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Abstract – We investigate simultaneous localization
and mapping (SLAM) involving multiple robots through
collaborations. In particular, we assume that robots
may communicate to each other when in communica-
tion range. Several scenarios are considered: (i) robots
fully able to communicate while conducting SLAM; (ii)
robot communications are intermittent due to each robot
having a limited but equal communication range; (iii)
communications among robots are asymmetrical in that
some robots may have a larger communication range
than other robots. In this paper, we develop a model
for multi-robot SLAM and include mechanisms for in-
formation exchange. We also provide performance com-
parisons for various cases of multi-robot and single-robot
SLAM based on algorithms we develop to incorporate ex-
changed information.

Keywords: Space robotics, multi-robot systems,
Kalman filtering, simultaneous localization and map-
ping (SLAM).

1 Introduction

Future missions to the moon, and longer-term mis-
sions to Mars, may require the use of multiple rovers to
complete practical tasks such as autonomous terrain ex-
ploration and transportation of regolith and products of
in-situ resource utilization (ISRU) plants between var-
ious locations or facilities at a lunar outpost. To ef-
fectively complete such tasks, future rovers will require
the ability to operate in both structured and unstruc-
tured environments, as independent platforms and as
coordinated robotic formations to assist astronauts in
lunar operations. In particular, the capability of the
rovers to conduct simultaneous localization and map-
ping (SLAM) both independently and as teams may
contribute to overall mission success.

In this paper, we focus on the benefits of communi-
cation using a formation model for multi-rover SLAM.
Part of this is not new; for instance, it has been shown
that (over short distances, yet in the presence of in-
termittent satellite communication) using trilateration

in conjunction with various robot formations can con-
tribute to the reduction of estimation error within a
rover formation [1]. Although this localization approach
is based on the extended Kalman filter (EKF) [2], it
does not simultaneously estimate stationary landmarks
as necessary for EKF-based SLAM algorithms. In addi-
tion, another component of this approach is the use of
block diagonal system matrices to model inherently cou-
pled formations (and as far as we know, block diagonal
system matrices are also used for every other current
state-space based approach to the multi-robot SLAM
problem). The basic intuition behind the use of block
diagonals is to implement coordinate transformations
between the robots [3], yet such an approach does not
model the coupling (if any) within the robot team. Also,
and more generally, information between mobile robot
platforms can be coordinated through the use of the
channel filter [4] (however, in regards to exchanging for-
mation information, channel filters do not communicate
vehicle data [5]) and the sparse extended information fil-
ter (SEIF) [6], which is a particle filter based approach
mainly used for global localization problems. Decision
theoretic strategies have also been considered [7]. The
main idea of our approach is to introduce coupling of the
rover states by relaxing the assumption of a block diago-
nal system matrix and to demonstrate a leader-follower
formation that explicitly models coupling between rover
states while implementing SLAM.

The core of this paper is the next section on linear for-
mation models for multi-robot SLAM. Sections 2.1-2.2
provide the linear models associated with SLAM based
on Kalman filtering; basic illustrations are also provided
to demonstrate the physical impact of noise within each
model. Section 2.3 presents a leader-follower model
which we later use to show the performance of SLAM
with multiple robots when the robot states are coupled
(mainly due to a system matrix that models coupling be-
tween rovers). The state estimator based on the leader-
follower model is given in Section 2.4. Results and ex-
ample applications are provided in Section 2.5.



2 Models

In this section, we present the linear kinematic and
measurement models associated with SLAM based on
Kalman filters, which are used as baselines to construct
equivalent state and measurement spaces for a leader-
follower model. The more general case for EKF-based
SLAM [8] based on a nonlinear leader-follower model is
considered as future work.

2.1 Single-robot kinematic model

The state of a single rover i at time k is denoted as
xi

v,k = [xi
k yi

k φi
k ]> (the subscript v is the traditional

notation for a vehicle state). The state vector of a sta-
tionary landmark n is xLn

= [xLn
yLn

]>. The SLAM
system model for rover i with N landmarks is then
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which includes the control vector ui
v,k and system ma-

trix Ai
v,k of the rover. The noise associated with the

kinematics of rover i is modeled by the Gaussian random
variable wi

v,k ∼ N (0,Qi
v,k). The matrix Qi

v,k = σ2
wI is

known as the kinematic noise covariance matrix, where
σw is the standard deviation of the kinematic noise term.
The physical impact of noise within the system model
is shown in Figure 1.

Figure 1: Illustration of kinematic noise. A nominal
rover trajectory (solid line) is subject to kinematic noise,
often resulting in random trajectory deviations (dashed
line). The impact of kinematic noise may be “small”
over tiny intervals, but often it accumulates over time.

