squares estimators of v, and
v, are given by

# « 1 - .
v, = :1:2, vy = gRg(ﬁ)(TS — Fyt) (12)
respectively. Thus the combined map w* = (pu*", v37, v ™)”

is obtained by minimizing the error function .J;, which is a non-
linear and non-convex function of the parameters {u, s,,8}.
However, as specified by the following theorem, the structure
of the problem admits a closed form solution for obtaining the
global minimum.

Theorem 1 (Closed Form MLE): The ML estimators of the
parameters { i, s, %, 8} are given by the following expressions.

1) The MLE of the rotation parameter 8 is

6% = sgn(/3) {cos1 (ﬁ) - W] (13)
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where sgn(-) is the signum function. The coefficients «x and
[ are given by

a= " (I, ® 1.)Qu,, (14)
f=—-z"(I, ® L)Qx, (15)

respectively, where Q = I, — Fi(FLFy) 'FL with n
being the number of common landmarks (see Appendix for
the constant matrices I, and I,).

2) The MLE of the scale factor s is

S (0) = 2 QRT (0%)x,
3 Qx}

(16)

denoted hereafter as s* for simplicity.
3) The MLE of the translation ¢ is

£ (s*,0%) = (FY F) ' F [w) — s"Ry(60%)2)] (1)

denoted hereafter as ¢*.
4) The MLE of the common landmarks y is

ur(07) = by, + Gy (18)

denoted hereafter as p*. The matrix gains ¢, and ¢ are

given by
3 (UPS )2
s =1y, — = 19
4 =T = 30 (19)
o2
by =5 5 QRT(5") (20)
P q
respectively.
Proof: See Appendix. ]

Theorem 1 specifies a closed form solution to the ML align-
ment problem using the realizations of matched Gaussian maps
as data. An important note, however, is that ¢ = 0242 when
n = 1, meaning n > 1 common landmarks are required to
compute the solution of Theorem 1.

IV. GENERALIZED LIKELIHOOD RATIO MATCHING

In a general mapping scenario, the ground truth structure ob-
served by the agents is unknown. In particular, if the first two en-
tries of X, = x,, correspond to the particular landmark, then the
first two entries of X, = z, correspond to a different landmark
in general (and likewise with the remaining entries). Common
landmarks in this case are identified by applying a matching pro-
cedure to ,, and x, with consideration that the stochastic maps
are obtained in separate coordinate systems related by s, £ and 6.
The matching procedure proposed in this section is based on the
use of landmark triplets referred to as triangles, which requires
that the maps of each agent contain at least three landmarks.



2094

A. Directed Hypergraph Model

Triangles are constructed from the maps of each agent by fol-
lowing a direction convention used in the star-pattern matching
approach of Groth [24]. In particular, given three landmark lo-
cations ¥, s, ¥ € RZ, the Groth representation of a directed
triangle is y = (y.,y!,y)", which is a vector in R® with en-
tries that follow the inequality

e2y)

under the assumption that no two triangle edges have the same
length. This convention, which is invariant to changes in rota-
tion and translation, is used to construct a directed hypergraph
model given by the pair G = (V, &), where V is a set of vertices
(e.g., landmarks) and £ = {F1, Eo, ..., F,,} is a collection of
directed hyperedges F; C V consisting of ordered subsets of V.
In particular, each hyperedge F; with ¢ = 1,2,...,m is such
that |E;| = 3 with an ordering that follows the inequality (21).
Each agent constructs a directed hypergraph model of the form
Gy = (Vp, &) and G, = (V,, &) using Delaunay triangu-
lations [26] constructed from the landmarks of maps p and ¢,
respectively.

e — vl < llws — yell < llye — vall

B. Hypothesis Testing and Bipartite Matching

Determining common landmarks from the directed triangles
of G, and G, is considered as a binary hypothesis testing
problem. Under hypothesis Hy, the agents observe the ground
truth directed triangles v, v, € R®, which contain a maximum
of two landmarks in common. Under hypothesis H;, the agents
observe a common directed triangle 6 € R® within their re-
spective coordinate systems. In this way, Hy is the hypothesis
of uncommon triangles and H; is the hypothesis of common
triangles. The mathematical models of H, and H; are given by

mos [ (L] [ ]
e [ A (s ] | ) @

respectively. The appropriate matching hypothesis (i.e., Hy or
H,) for the directed triangle data Y,, = y, and Y; = y, is ini-
tially unknown. Given the realizations y, and y, from the sto-
chastic maps of p and ¢, respectively, the matching hypothesis
is determined using a generalized likelihood ratio test (GLRT)
of the form

(22)

maxs ¢.6 L1(8,5,t,0)

maxXy, v,,s.t,8 L(](pr Vg, 8, t, 6)