2.2 Single-robot measurement model

A measurement of landmark n at time k by rover
i is denoted as yi

k,Ln
; note, however, that 1) the vec-

tor yi
k,Ln

is a single landmark measurement and that
2) the number of landmark measurements at any par-
ticular time-step k depends on both the pose of the
rover xi

v,k and the surrounding environment. For in-
stance, a measurement of landmark 1 by rover i at time
k is simply given by the vector yi

k,L1
, but a measure-

ment of, say, landmarks 1 and 3 is given by the vec-
tor [(yi

k,L1
)> (yi

k,L3
)> ]>. The measurement matrix of

yi
k,Ln

is Ci
k = [ Ci

v,k Ci
k,Ln

], where the matrix Ci
k,Ln

“selects” landmark n from the N -landmark vector. It
follows that the measurement of landmark n by rover i
is modeled as
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= xLn + Ci
v,kxi

v,k + vi
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. (4)

The noise associated with this measurement is modeled
by the Gaussian random variable vi

k,Ln
∼ N (0,Ri

k,Ln
).

The matrix Ri
k,Ln

= σ2
vI is known as the measurement

noise covariance matrix, where σv is the standard devi-
ation of the measurement noise term (in this case, the
subscript v is in the context of measurement noise). The
impact of noise within the measurement model is illus-
trated below in Figure 2.

(a) σ2
v = 0.1

(b) σ2
v = 0.4

(c) σ2
v = 0.9

Figure 2: Illustration of measurement noise. Although
landmarks (black dots) are assumed to be stationary,
the accuracy of landmark measurements (cross hairs)
varies as a function of the sensor variance σ2

v . The line-
of-sight for each measurement is shown by vertical bars.



2.3 Leader-follower model

This sections applies Sections 2.1-2.2 to develop a
leader-follower based formation model. The formations
that result from implementing the models of this section
most closely resemble formations of the column type [9]
with a directed communication topology [10] at each
time-step between the leader and follower rovers.

2.3.1 Leader process

We assume the leader rover, with assignment i = 1
and state x1

v,k at time k, moves independently of any
rover followers within a rover formation. The leader
kinematic model is given by

x1
v,k = A1

v,kx1
v,k−1 + u1

v,k + w1
v,k. (5)

2.3.2 Follower process and control

We consider the case of a single follower rover, with
assignment i = 2 and state x2

v,k at time k. The leader
control vector u1

v,k may be computed by the robot (au-
tonomous operation) or user-defined via tele-operational
commanding from an outpost. However, we define the
follower kinematics and control policy as

x2
v,k = x2

v,k−1 + u2
v,k + w2

v,k (6)

u2
v,k = µ

(
x1

v,k−1 − x2
v,k−1

)
+ ũ2

v,k (7)

respectively, where µ such that 0 ≤ µ < 1 determines
the magnitude of the follower control and ũ2

v,k is the
local control vector based on decisions of the follower.

2.3.3 Leader-follower kinematics

It follows from the definitions of the leader and fol-
lower dynamics in Equations 5-6, respectively, that we
may extend Equation 1 as
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xk = Akxk−1 + uk + wk. (9)

The physical impact of Equation 9 is that the dynamics
of x1

v,k and x2
v,k are coupled by the structure of the

system formation matrix Ak .

2.3.4 Measurement model

For measurements y1
k,Ln

of landmark n by rover i = 1
(the leader rover) and y2

k,Lm
of landmark m by rover

i = 2 (the follower rover), the measurement model of
Equation 3 can be extended to Equation 8 as
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for n,m ∈ {1, . . . , N}. Similar to the single robot mea-
surement model (Section 2.2), the number of landmark
measurements will change depending on the pose of each
rover (and subsequently, the configuration of the forma-
tion) within the environment for each time instance k.

2.4 Estimation model

Using the kinematic and measurement models of Sec-
tion 2.3, we can now pose the leader-follower model in
the context of Kalman filter based SLAM [11]. The
prediction-step, or time-update, is computed as

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk (11)

Pk|k−1 = AkPk−1|k−1A>k + Qk (12)

meaning the estimate of xk before incorporating mea-
surements is distributed as a multivariate Gaussian
N (x̂k|k−1,Pk|k−1). For the correction-step, or measure-
ment update, the innovation matrix Sk and Kalman gain
Wk is computed as

Sk = CkPk|k−1C>k + Rk (13)

Wk = Pk|k−1C>k S−1
k (14)

followed by incorporating yk, the measurement vector
at time k (assuming measurements are available), and
the expected measurement vector ŷk as

x̂k|k = x̂k|k−1 + Wk (yk − ŷk) (15)

Pk|k = Pk|k−1 −WkSkW>
k (16)

meaning the estimate of xk after incorporating measure-
ments is distributed as N (x̂k|k,Pk|k).