H;y
Ayp, ) = z7 (29
Hy
where L, are likelihood functions under Hy, with k& € {0,1},
and the threshold 7 is selected to control the level of false
alarm. The likelihood statistic A(y,.y,) is easily computed
by applying Theorem 1. The performance of the approach in
the presence of noise, as illustrated by the receiver operating
characteristic (ROC) curves of Fig. 2, is of interest due to the
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Fig. 2. Monte Carlo performance of GLRT likelihood statistic. Receiver op-
erating characteristic (ROC) curves, illustrated above, show the performance
of detecting triangle matches at various levels of SNR. Each of the curves are
plots of the probability of detecting a match (Pn) versus the probability of a
false alarm (Pra ). The dashed line in the lower region of the figure indicates
the performance of a random guess.

uncertain nature of stochastic maps. As illustrated in the figure,
the performance of the approach degrades gracefully with
increasing levels of noise (the signal-to-noise ratio, or SNR, is
discussed in Section V).

Applying the GLRT enables the determination of common
triangles from data, but not in a one-to-one fashion as required
to produce a consistent combined map. If triangles i € P,
with P = {1,2....,|&,|}, is denoted as y;, and j € Q, with

{1,2,...,|&,}, is denoted as 7, then triangle matches
are determined in a one-to-one fashion by formulating triangle
matching as an assignment problem that seeks to

T kitl

maximize Z Z fij (y]‘, yg)ai]— (25)
i=1 j=1
subject to Y a;; =1, j=1,...,m (26)
=1
daij=1, i=1,....m (27)
g=1
and a;; € {0,1}, (28)

where m = max(|&,|, |€,]) and the function f;; used in the
objective function is given by

Alyl,yl), iePandje Q

T =
$i (Y vg) {(), otherwise. 29

An assignment obtained by the integer program is indicated by
a;; = 1, meaning triangle ¢ € P is assigned to triangle j € Q.
A decision of a;; = 0 indicates that triangles ¢ and 7 are not as-
signed and the constraints (26) and (27) ensure that the assign-
ments are one-to-one. The structure of the assignment problem
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Fig. 3. Illustration of maximum likelihood fusion using the Victoria Park benchmark. (Ground truth) Ground truth locations observed by p and ¢ are indicated by
crosses (+) and circles (o), respectively. (Stochastic maps) The maps of each agent are generated using a Gaussian noise model parameterized by s, ¢ and 8. (GLR
matching) Common landmarks are determined using a hypergraph representation to determine common directed triangles, illustrated above using color gradients
to indicate matched triangles. (ML alignment) The combined map is computed using maximum likelihood estimation. Common landmarks found by the approach

are indicated by squares (LJ).

allows for the use of standard linear programming routines by
relaxing the integer constraints to a;; € [0, 1]. The solution of
the resulting linear program is indicated by the assignment set

A2 {(ieP,je Q) a]; =1} (30)

which includes one-to-one assignments of directed triangles to
be identified as belonging to Hy or H;. The GLRT (24) pro-
vides a statistical approach for determining a matching hypoth-
esis, but (as indicated in Fig. 2) the performance of the test de-
grades with increasing noise. A robust detection scheme in the
presence of uncertainty is to accept the assignments such that
the MLEs {s};, t;;,07;} form a consensus [27]. Maximum like-
lihood estimation of the parameters {y, s, ¢, 6} is then accom-
plished by applying Theorem 1 to the landmarks of the triangle
assignments under H; (i.e., common landmarks).

V. NUMERICAL EXAMPLES AND SIMULATIONS

The fusion approach of this paper constructs a global map of
landmarks in two main steps referred to as GLR matching and
ML alignment. This section provides an example of the ML fu-
sion approach using the Victoria Park dataset and evaluates the
performance of the matching and alignment steps in simulation.

Consider a Delaunay triangulation constructed from the
ground truth landmarks observed by agent p and agent ¢ with
edge lengths {¢; : 1 = 1,2,...,m}. By modeling the variance
of the stochastic maps as 0, = o7 = o7, the signal-to-noise

q
ratio (SNR) in decibels follows as
2
SNRgp = 101og 2=
U”L

€2))

with a signal variance of o2 = L 3" | 2 computed from the
ground truth points and a noise variance of o2 = 202 since the
zero-mean Gaussian noise is additive to the landmarks rather
than to the edge lengths directly. The discussion of SNR in the
remainder of the paper is in reference to (31).

A. Fusion Example (Victoria Park Benchmark)

An illustration of the proposed ML fusion approach is shown
in Fig. 3. The ground truth vector u containing 285 landmark
coordinates is obtained by applying the sparse local submap
joining filter (SLSJF) proposed by Huang et al. [28] to the Vic-
toria Park dataset. A simple overlap model is constructed by
sorting the coordinates of the ground truth in order of increasing
x-coordinates and partitioning % into two overlapping vectors
1, (containing 200 of the “top” entries of the sorted vector u)
and wu, (containing 176 of the “bottom” entries of u). The re-
sulting overlap of n = 91 landmarks serves as a model of
the common landmarks, relative to ground truth, that are en-
countered along the paths independently explored by each agent
within the Victoria Park environment. The stochastic maps of
each agent are then generated using the additive noise model
discussed in Section III at an SNR of 40 dB. Directed hyper-
graphs (Section IV-A) representing the maps of p and ¢ con-
tain |£,| = 381 and |&,| = 337 directed triangles, respectively,
with an overlap of 144 triangles as a result of the ground truth
construction and Gaussian noise model mentioned above. As il-
lustrated in the figure, the spatial transformation of the map of
agent q is parameterized by {s,¢,8} with a scale factor, rota-
tion (in radians) and translation (in meters) given by s = 0.5,
6 = 0.7854 and ¢ = (150,20)7, respectively. Common land-
marks are determined using the GLR matching approach of
Section IV, which are used to compute the closed form MLEs
s* = 0.5000, 6* = 0.7851 and t* = (150.0079, 19.9949)T by
applying Theorem 1. Once the maps of each agent are repre-
sented within a common frame of reference, missed detections
in the matching are easily found using common data association
techniques such as nearest neighbor and maximum likelihood.
Estimation of the combined map u* = (p*7, v", v3")7 im-
mediately follows from the ML alignment approach described
in Section III.

B. Monte Carlo Performance

The performance of GLR matching is considered, followed
by the performance of ML alignment. The GLR matching ap-
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Fig. 4. Performance of hypergraph representation under various noise and
landmark overlap. At each level of overlap (indicated by the percentages at the
right), the percentage of common triangles found in the hypergraphs decreases
with increasing noise and decreasing overlap.
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Fig. 5. Performance of GLR matching under various scale factors. In addition
to the impact of noise is the consideration of the scale factor on the matching
performance. As s tends to zero, landmarks become increasingly less distin-
guishable (as illustrated above by the decrease in performance for decreasing
values of s).
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Fig. 6. Performance of ML alignment at various levels of triangle match de-
tection. The figure above shows that the MSE performance exhibits a relatively
low sensitivity to missed detections (e.g., the performance at 50% detection is
comparable to the performance at 100%).

proach of Section IV represents the maps of agents p and ¢ in the
form of a directed hypergraph model. Fig. 2 shows the decline in
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performance of the GLR statistic used to determine common tri-
angles between the hypergraph models for various SNR. In ad-
dition to the performance of the likelihood statistic is the noise
and overlap performance of the hypergraph representation, il-
lustrated by Fig. 4. As shown in the figure, the percentage of
common triangles in the hypergraph representation for various
levels of overlap decreases with decreasing SNR. In addition
to noise is the change in performance due to landmark overlap.
Consider the performance at the relatively high SNR of 70 dB.
At 100% overlap, the hypergraph models of each agent con-
tain all triangles in common (top right corner of Fig. 4). How-
ever, at 90%, 80% and 70% overlap, the figure shows that only
77.7188%, 66.1167% and 54.4552% of the hyperedges in each
hypergraph represent common triangles, respectively, even at
the relatively high SNR of 70 dB. The result thus shows that a
gradual decline in the percentage of common triangles in the hy-
pergraph representation can be expected to decrease with both
decreasing SNR and decreasing overlap. The performance of the
GLR matching applied to the directed hypergaph model under
various scale factors and noise is shown in Fig. 5. As s tends
to zero the landmarks become increasingly less distinguishable,
resulting in a decrease in performance as shown in the figure for
decreasing values of s.

The performance of ML alignment (Section IV) is shown in
Fig. 6 for various levels of GLR matching performance. In ad-
dition to showing the trend in performance for various SNR, the
figure also illustrates the robustness of the approach to missed
detections. In particular, the figure shows that the MSE perfor-
mance ranging from 50% detection to 100% is relatively the
same for a wide range of noise. Fig. 6 thus indicates that rela-
tively few matches are required to maintain the performance of
the approach.

VI. CONCLUSION

This paper considered the problem of constructing a global
map from the stochastic maps of collaborating mobile agents —
fusion of stochastic maps. The problem can be formulated as
a mixed integer and parameter estimation problem from which
landmarks common to each agent are aligned under a global co-
ordinate system. Under this framework, the optimal fusion of
stochastic maps can be accomplished using the maximum like-
lihood principle. Unfortunately, however, the complexity of the
true ML solution is prohibitive, which leads to a partitioning of
the problem into two steps: (i) matching landmarks via bipar-
tite hypergraph matching using a generalized likelihood ratio
statistic as a matching metric and (ii) estimating the combined
map within a common frame of reference using maximum like-
lihood estimation.