2.5 Communication model

We use a simple disk model [12] to model whether or
not two mobile rovers are within a certain communica-
tion range r. When the rovers are out of communication
range, the rovers operate independently (Sections 2.1-
2.2) and do not exchange information. However, if the
leader state x1

v,k and follower state x2
v,k is such that

||x1
v,k − x2

v,k|| ≤ r (17)

then the communication may be 1) symmetric in that
the communication range of both rovers equals r or 2)
asymmetric if the communication range of one rover
equals r while the other rover has a significantly larger
communication range.

(a)

(b)

(c)

Figure 3: Topologies when two mobile rovers are (a)
out of communication range, (b) exchanging informa-
tion within an equal communication range and (c) both
transmitting information with receptions received by
only one of the rovers.

3 Results

This section provides basic examples of the leader-
follower model and performance results of multi-robot
SLAM with exchange of leader-follower information. An
example of multi-robot SLAM for space applications is
also provided for rovers operating at the location of a
lunar outpost.

3.1 Leader-follower implementations

In Section 2.3, we defined a kinematic model with
system matrix Ak that models the coupling between
a leader state x1

v,k and follower state x2
v,k for a for-

mation of two mobile rovers capable of implementing
SLAM. Example trajectories resulting from this model
are shown below in Figures 4-5. Figure 6 illustrates tra-
jectories based on a multi-robot SLAM example that
contains a “blind” follower (a rover incapable of collect-
ing landmark measurements).
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Figure 4: Nominal rover trajectories based on the
leader-follower model (Section 2.3.3).

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

18

x [m]

y 
[m

]

0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10

12

14

x [m]

y 
[m

]

Figure 5: Trajectory realizations subjected to zero-mean
and Gaussian kinematic noise.

One may notice from Figures 5-6 that the follower con-
trol policy will consist of imperfect state information,
namely x̂i

v,k−1|k−1 for each rover i and time k. In the
context of Section 2.4, the follower control policy is then

u2
v,k = µ

(
x̂1

v,k−1|k−1 − x̂2
v,k−1|k−1

)
+ ũ2

v,k. (18)



Figure 6: Lunar outpost simulation. The leader rover (illustrated in red) is capable of measuring landmarks (cross
hairs), which may be beacons laid out by astronauts (structured environment), distinct features extracted from
the terrain (unstructured environment), or both. The follower rover (illustrated in blue) can communicate, but
is not equipped with the hardware to collect measurements (hence not able to conduct SLAM). However, once
measurements are available to the leader, the follower is able to localize itself based on the leader-follower model.

3.2 Benefits of communication

In considering the best case performance of SLAM
with exchange of leader-follower information, we exam-
ine the special case of when the shared N -landmark vec-
tor of the leader and follower rovers is fully observable
(measurements from all N landmarks) by both rovers
and compare the results to single-robot SLAM without
communications; for both cases, we assume the land-
mark correspondences are known. Performances are
shown for an increasing number of landmarks.
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Figure 7: Rover state estimation variances for a fully
observable N -landmark vector with N ∈ {1, 2, 5, 20}.

The intuition of Figure 7 is that multi-rover SLAM is
most useful in terms of localization when the number
of landmark observations between the two platforms is
relatively low (i.e., localization improves due to the cou-
pling of the rover states), yet landmark estimation, or
mapping, may not significantly benefit in this case (Fig-
ure 8). Conversely, when the number of landmark ob-
servations is relatively high, the performance of multi-
rover SLAM and single-rover SLAM may be equivalent
in terms of localization, but multi-rover SLAM outper-
forms single-robot SLAM in terms of mapping.
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N = 1  (no communication)
N = 1  (with communication)
N = 2
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Figure 8: Landmark estimation variances for a fully ob-
servable N -landmark vector with N ∈ {1, 2, 5, 20}. The
legend in this figure also applies to Figure 7.



Another benefit of communication can be seen from
the lunar outpost simulation, which contains a “blind
follower,” meaning the follower rover is not capable of
making landmark observations. Although the follower
is incapable of conducting SLAM, it may still have lo-
calization capabilities within the formation under the
leader-follower model (in spite of lacking the ability to
measure landmarks); this ability may be useful in the
case where a rover has a failure in sensor hardware.
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Figure 9: Lunar outpost simulation results showing (a)
the increasing variance (uncertainty) of the blind fol-
lower state estimate without the use of communication
and (b) the decrease in state estimation uncertainty of
the blind follower when leader-follower information is
communicated between the rovers. The shaded region
shows when landmark measurements are not available
to the leader rover.

4 Conclusions and future work

In this paper, we presented a leader-follower forma-
tion model for multi-rover SLAM as a means of informa-
tion exchange. The kinematic and measurement mod-
els of the formation models are based on the equiva-
lent models for single-robot SLAM using Kalman filters.
The formation estimation model was applied to a space
based application. The main results of this paper illus-
trate that multi-robot SLAM is useful for 1) localization
when the number of landmark observations is relatively
low and 2) for mapping when the number of landmark
observations is relatively high. Future work includes de-
veloping a nonlinear SLAM formation model involving
an arbitrary number of robots.
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