The main advantage of the proposed fusion approach, in
spite of its suboptimality due to the separate treatment of the
matching and alignment problems, is the comprehensive nature
of the procedure: in spite of the individual stochastic maps
being obtained in separate coordinate systems, a global map
is found for various levels of noise and overlap with no prior
knowledge of common landmarks. Monte Carlo simulations
also show that the performance of the proposed approach
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degrades gracefully for various levels of match detection and
scale. One way to further improve the approach would be to
incorporate distortions due to changes in perspective (e.g.,
foreshortening), which is considered as future work.

APPENDIX

The constant 2 x 2 matrices I. and I, used in Theorem 1 are
defined as

a1 0 a0 -1
I"‘{() 1] and IS_[I 0]

respectively, with nonzero entries corresponding to the cosine
and sine functions of the rotation matrix »(#). In addition, the
following lemma is used in the proof of Theorem 1.

Lemma 1: The matrix ¢} is an idempotent and symmetric
matrix that commutes with a block diagonal matrix of the form
A =1, % B, with B € R?*2,

Proof of Lemma 1: The idempotence and symmetry prop-
erties are immediate from the structure of the matrix (). The
product of the matrix FF'7 and the block diagonal matrix A =
I, ® B is given by

FFTA =[(enef ) 1] @ [12B]

=[Lu(enel)] @ [BI]
=[I, @ B][(enel) @ I1]
= AFFT,

Since FFTA = AFFT and FTF = nl,, it follows that
QA =[I, - F(FTF)"'FT]A
1
=A--FFTA
n

—A- lAFFT
n

= A[ly, — F(FTF) 'F1]

which proves that () and A commute. |
Proof of Theorem 1: Minimizing (8) with respect to (w.r.t.)
1 leads to

o202 1 1
_ _ P g 1 T .1
/1,(37 t7 9) = m (T—]QJ’L'P"F (T—gSRl (9)(.’1,(1 — Flf) (32)
and minimizing (8) w.r.t. £ leads to
s, p,0) = (F F1) T R (2 — sRa()p) . (33)

Using the evaluation p = ji(6,t) in (33) results in the MLE of
t as a function of # given by

t*(s,0)

Applying the evaluation ¢ = #*(s,6) in (32) leads to the MLE
of i as a function of s and # given by

17(5,0) = dp(s.0)z), + dq(s. 0)zy.

= (F F)7'F (2] — sBy(0)z)) . (34)

(35)

2097

Using the symmetry and idempotence properties of the matrix
() (Lemma 1), it follows from the expression (35) that

a1 (5, )12 = g — sRa(B)ay g

sRl(H):L‘;HZ?

II{pH.’L’; -

2
) . Similarly, it follows from (34) and

2
S0
. — ¥4
where K, = (—UZJFSQUS

(35) that
||T; — sR1(0)p

(6) = Fut* ()2 = sy |} — sRa(0) [y

= tfig|lag — sB1(0)z, |15
s2a2 2
where x, = (1 — ﬁ) . Using these simplifications to
define ’ !
TH(s,0) & 2 T, 5,1, 8)
1\ - 2% 1, s 5
1
= 5lled — sRa (@)L (36)
where x = 1> Kp + 12 k4 and expanding the norm in the right

hand side (RHS) of (36) as

2 1TRT( )QRl( ),,1 +LL‘1TQ’L';
—2sz," QR (9)7,

p7

log — sR1(0), I3 =
(37

it follows from Lemma 1 that the first term on the RHS of (37)
reduces to

s} RY(0)QR1(0)a), = s”x," R (8)R1(6)Qux,

=s’z)" Q) (38)

so that from (36), (37) and (38), J;(6) reduces to

Ji(s,0) = 3( 2 1TQL +L1TQ1 beyLlTRl( )QL;,) (39)

which leads to

e TQRT (9)x)

s (0) = O (40)

when minimized w.r.t. s. Notice in the last term on the RHS of
(39) that

2  R1(0)Qz, = z," [R.(0) + R:(0)] Qu,
= zl;iTRC(F})Qm}J + T;TRé(H)QT[l] 41

where R.(0) = (I, ® I.) cos(8) and R,(#) = (I, ® I,) sin(h),
meaning that
=2, R1(0)Qx, = 2a cos(f) + 28sin(6)

where o = —20 T (I,, © I.)Qx; and (8 =
from which it immediately follows that

1T 1
_7(1 (I'n b2 Is)Qmpo

Ji(s,0) = sacos(8) + sfsin(6) + v(s) (42)
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where(s) = § (s?227Qzl + z¥ Qzl). By virtue of the sinu-
soidal form (42), it follows that J; (s, #) has a unique minimum
for # € [—x, x| given by

sgn(sf3) |cos ! S R

9*

= sgn(B) [cos™? S

/(12 + IHZ

for s > 0, which leads to the MLEs of s, £ and p given by (16),
(17) and (18), respectively. |
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